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Abstract. We have used monolayers of control 3T3 
cells and 3T3 cells expressing transfected human L1 as 
a culture substrate for rat PC12 cells and rat cerebel- 
lar neurons. PC12 cells and cerebellar neurons ex- 
tended longer neurites on human L1 expressing cells. 
Neurons isolated from the cerebellum at postnatal day 
9 responded equally as well as those isolated at post- 
natal day 1-4, and this contrasts with the failure of 
these older neurons to respond to the transfected hu- 
man neural cell adhesion molecule (NCAM). Human 
Ll-dependent neurite outgrowth could be blocked by 
antibodies that bound to rat L1 and, additionally, the 
response could be fully inhibited by pertussis toxin 
and substantially inhibited by antagonists of L- and 
N-type calcium channels. Calcium influx into neurons 
induced by K + depolarization fully mimics the L1 re- 
sponse. Furthermore, we show that L1- and K+-depen - 

dent neurite outgrowth can be specifically inhibited by 
a reduction in extraceUular calcium to 0.25 ttM, and 
by pretreatment of cerebellar neurons with the intra- 
cellular calcium chelator BAPTA/AM. In contrast, the 
response was not inhibited by heparin or by removal 
of polysialic acid from neuronal NCAM both of which 
substantially inhibit NCAM-dependent neurite out- 
growth. These data demonstrate that whereas NCAM 
and L1 promote neurite outgrowth via activation of a 
common CAM-specific second messenger pathway in 
neurons, neuronal responsiveness to NCAM and L1 is 
not coordinately regulated via posttranslational pro- 
cessing of NCAM. The fact that NCAM- and L1- 
dependent neurite outgrowth, but not adhesion, are 
calcium dependent provides further evidence that 
adhesion per se does not directly contribute to neurite 
outgrowth. 

ONAL and dendritic growth and arborization are cen- 
tral to the development and regeneration of the ner- 
vous system. Both processes are likely to depend 

upon the functional interplay between a vast array of en- 
vironmental cues provided by components of the extracellu- 
lar matrix, as well as by molecules present on the surface and 
secreted by cells with which the neuronal growth cone comes 
into contact (reviewed in Doherty and Walsh, 1989; Bixby 
and Harris, 1991; Lumsden and Cohen, 1991). 

Over the last decade a very large number of extracellular 
matrix and integral membrane glycoproteins that mediate 
contact-dependent axonal growth have been identified. Prom- 
inent among the neuronal growth cone receptor systems that 
recognize and transduce positive growth signals are mem- 
bers of three gene families, namely the integrins (Reichart 
and Tomaselli, 1991; Hynes, 1992), the Ig gene superfamily 
(Williams, 1987; Walsh and Doherty, 1991; Rathjen and Jes- 
sell, 1991), and the cadherins (Takeichi, 1991). Evidence 
from antibody perturbation experiments has shown that when 
neurons extend neurites over complex cellular substrata (e.g., 
astrocytes, myoblasts, or Schwann cells), a cocktail of anti- 
bodies that block the function of ~l-integrins, the neural cell 

adhesion molecule (NCAM) ~ and L1 cell adhesion molecules 
(CAMs) (both Ig superfamily members), and N-cadherin are 
often required for a maximal inhibition of neurite outgrowth 
(e.g., see Bixby et al., 1987, 1988). These studies suggest 
that contact-dependent growth of axons requires the integra- 
tion of signals arising from a number of receptor-ligand in- 
teractions. 

N-cadherin and L1 in neurons can promote neurite out- 
growth following their homophilic binding to products of the 
same gene purified and coated to a tissue culture substratum 
(Lemmon et al., 1989; Bixby and Zhang, 1990). L1 in neu- 
rons can also promote neurite outgrowth following hetero- 
philic binding to a distinct but related gene product called 
Axonin-1 (Kuhn et al., 1991). Similarly, when N-cadherin- 
and NCAM-deficient cells are transfected with cDNAs en- 
coding these molecules, expression of the transgene can be 
correlated with an increase in the ability of the transfected 
cell to promote neurite outgrowth from a wide variety of 
neuronal cell types (Matsunaga et al., 1988; Doherty et al., 

1. Abbreviations used in this paper: NCAM, neural cell adhesion molecule; 
PSA, polysialic acid. 
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1989, 1990a, 1991a,b). In the case of NCAM, neurite out- 
growth was shown to be dependent on NCAM in both the 
neuron and substratum supporting a homophilic binding 
mechanism (Doherty et al., 1990b). The use of a transfec- 
tion-based strategy to study CAMs offers a number of advan- 
tages over more conventional methods of biochemical purifi- 
cation and coating to a substratum. For example, in the latter 
case the coated molecule is often required to support both 
adhesion and consequently neurite outgrowth, and it remains 
unclear how these distinct functions are related (e.g., see 
Doherty et al., 1992a). In transfection models, the control 
substratum (i.e., untransfected cells) can be selected for its 
ability to support adhesion per se, allowing the neurite out- 
growth promoting activity of the transfected CAM to be stud- 
ied on its own. More importantly, facets of function relating 
to the lateral diffusion of CAMs in membranes and/or their 
ability to interact with cytoskeletal elements in a cellular 
substratum are obviously lost when the CAM is studied as 
a purified molecule. In this context, recent results have shown 
that NCAM isoforms that differ only in the size of their cy- 
toplasmic domain (as a consequence of natural alternative 
splicing of the NCAM gene) differ considerably in their abil- 
ity to promote neurite outgrowth and that this most likely re- 
lates to NCAMs lateral diffusion properties in the cellular 
substratum (Doherty et al., 1992b). 

The cDNAs encoding mouse (Moos et al., 1988), rat (Mi- 
ura et al., 1991), and human L1 (Hlavin and Lemmon, 1991; 
Reid and Hemperly, 1992) have all been isolated and charac- 
terized. These cDNAs all encode proteins of ~1,260 amino 
acids that share *85  % identity between human and mouse. 
An alternatively spliced exon that encodes a four-amino acid 
peptide in the cytoplasmic domain was also identified in rat 
and human cDNAs. In the present study we have transfected 
mouse NIH-3T3 fibroblasts with a plasmid vector containing 
the full coding sequence of human L1. Stable clones express- 
ing human L1 have been isolated and characterized for their 
ability to promote neurite outgrowth from rat PC12 pheo- 
chromocytoma cells (see Greene and Tischler, 1976; Do- 
herty et al., 1991b) and rat cerebellar granule cells. Previous 
studies have suggested that a cis-interaction between L1 and 
NCAM in the same membrane may result in the formation 
of a potent receptor complex that can then interact better 
than L1 on its own for trans binding to L1 on a second mem- 
brane (Kadmon etal. ,  1990a,b). A similar functional inter- 
play between NCAM and L1, that is primarily controlled by 
long chains of ct 2-8-1inked polysialic acid (PSA) on NCAM, 
has been suggested to be important for establishment of the 
correct innervation pattern in the chick hindlimb (Landmes- 
ser et al., 1990). In the present study we address three im- 
portant questions relating to L1 and NCAM function in neu- 
rons. Firstly, does L1 induce neurite outgrowth via activation 
of the same neuronal second messenger pathway as NCAM 
and does this depend on the flux of extracellular calcium into 
neurons? Secondly, do neurons undergo a similar age-de- 
pendent toss of responsiveness to L1 as they do for NCAM- 
dependent neurite outgrowth? Finally, is NCAM function 
required for Ll-dependent neurite outgrowth and is the lat- 
ter directly modulated by the presence of PSA on neuronal 
NCAM? Our results clearly show that LI and NCAM can 
promote neurite outgrowth via activation of a common neu- 
ronal CAM-specific second messenger pathway, and that di- 
rect activation of the pathway is sufficient to fully mimic 
the response. In contrast, factors that operate to modulate 

NCAM-dependent neurite outgrowth, such as alternative 
splicing and reduced expression of PSA on neuronal NCAM, 
do not directly impinge on Ll's ability to promote neurite 
outgrowth. Furthermore, we provide novel data to support 
the postulate that CAM-dependent activation of second mes- 
sengers is solely responsible for the neurite outgrowth re- 
sponse. 

Materials and Methods 

Plasmid Construction 
Full-length human L1 cDNA (Reid and Hemperly, 1991) was subcloned 
from pBluescript into expression vectors pJ4fl (Morgenstern and Land, 
1990) and pCDNA1 (Invitrogen) under the control of Mo MuLV LTR and 
CMV promoters, respectively. The L1 cDNA was removed from 
pBluescript using ClaI and XbaI (the latter site was end-repaired using the 
Klenow fragment of DNA polymerase 1) for ligation into ClaI and SmaI 
cut pJ4fl or NotI and XhoI for ligation into pCDNA1 cut with XmaIII and 
XhoI. The integrity of the inserted L1 eDNA was checked by partial se- 
quence and restriction analyses. 

Transfection 
Cotransfection of human L1 with the selectable plasmid pH/~AP-l-neo (Do- 
herty et al., 1991b) at a ratio of 20:1 was performed using the calcium phos- 
phate transfection protocol provided with the CellPhect Transfection Kit 
(Pharmacia Fine Chemicals, Piscataway, NJ). 3T3 cells were grown for 
24 h to a density of 1 x 104 cells per 60-mm petri dish before addition of 
the calcium phosphate-treated DNAs. Cells were cultured for 16 h at 37~ 
in complete media before transfer to 100/150-mm petri dishes containing 
DME, 10% FCS, 2 mM glutamate, and 0.5 mg/ml G418. After 10-14 d in 
culture, G41 g-resistant colonies were isolated and characterized for L1 ex- 
pression. 

Characterization of Transfected Cells 
Control and G418-resistant clones were characterized for expression of LI 
by immunoeytochemistry and Western blotting using the 5G3 monoclonal 
antibody (Mujoo et al., 1986; Wolff et al., 1988) and the Neuro4 mAb. For 
the generation of the latter antibody, Balb/c mice were immunized with an 
adult human brain glycoprotein fraction. After fusion with p3x63Agg.653 
cells and selection in HAT, the Neuro4 antibody was selected by immuno- 
blotting of 200/190- and 140-kD bands in crude membrane fractions. Cul- 
tures were processed for immunocytochemistry by sequential incubation 
with 5G3 or Neuro4 (both at 1:500 dilution of ascites), biotinylated anti- 
mouse Ig and Texas red streptavidin (Amersham International, Amersham, 
UK) (both diluted 1:500) as previously described (Doherty et al., 1991a). 
Western blotting of whole cell extracts of control and transfected 3T3 cells 
and PC12 ceils was carded out essentially as previously described using the 
primary antibodies at a 1:200 dilution and the ECL Western blotting re- 
agents from Amersham International (Moore et al., 1987; Doberty et al., 
1991a). The relative level of human L1 on the various clones of transfected 
ceils was determined by measuring the binding of a saturating concentration 
of Neuro4 by standard enzyme-linked immunoadsorbent assay (Doherty et 
al., 1990a). Results obtained with 5G3 were no different from those ob- 
tained with Neuro4 and examples of the latter only are shown throughout. 
PC12 cells co-cultured on monolayers of control and transfected 3T3 cells 
(see below) were also immunostained with purified Ig fraction of a rabbit 
antiserum raised against mouse L1 (Rathjen and Schachner, 1984), using 
biotinylated anti-rabbit Ig and Texas-red streptavidin as above. 

Cell Culture and Neurite Outgrowth 
The neurite-outgrowth promoting activity of transfected human L1 was de- 
termined as previously described for transfected NCAM and N-cadherin 
(Doherty et al., 1991a, 1992a-c). In brief, rat cerebellar neurons isolated 
at PND 1-9 or naive and primed PC12 cells (see Greene, 1984) were cul- 
tured for 16-24 h on confluent monolayers of parental 3I"3 cells or clones 
of 3T3 cells expressing hunutn L1. Co-cultures were established by seeding 
~1,000 PC12 cells or ~2,000 cerebellar neurons onto 3T3 cell monolayers 
established in individual chambers of eight-chamber Lab-Tek slides~ The 
co-culture media was SATO supplemented with 2% FCS (Doherty et al., 
1992a). In some experiments the levels of calcium and magnesium were 
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changed by direct supplementation of calcium/magnesium-free DME as in- 
dicated (see text). The average length of the longest neurite on PC12 cells 
and cerebellar neurons was determined using a Sight Systems Image Man- 
ager (Sight Systems, Newbury, England) as previously described (Doherty 
et al., 1991a). 

Other Reagents 
Pertussis toxin and K-252b were gifts from Dr. J. Kenimer and Dr. Y. Mat- 
suda. Heparin, diltiazem, and verapamil were from Sigma Chemical Co. 
(St. Louis, MO). Nifedipinc was from Life Technologies Ltd. (Grand Is- 
land, NY), ~conotoxin MVRA was from Peninsula Laboratories (Liver- 
pool, UK). Endo-N was a kind gift from Dr. J. Roth and the monovalent 
Fab fraction of antimouse L1 was generously donated by Dr. Fritz Rathjen. 
All of the reagents were used as previously described (see Doherty et al., 
1990b, 1991a) at concentrations established to block their respective targets 
and also shown to have no nonspecific effects on neurite outgrowth. 
BAPTAIAM was obtained from Calbiochem Novabiochem (UK) Ltd. (Not- 
tingham, UK). There was no difference in neuronal cell numbers on control 
and transfected monolayers in the presence and absence of any of these 
agents (our unpublished observations, but see Doherty et al., 1991). 

Results 

Expression and Characterization of  Human L1 
in 3T3 Cells 

NIH-3T3 cells were transfected with one of two distinct plas- 
mids containing the full coding sequence of human L1 and 
clones selected that were resistant to G418 (0.5 mg/ml). 
These clones were initially characterized for cell surface ex- 
pression of human L1 using the well characterized 5G3 mAb 
(Mujoo et al., 1986) that reacts specifically with human L1 
(Wolff et al., 1988) and the Neuro 4 mAb that also reacts 
specifically with human L1 (J. Hemperly, unpublished ob- 
servations; this study). Parental 3T3 cells showed weak to 
negative intracellular staining with both antibodies (not 
shown, but see Fig. 1 B), whereas a number of clones of 
transfected cells showed bright positive staining over the en- 
tire cell surface, again with both antibodies (e.g., see Fig. 
1 A). Specific binding of antibodies to transfected cells was 
confirmed by quantitative enzyme-linked immunoabsorbent 
assay and a number of clones that expressed similar levels 
of human L1 were thus identified and expanded for further 
study (data not shown). The presence of the antigen on the 
cell surface was confirmed by the ability of both antibodies 
to stain live cells (data not shown). There were no obvious 
differences between cells transfected with the two plasmids. 

Human L1 was further characterized by immunoblotting. 
Both mAbs recognized a doublet band at ~150-160 kD in 
extracts of transfected 3T3 ceils but failed to show any 
specific binding to parental 3T3 cells (Fig. 1 C). This is un- 
likely to relate to species-specific activity of the antibodies 
as the Neuro4 mAb bound to previously reported bands at 
190/200 and 140 kD in rat PC12 cells and cerebellar neurons 
(not shown). Furthermore, a Fab fraction of a rabbit antise- 
rum raised against mouse L1 (Rathjen and Schachner, 1984) 
showed very strong staining of rat PC12 cells with only low 
level background staining to 3T3 cells in co-culture (Fig. 1 
B). This antibody did not however recognize human L1 in 
the above transfectants. This result was confirmed by quan- 
titative enzyme-linked immunoabsorbent assay; in three in- 
dependent experiments there was no significant difference in 
the binding of this antibody to control and human L1 ex- 
pressing 3T3 cells. These data show that parental 3T3 cells 
express negligible levels of endogenous L1, and that human 

L1 expressed in transfected cells exists as a doublet of 
150-160 kD. For a comparison, human neuroblastoma cells 
express L1 as a diffuse component ranging from 200 to 215 
kD with additional bands at ~150 kD. Removal of N-linked 
carbohydrates from the larger human L1 bands shifts the mo- 
lecular mass to a 150-165-kD doublet (Wolff et al., 1988). 
Thus, L1 expressed in 3T3 cells runs at a similar molecular 
mass to L1 in human neuroblastoma cells but fails to show 
the same degree of heterogeneity, probably due to a more 
limited pattern of posttranslational processing. Similar re- 
suits have been found with 3T3 ceils transfected with NCAM 
(Doherty et al., 1989). 

Neurite Outgrowth on Monolayers of Control 313 Cells 
and 31"3 Cells Expressing Human L1 

In our initial experiments, we cultured naive PC12 cells for 
20-48 h on confluent monolayers of control 3T3 cells and 
3T3 expressing human L1. In a typical experiment there was 
no obvious morphological response at 20 h, but a significant 
enhancement of neurite outgrowth was clearly apparent by 
48 h. For example, in one experiment the mean length of the 
longest PC12 cell neurite was 35.6 • 2 gm on L1 transfec- 
tants as compared to 18.0 + 1 #m on parental 3T3 cells (P 
< 0.005, each value the mean + SEM of "~120 PC12 cells) 
with the percentage of these neurites >20 gm in length in- 
creasing from 40 to 79 %. Thus, L1 appears to stimulate neu- 
rite outgrowth to a similar extent as transfected NCAM and 
N-cadherin (Doherty et al., 1991a) and there was no obvious 
difference in the morphology of PC12 cells on monolayers 
expressing these individual CAMs (data not shown). 

To try to obtain a more rapid response from PC12 cells 
we initially cultured them for 3-6 d in NGF (~50 ng/ml) be- 
fore culturing them on monolayers of control and transfected 
3T3 cells (in the presence of NGF antibodies to neutralize 
any residual NGF). Fig. 2 shows the mean length of the lon- 
gest PC12 cell neurite after 16 h of culture on monolayers 
of control 3T3 cells as compared to three individual clones 
of transfected 3T3 cells that express similar levels of L1. In 
each case the length of the longest neurite was significantly 
greater on L1 expressing cells (P < 0.005). Primed PC12 
cells also showed a more rapid response to transfected 
NCAM and N-cadherin (see below) and this phenomenon 
may relate at least in part to NGF-induced increases in L1 
(aKa NILE), NCAM, and N-cadherin in PC12 cells (McGuire 
et al., 1978; Mann et al., 1989; Doherty et al., 1991a). 

As the three L1 expressing clones (which vary in their level 
of expression by <15%; data not shown) promote neurite 
outgrowth by a similar extent, we have focused our attention 
on clone 1. Also, control experiments with PC12 cells 
showed that the most substantial benefit ofpretreatment with 
NGF was over a 3-4 day period, and this was therefore used 
in all subsequent experiments. The overall effect of human 
L1 on neurite outgrowth from primed PC12 cells, deter- 
mined in the five independent consecutive experiments, is 
shown in Fig. 3. There was a highly significant 92 % increase 
in the mean length of the longest neurite, and the percentage 
of cells with a neurite >40 #m increased by a factor of 2.6 
from 24 to 63 %. In parallel experiments, transfected NCAM 
and N-cadherin increased the length of the longest neurite by 
102 + 12 (3)% and 84 :t: 21 (3)%, respectively, (both values 
mean + SEM for the given number of independent experi- 
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Figure L L1 immunoreactiv- 
ity in transfected 3T3 cells and 
PCl2 cells. (a) A culture of 
transfected 3T3 cells was fixed 
with 4% paraformaldehyde 
and stained with the Neuro4 
mAb (1:500 dilution). Positive 
staining was found over the 
entire surface of the cells. (b) 
A co-culture of naive PC12 
cells on a confluent monolayer 
of control 3T3 was fixed with 
paraformaldehyde and stained 
with rabbit antibodies raised 
against mouse L1. Note the 
bright positive staining on the 
PCI2 cells and the failure of 
the antibody to bind to control 
3T3 cells. (c) The Neuro4 
mAb recognized major bands 
at '~150-160 kD in Western 
blots of SDS extracts of trans- 
fected 31"3 cells (lane 1), but 
failed to bind to any bands in 
untransfected 3T3 ceils (lane 
2). Bars, 50/~m. 

ments). Thus, over a •16-h period of co-culture all three 
CAMs promote neurite outgrowth from primed PC12 cells 
by a similar extent. Transfected NCAM and N-cadherin can 
also promote neurite outgrowth from a variety of primary 
neurons including rat cerebellar neurons (e.g., see Doherty 
et al., 1992a). In the present study cerebellar neurons iso- 
lated at PND 1, 2, 3, 4, and 9 were cultured for "-,24 h on 
confluent monolayers of control and human L1 expressing 
3T3 cells before being fixed and the average length of the lon- 
gest GAP-43 positive neurite was determined for each cell. 
Expression of human L1 was associated, in each of five inde- 

"7- 

T 7  
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3T3 1 2 3 

L1 r  

Figure 2. The length of the 
longest PC12 cell neurite on 
control and human Ll-express- 
ing 3T3 cells. Primed PC12 
cells (6 d pretreatment with 50 
ng/ml NGF) were cultured on 
monolayers of control 3T3 
cells or three independent 
clones of transfected 3T3 ceils 
expressing human L1. Co-cul- 
tures were fixed after 16 h and 
the length of the longest neu- 
rite on Thy-1 stained PC12 
cells was determined. Each 
value is the mean + 1 SEM of 
120-150 PC12 cells sampled 
in replicate cultures. Statisti- 
cal significance was deter- 
mined for the difference in 
means for growth on control 
as compared to transfected 
3T3 cells by the t test. 

pendent experiments, with a significant (P < 0.005) neurite 
outgrowth promoting response. There was no evidence for 
a differential response between PND1 and PND9 and the 
pooled results from the five experiments are shown in Fig. 
3 alongside those for primed PC12 cells. At PND9 the re- 
sponse to L1 (an increase in mean length from 32.1 + 2.0 
#m to 72.0 + 4.7/zm, and in the percentage of cells with a 
neurite longer than 40 #m from 24.6 to 75.6%) was slightly 
greater than the average response. The same neurons rapidly 
lose their ability to respond to transfected NCAM over the 
PND6-PND8 period (Doherty et al., 1992a,b). Therefore 
neuronal responsiveness to NCAM and L1, in terms of neu- 
rite outgrowth, are not co-ordinately regulated. 

Antibodies to Neuronal L1 Block Human U-dependent 
Neurite Outgrowth 

To show unequivocally that the increased neurite outgrowth 
on L1 transfected cells was indeed dependent on L1 function, 
a Fab fraction of an anti-mouse L1 rabbit antiserum was 
added to cultures of both primed PC12 ceils and rat cerebel- 
lar neurons co-cultured on control and human L1 expressing 
3T3 cells. This antibody bound avidly to rat L1 (see Fig. 1 
B) but did not show any significant binding to control 3T3 
cells (Fig. 1 B) and 3T3 cells expressing human L1 (see 
above). The results of a typical experiment are shown in Fig. 
4. This antibody completely inhibited the human Ll-asso- 
ciated response from both PC12 cells and rat cerebellar neu- 
rons. In a total of three independent experiments (two with 
PC12 cells, one with cerebellar neurons) the L1 response was 
inhibited by 92.3 + 9.3% (mean + SEM). The specificity 
of the antibody reagent has been established by showing that 
it does not inhibit neurite outgrowth over control 3T3 mono- 
layers nor does it inhibit NCAM or N-cadherin--dependent 
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Figure 3. Neurite outgrowth from PCl2 cells and cerebellar neu- 
rons on control and human Ll-expressing 3T3 cells. Primed PCl2 
cells and cerebellar granule cells (CGC) were cultured on mono- 
layers of control 3T3 cells or 3T3 cells expressing human L1. After 
"016 h PC12 cell co-cultures were fixed and stained for Thy-1 and 
after ,024 h the cerebellar co-cultures were fixed and stained for 
GAP-43. The length of the longest neurite on each cell was deter- 
mined and the results show mean neurite length (top) or the percent- 
age of cells with a neurite >40 #m in length (bottom). Each value 
is the mean (+1 SEM) for five independent consecutive experi- 
ments. 

neurite outgrowth (Doherty et al., 1991a). As the antibody 
bound exclusively to L1 in the neuron these data provide sub- 
stantive evidence that a homophilic binding of  rat L1 to hu- 
man L1 underlies the above response (see also Lemmon et 
al., 1989). 

4O' 

3T3 kl  

Figure 4. Antibodies to neu- 
ronal LI block human L1- 
dependent neurite outgrowth. 
Primed PC12 cells were cul- 
tured on monolayers of con- 
tml and human LI expressing 
on 3T3 cells in control media 
or media supplemented with a 
monovalent Fab fraction of a 
rabbit antiserum to mouse L1 
(at 250 t,g/ml). This antibody 
bound to the PC12 cells but 
not the monolayers (see text). 
After "016 h the cultures were 
fixed and the length of the lon- 
gest neurite on each PC12 cell 
was determined. Each value is 
the mean + 1 SEM for 
120-150 PCI2 cells sampled 
in replicate cultures. 

Pertussis Toxin Blocks the L1 Response 

Pertussis toxin ribosylates the a subunit of heterotrimeric G 
proteins of  the Gi/Go families and thereby inhibits their 
function. We have previously shown that pertussis toxin can 
block NCAM- and N-cadherin-dependent neurite outgrowth 
from PC12 cells and that pretreatment of  PC12 cells is 
sufficient for maximal inhibition (Doherty et al., 1991a). In 
the present study, pertussis toxin was added to PC12 cells 
and cerebellar neurons were cultured on control and human 
L1 expressing 3T3 cells with the result from the latter shown 
in Fig. 5. Pertussis toxin completely abolished the response 
to L1 without affecting basal (presumably integrin depen- 
dent) neurite outgrowth over control 3T3 cells. Results pooled 
from a total of  four independent experiments (three with 
PC12 cells, one with cerebellar neurons) showed pertussis 
toxin to block the L1 response by 91.5 + 8.1%. In the pres- 
ence of pertussis toxin, neurite outgrowth on control 3T3 
monolayers was 102.7 + 4.0% of that found in the absence 
of  toxin (both values mean + SEM). The target for pertussis 
toxin was a neuronal rather than 3T3 cell G-protein as dem- 
onstrated by the fact that pretreatment of  neurons but not 
pretreatment of  monolayers was sufficient for maximal inhi- 
bition of the response (data not shown). 
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Figure 5. Pertussis toxin in- 
hibits the L1 response. Cere- 

1~  ~,~,~ ........ bellar neurons were cultured 
on monolayers of control and 
human L1 expressing 3"I"3 
cells for "024 h in control me- 
dia or media supplemented 
with permssis toxin (500 
ng/ml). The results show the 
mean length of the longest 
neurite per cell and each value 
is the mean + 1 SEM for 
120--150 neurons sampled in 

~, replicate culture. 
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Figure 6. The effect of calcium channel antagonists on the LI re- 
sponse. Primed PC12 cells and cerebellar neurons were cultured on 
monolayers of control 31"3 cells or 3"1"3 ceils expressing human L1 
in the presence and absence of antagonists of N-type calcium chan- 
nels (o~-conotoxin at 0.25 #M), L-type calcium channels (diltia- 
zem, verapanail, or nifedipine, all at 10 #M) or a combination of 
both (for details, see text). The percentage increase in mean neurite 
length on L1 expressing 3T3 cells as compared to control 3T3 ceils 
was determined in each instance and the results show the ability of 
calcium channel antagonists to inhibit this response. Each value is 
the mean + 1 SEM for the given number of independent experi- 
ments. None of these agents significantly affected neurite outgrowth 
over control 3T3 ceil monolayers (Doherty et al., 1991b). For ex- 
ample, in five experiments a combination of o~-conotoxin and an 
L-type channel antagonist reduced growth on parental 3T3 cells by 
6.6 + 5.1% (mean + SEM). 

L- and N-type Calcium Channel Antagonists Inhibit 
Ll-dependent Neurite Outgrowth 

Verapamil, diltiazem, and nifedipine specifically block L-type 
calcium channels in cells, whereas w-conotoxin blocks N-type 
calcium channels (e.g., see Discussion). In the present study 
these reagents were tested for their ability to block the L1 
response in both PC12 cells and cerebellar neurons. There 
was no significant difference in results obtained with each of 
the individual L-type channel antagonists (each tested twice) 
and no major difference in the results obtained with PC12 
ceils and cerebellar neurons. The results have therefore been 
pooled and are summarized in Fig. 6. From these data it can 
be seen that blocking L- or N-type calcium channels on their 
own was sufficient to inhibit the L1 response by 91 + 5.2% 
(n = 6) and 80.8 + 8.0% (n = 5), respectively. When both 
were blocked the response was inhibited by 99.4 __+ 3.8% (n 
= 5). Again control experiments confirmed previous results 
by demonstrating that these agents do not modulate neurite 
outgrowth over parental 3T3 cells (see Fig. 6 legend). 

Reducing Extracellular Calcium or 
Preloading Neurons with a Calcium Chelator 
Inhibits LI-dependent Neurite Outgrowth 

The experiments with calcium channel antagonists suggest 
that an influx of extracellular calcium into neurons is re- 
quired for CAM-dependent neurite outgrowth. To test this 
more directly, cerebellar neurons were cultured on mono- 
layers of  control and human L1 expressing 3T3 cells in the 
presence of  varying levels of  extracellular calcium. Fig. 7 A 
shows that basal neurite outgrowth (and hence cell viability) 
is not affected by reducing extracellular calcium to 0.25 mM 

J :  s= 
2 
6} 

E 

100 

80 

40 

20 

0.25 0,5 1 2 4 8 

ExtraceIlular calcium (mM) 

50 

40 

30 

B 

0 4 20 

BAPTA / AM (~M) 

Figure 7. Ll-dependent neurite outgrowth is abolished by reducing 
extracellular calcium or preloading neurons with a calcium ion che- 
lator. (a) Cerebellar neurons were cultured under conditions of 
varied extracellular calcium (0.25, 0.5, 1, 2, 4, and 8 mM) in the 
presence of a constant magnesium concentration (0.5 mM) on mono- 
layers of control 3"1"3 cells (o) or 3T3 cells expressing human L1 
(e). After ,~24 h co-cultures were fixed and stained for GAP-43. 
The length of the longest neurite on each cell was determined and 
the results show mean neurite length. (b) CerebeUar neurons were 
preloaded with calcium chelating agent BAPTA/AM (0, 4, and 20 
#M in SAT{) 2% FCS containing 4 mM Ca 2+ and 0.5 mM Mg 2+) 
for 2 h at 37~ Co-cultures (parental 3T3, o, and human L1, e) 
were established after a 70-fold dilution of neurons. Control experi- 
ments showed that the residual BAPTA/AM (<0.3 IzM) had no 
effect on neurite outgrowth. After ~16 h co-cultures were fixed and 
stained for GAP-43. The results show the mean length of the longest 
neurite per cell. For both a and b, each value is the mean + SEM 
for 120-150 neurons sampled in replicate cultures. 

or  increasing it to 8 mM. In contrast, Ll-dependent neurite 
outgrowth was absolutely dependent on the extracellular cal- 
cium concentration being >0.25 mM, with the response peak- 
ing at 4 mM. Identical results were obtained for NCAM- 
dependent neurite outgrowth (data not shown). 

Additional supporting evidence for calcium influx into the 
neurons underlying the response was obtained by preloading 
the neurons with BAPTA/AM (e.g., see Koike et al., 1989). 
This calcium chelator is membrane-permeant and enters the 
cell where it is sequestered by hydrolysis of  its acetoxy- 
methyl ester group. Once inside the cell it will chelate and 

The Journal of Cell Biology, Volume 119, 1992 888 



lO0 

E 
:r 80 .c" 

,.J 
60 

"E 
g 
z 

0~ 
40 

20 

0 
3T3 NCAM NCAD 

[ ]  Control Media 

[~  K + at 40mM 

L1 

Figure 8. K § depolarization mimics CAM-dependent neurite out- 
growth by cerebellar neurons (PNIM). Cerebellar neurons were 
cultured on monolayers of control 3T3 cells and 3T3 cells express- 
ing either NCAM, NCAD, or human LI, in the presence or absence 
of elevated extracellular potassium (40 raM). Co-cultures were 
fixed and stained for GAP-43 after •24 h. The results show the 
mean neurite length of the longest neurite per cell. Each value is 
the mean + SEM for 120-150 neurons sampled in replicate cul- 
tures. 

thereby attenuate changes in intracellular calcium. The 
results in Fig. 7 B show that BAPTA/AM pretreated neurons 
can extend axons as normal on parental 3T3 cells. In con- 
trast, Ll-dependent neurite outgrowth was significantly in- 
hibited by pretreatment with 4 ~tM BAPTA/AM and fully in- 
hibited by 20 /~M BAPTA/AM. Koike et al. (1989) have 
previously shown that pretreatment of sympathetic neurons 
with 20/~M BAPTA/AM or withdrawal of extracellular cal- 
cium can also block K § depolarization dependent survival, 
over a 48-h culture period. 

Calcium Influx into Neurons Fully Mimics 
CAM-dependent Neurite Outgrowth 

Second messenger pathway activation by K + depolarization 
has previously been shown to mimic the NCAM and N-cad- 
herin response of PC12 cells (Saffell et al., 1992). In this 
study, potassium depolarization induced significant neurite 
outgrowth from cerebellar neurons cultured on monolayers of 
3T3 fibroblasts. The effect of potassium (5-100 mM) was 
dose dependent with an optimal response found at a concen- 
tration of 40 raM. The response was comparable but not ad- 
ditive to CAM-induced neurite outgrowth, indicating the 
induction of a common pathway (Fig. 8). The potassium- 
induced response could be inhibited by reduction of extracel- 
lular calcium to 0.25 mM, N- or L-type calcium channel 
blockers either on their own (not shown) or in combination, 
and treatment with the calcium chelator BAPTA/AM. Per- 
tussis toxin did not inhibit potassium-induced neurite out- 
growth from cerebellar neurons (Table I). It has previously 
been shown that pertussis toxin did not inhibit the potassium 
response of PC12 cells (Saffell et al., 1992). These data 
confirm that potassium-induced neurite outgrowth is also de- 
pendent on calcium influx through N- and L-type calcium 
channels. The failure of a combination of N- and L-type cal- 
cium channel inhibitors to fully block the response, most 
likely reflects the fact that potassium depolarization-induced 
increases in intracellular calcium can be substantially, but 

Table 1. Effects of Various Treatments on Neurite 
Outgrowth Induced by K + Depolarization 

Media Mean neurite length 

Control* 
K + at 40 mM* 
(i) Low calcium 
(ii) + Diltiazem and c~-conotoxin 
(iii) + BAPTA/AM 
(iv) + Pertussis toxin 

/zrn 

34.5 + 3.0 (123) 
78.7 • 5.6 (119)* 
37.8 • 4.0 (123)* 
42.8 + 4.4 (116)* 
33.9 + 3.0 (134)* 
77.5 + 4.0 (130)w 

Cerebellar neurons (PND4) were grown for 24 h on confluent monolayers of 
3T3 cells in (a) control media, or (b) media supplemented with K + at 40 mM 
in the presence of reduced extracellular calcium (0.25 mM), diltiazem (10 I~M) 
and oJ-conotoxin (0.25 t~M), BAPTA/AM (20 /~M), or pcrmssis toxin (1 
#g/ml). None of the treatments (i-iv) had any significant effect on neurite out- 
growth on 3T3 monolayers in control media (see Figs. 5-7). The results show 
the mean neurite length of the longest neurite per cell + SEM for the given 
numbers of cerebellar neurons sampled from replicate cultures. 
* Significantly different from growth in absence of K + (P < 0.0005). 
$ Significant inhibition of K + response (P < 0.0005). 
w Nonsignificant difference from growth in presence of K+ (P < 0.25). 

not completely inhibited by these antagonists (Reber et al., 
1992). 

Agents That Perturb NCAM Function Do Not Directly 
Modulate U-dependent Neurite Outgrowth 

Heparin binds to the second Ig domain of NCAM and blocks 
its function by either sterically hindering homophilic binding 
and/or preventing NCAM interactions with heparin-sul- 
phate-containing proteoglycans (Cole and Glaser, 1986; 
Cole and Akeson, 1989). Heparin (250 #g/ml) completely 
blocks NCAM-dependent neurite outgrowth (Doherty et al., 
1990a,b). In the present study, in the absence of heparin, L1 
increased the length of the longest PC12 cell neurite by 91 
:t: 8.9%, whereas in its presence neurite length was increased 
by 75 + 11% (both values mean + SEM for measurements 
made on ,o120 PC12 cells). Thus heparin does not block L1 
function. 

The c~2-8-1inked PSA that is present predominantly, if not 
exclusively, on NCAM can be specifically removed by en- 
doneuraminidase N (endo N) (Rufishauser et al., 1988; Do- 
herty et al., 1990b). Removal of PSA from neuronal NCAM 
substantially inhibits NCAM-dependent neurite outgrowth 
over NCAM-transfected cells. At PND4, cerebellar neurons 
are particularly sensitive to removal of PSA (Doherty et al., 
1992a). In the present study, a maximally active concentra- 
tion of endo N was added to these neurons growing on paren- 
tal and L1 expressing 3T3 cells. As previously reported, 
endo N had no effect on basal neurite outgrowth (38.0 + 3.0 
/~m as compared with 36.0 + 2.7 #m), nor did endo N affect 
the enhanced growth apparent on L1 transfectants (67.3 + 
4.3/~m as compared to 62.9 + 4.0 Ixm; both sets of values 
are the mean + SEM for ,0150 neurons measured in the 
presence and absence of endo N, respectively). Thus, the 
ability of neuronal L1 to bind to L1 in the substratum and 
transduce the recognition event into a cellular response is not 
directly modulated by the presence of PSA on neurons. 

Discussion 

Antibodies to L1 have been reported to inhibit granule cell 
migration (Lindner et al., 1983) and perturb fiber outgrowth 
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(Fischer et al., 1986) in microexplants of the developing 
cerebellum. In addition, antibodies to L1 can induce defas- 
ciculation of axon bundles (Rathjen, 1988) and reduce neu- 
rite outgrowth along other neurites (Chang et al., 1987) and 
over the surface of Schwann cells (Seilheimer and Schach- 
ner, 1988; Bixby et al., 1988). In addition to NCAM, the ex- 
pression of L1 and the immunologically related Ng CAM is 
reduced on both axons and Schwann cells after fiber tract for- 
mation, but all three molecules are upregulated after injury 
to the peripheral nervous system (Daniloffet al., 1986; Mar- 
tini and Schachner, 1988). All of these data suggest that L1 
may play an important role in fibre tract formation. 

In the present study, we have expressed human L1 in 
mouse NIH-3T3 fibroblasts. These cells have been shown to 
express negligible amounts of endogenous L1 by immunocy- 
tochemistry, immunoblotting, and by antibody perturbation. 
Expression of human L1 was associated with an enhanced 
ability of the transfected cells to promote neurite outgrowth 
from naive and primed PC12 cells and from rat cerebellar 
neurons isolated over the PND1-PND9 period of develop- 
ment. These responses could be fully inhibited by antibodies 
that specifically bind to and block the function of rat L1. 
These data provide substantive evidence that the human L1 
promotes neurite outgrowth by directly binding to neuronal 
L1 (see also Lemmon et al., 1989). 

The ability of PC12 cells and primary neurons to respond 
to transfected NCAM and N-cadherin by increasing neurite 
outgrowth is dependent upon the activation of a common sec- 
ond messenger pathway in the neurons (Doherty et al., 
1991a, 1992a-c). Activation of this pathway can be inhibited 
by pertussis toxin, and the main trigger for the response 
appears to be the opening of both N- and L-type calcium 
channels. Evidence for this comes from both the above per- 
turbation studies, and also from more recent studies that 
demonstrate that direct activation of calcium channels can 
fully mimic the CAM response (Saffell et al., 1992). 

In the present study, we have provided the first evidence 
that Ll-dependent neurite outgrowth from PC12 cells and pri- 
mary neurons involves activation of this (or a very similar) 
pathway. The L1 response could be fully inhibited by pertus- 
sis toxin or a combination of L- and N-type calcium channel 
antagonists. An unexpected observation was that L- or N-type 
antagonists could substantially (80-90%) inhibit the L1 re- 
sponse on their own. Similar results have now also been ob- 
served in a limited number of experiments for NCAM/N-cad- 
herin-dependent neurite outgrowth from the same neurons. 
This contrasts with previous studies on naive PC12 cells 
(Doherty et al., 1991a) and on hippocampal neurons (Do- 
herty et al., 1992c) where an inhibition of NCAM-dependent 
neurite outgrowth by >"~60% required the addition of both 
N- and L-type antagonists. The likeliest explanation of the 
current data is that a threshold level of calcium is required 
for the response, and that in some instances flux through 
both types of calcium channel is required to reach this value 
(see also Kater and Mills, 1991). Thus, regulation at the level 
of calcium influx could contribute to the previously reported 
threshold effect of NCAM on neurite outgrowth (Doherty et 
al., 1990a) and also for the synergism between cotransfected 
NCAM and N-cadherin in promoting neurite outgrowth (Do- 
herty et al., 1991b). A greater than maximal activation of a 
single pathway would also readily explain the redundancy of 
individual CAMs apparent in some antibody perturbation 

studies (see Bixby et al., 1987). Direct evidence for a cal- 
cium influx into the neurons mediating Ll-dependent neurite 
outgrowth was obtained by showing that reduction in extra- 
cellular calcium, or pre-loading neurons with a calcium che- 
lator, specifically abolished this response. 

A very important question is whether the above pertur- 
bants block a relatively specific CAM activated pathway or 
whether they simply block steps that are common to a variety 
of pathways that lead to neurite outgrowth. Our own pub- 
lished studies have shown that integrin dependent neurite 
outgrowth from PC12 cells and primary neurons is not in- 
hibited by pertussis toxin and calcium channel antagonists. 
Likewise NGF dependent neurite outgrowth from PC12 cells 
is also not affected (Doherty et al., 1991a, 1992a-c). More 
recently these inhibitors have been shown to have no effect 
on neurite outgrowth stimulated by agents that operate by in- 
creasing the level of intracellular cAMP in PC12 cells 
(Saffell et al., 1992). Thus, to date, the only molecules that 
activate this pathway are NCAM, N-cadherin and L1, sug- 
gesting that this is indeed a CAM specific pathway for neurite 
outgrowth. That there are undoubtedly convergent steps 
downstream of calcium channel activation is demonstrated 
by the ability of K-252b, a general kinase inhibitor, to inhibit 
all of the above pathways that lead to neurite outgrowth (our 
own unpublished observations, see also Doherty et al., 
1991a). 

Recent studies on transfected NCAM suggest that lateral 
diffusion in the substratum may be important for activation 
of the above pathway in neurons (Doherty et al., 1992b). The 
fact that at least three CAMs can activate the same pathway 
raises the possibility of an 'adaptor' molecule that can inter- 
act with several CAMs and also with the effector mole- 
cule(s). However in this context it should be noted that vari- 
ous CAMs are directly and/or indirectly associated with each 
other; for example antibodies to NCAM can co-cluster L1 
(Kadmon et al., 1990b) and L1 and Axonin-1 co-localize to 
patches on cell somas and neurites (Kuhn et al., 1991). Thus 
the adaptor molecule could conceivably be one of the above 
CAMs. In addition, local hot spots of calcium channels have 
been described in the growth cone membrane, and these are 
associated with areas of morphological change (Silver et al., 
1990). Thus the possibility that CAMs could directly acti- 
vate calcium channels by co-clustering them should also be 
considered, although the fact that pertussis toxin can block 
the response clearly suggests that other molecules are in- 
volved. 

Purified CAMs coated to an otherwise inert substratum do 
not appear to promote neurite outgrowth via activation of the 
above second messenger pathway (P. Sonderegger and J. 
Bixby, individual personal communications). In these studies 
CAM dependent adhesion per se may be sufficiently permis- 
sive to allow for neurite outgrowth. Failure to activate the 
pathway may be directly related to the fact that the CAMs 
are immobilized on the substratum. Diffusional entrapment 
of adhesion molecules into transient clusters on one mem- 
brane may be dependent on similar events in the apposing 
membrane and this has been evoked as a mechanism for acti- 
vation of second messenger pathways in lymphocytes (Singer, 
1992). We would suggest that similar models, possibly in- 
cluding co-clustering of an adaptor or effector molecule, 
may account for activation of the CAM specific second mes- 
senger pathway in neurons. 
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In contrast to neurite outgrowth, cell adhesion is as- 
sociated with the formation of stable adhesion plaques and 
this most probably involves linkage of CAMs to the underly- 
ing cytoskeleton (e.g., see Nagafuchi and Takeichi, 1988). 
It has been suggested that PSA on neuronal NCAM can act 
as a global modulator of CAM function by sterically hinder- 
ing membrane apposition and thereby modulating trans- 
binding of a variety of CAMs and in particular L1 (Rutis- 
hauser et al., 1988; Landmesser et al., 1990). NCAM and 
L1 may be physically associated in the same membrane (Si- 
mon et al., 1991), and it is also conceivable that PSA could 
modulate L1 function via this cis-interaction. In the present 
study we have shown that removal of PSA from neuronal 
NCAM has no direct effect on L1 function as a neurite out- 
growth promoting molecule. This completes a series of stud- 
ies in which we have previously shown that this treatment can 
inhibit NcAM-dependent neurite outgrowth by up to 80% 
(Doherty et al., 1992a), but has no effect on integrin or 
N-cadherin-dependent neurite outgrowth. Thus in terms of 
neurite outgrowth, but not adhesion (Acheson et al., 1991) 
PSA can be considered as a highly specific modulator of 
NCAM function. PSA may operate by favoring the formation 
of transient rather than stable clusters of NCAM via charge 
repulsion and/or steric hinderance and this may favor neurite 
outgrowth at the expense of adhesion. As CAMs can clearly 
interact to promote neurite outgrowth, a direct modulation 
of NCAM function would in some systems be expected to in- 
directly modulate the function of other molecules and in par- 
ticular L1. 

During development, cerebellar neurons lose their ability 
to respond to NCAM over a very short period (PND6- 
PND8), and this most probably relates to increased expres- 
sion of NCAM isoforms containing the product of VASE 
exon (Doberty et al., 1992a and our own unpublished obser- 
vations). The fact that the same neurons remain highly re- 
sponsive to LI demonstrates that neuronal responsiveness to 
NCAM and LI is not co-ordinately regulated. In addition, 
the above data show that two independent mechanisms that 
down regulate NCAM-dcpcndent neurite outgrowth, i.e., 
loss of PSA and use of the VASE cxon, do not directly im- 
pinge on Lrs ability to promote neurite outgrow~. 

Finally, in the present study wc have shown that NCAM- 
and L1-dcpcndcnt neurite outgrowth can be dissociated from 
NCAM/Ll-dcpcndent adhesion as relatively modest reduc- 
tions in extracellular calcium inhibit the former but not the 
lat~cr (e.g., see Miura et al., 1992). The reduction in calcium 
did not impair neurite outgrowth per sc as this was unaffected 
on control 3T3 monolaycrs (see also Campenot and Drakcr, 
1989). It follows that CAM-dependent adhesion does not 
directly contribute to the neurite outgrowth response. Rather, 
CAM-dependent neurite outgrowth would appear to be abso- 
lutely dependent on the ability of NCAM and LI to provide 
a recognition signal that is transduced into a cellular re- 
sponse via the activation of a CAM-specific second mes- 
senger pathway in neurons (Dohcrty and Walsh, 1992). The 
fact that Ll-dcpendent neuritc outgrowth can be fully in- 
hibited by reduction of the level of extracellular calcium or 
by calcium channel blockers or prctreatrnent of neurons with 
a calcium chelating agent indicates that calcium influx into 
neurons is the key step in the L1-dcpendcnt response. Direct 
stimulation of calcium influx into neurons can, in the ab- 
sence of any presumptive adhesion step, fully mimic the cell- 

contact-dependent neurite outgrowth response stimulated by 
L1, NCAM, and N-cadherin. We would therefore conclude 
that activation of this second messenger pathway is likely to 
be solely responsible for the neurite outgrowth promoting 
activity of a large number of CAMs. 
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