
RESEARCH PAPER

Appearance of Temporal and Spatial Chaos in an Ecological System:
A Mathematical Modeling Study

S. N. Raw1
• P. Mishra2 • B. P. Sarangi1 • B. Tiwari1

Received: 27 January 2021 / Accepted: 20 April 2021 / Published online: 7 May 2021
� Shiraz University 2021

Abstract
The ecological theory of species interactions rests largely on the competition, interference, and predator–prey models. In

this paper, we propose and investigate a three-species predator–prey model to inspect the mutual interference between

predators. We analyze boundedness and Kolmogorov conditions for the non-spatial model. The dynamical behavior of the

system is analyzed by stability and Hopf bifurcation analysis. The Turing instability criteria for the Spatio-temporal system

is estimated. In the numerical simulation, phase portrait with time evolution diagrams shows periodic and chaotic oscil-

lations. Bifurcation diagrams show the very rich and complex dynamical behavior of the non-spatial model. We calculate

the Lyapunov exponent to justify the dynamics of the non-spatial model. A variety of patterns like interference, spot, and

stripe are observed with special emphasis on Beddington–DeAngelis function response. These complex patterns explore

the beauty of the spatio-temporal model and it can be easily related to real-world biological systems.

Keywords Chaos � Turing instability � Patter formulation � Mutual interference

1 Introduction

Ecological systems can be delineated by the interactions of

different biological populations within a vacillating natural

environment. When a similar kind of species lives in a

particular geographical area, then they are identified as

populations. Population is related to each other by the food

they eat and distributed in different trophic levels of the

food chain. Predator–prey interaction is a crucial compo-

nent of the food chain system. The study of mathematical

models is very informative in understanding the dynamic

behavior of predator–prey interaction. Predator–prey

models have become a very extensive field of research in

mathematical ecology following the pioneering work of

Lotka (1924) and Volterra (1926). Interaction between

predator and its prey is very crucial factor in predator–prey

models and it is well known as functional response in

mathematical ecology. Holling (1965) introduced four

different functional responses known as Holling I, II, III &

IV type functional response.

The addition of mutual interference between species

devises the foremost distinction between the Beddington–

DeAngelis (Beddington 1975; DeAngelis et al. 1975) and

Holling type II functional response. Sometimes in search of

food and habitat, species undergo self-inhibition along with

corporation among themselves. Also, It is regarded that at

high predator density, the feeding rate is relatively low due

to mutual interference in predators and the prey dependent

functional form ineffective to explain this. In that situation,

the Beddington–DeAngelis function describes the real

aspect of the ecological systems. Also, this functional

response regards handling and interference as exclusive

ventures by species. The only drawback of this functional

response is that it explicates singular behaviour at the low

population density.
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Here, both Holling type II and Beddington–DeAngelis

functional responses are incorporated for modeling the

interaction among populations in this paper. Naji and

Balasim (2007) investigated the chaotic dynamics of a

prey-predator model using the Beddington–DeAngelis type

functional response. The influence of predator interference

on the stability of a food chain model is studied by

Upadhyay et al. (2013). A lot of work has been done to

observe the dynamics induced by interference between

species in predator–prey systems. Dimitrov and Kojou-

harov (2005) analyzed a two species prey-predator model

with Beddington–DeAngelis functional response and stated

that mutual interference of predator has a stabilizing effect

in presence of linear prey growth. Hwang (2003) proved

the global stability of a Beddington–DeAngelis type prey-

predator model using the divergence criterion whereas

Chen et al. (2008) used Fluctuation Lemma to prove the

same. Haiyin and Yasuhiro (2011) inscribed a detail

comparative study of the density-dependent predator–prey

model with time delay and without delay in presence of

Beddington–DeAngelis functional response. Cui and

Takeuchi (2006) mainly focused on species extinction

criteria and permanence of a prey-predator system. Zhang

et al. (2005) studied the dynamical behavior of a Holling I

prey-predator model with mutual interference in the case of

pest-free periodic solutions. Parshad et al. (2016) stated

that mutual interference between species can cause popu-

lation explosion and mathematically termed this as finite

time blow up.

Mathematical modeling is adapted to demonstrate real-

life predicaments and to exert prospective enhancements

accordingly. Researchers practice numerous techniques to

determine the numerical and analytical solution to these

mathematical models. This physical interpretation of real-

life problems contributes considerably to society. Epi-

demiological models have been used to describe HIV

infection, cancer, and recently the spread of corona virus.

Ali et al. (2020) studied HIV-1 infection of CD4þ T-cells

using fractional mathematical model. Sánchez et al. (2020)

illustrated the mathematical pattern of the nervous stomach

model and this model is designed using the differential

transformation (DT) method. Gao et al. (2020a, b, c)

studied the epidemic outbreaks of the noble corona virus.

Yel et al. (2020) and Gao et al. (2020d) investigated the

popular shallow water equations. Baskonus (2016, 2019)

examined acoustic wave behaviors of Davey–Stewartson

equation using the sine-Gordon expansion method, further

elucidated the Boussinesq dynamical model applying the

modified exponential function method.

In the nineteenth century, most mathematical models in

population ecology arrogated with the uniform population

distribution of species in their habitat (Legendre and Fortin

1989). The consequences of their interaction with inflam-

mable dynamics are the subject analysis with reaction–

diffusion models. Here the reaction is enthralled to

predator–prey class, and diffusion leads to the redistribu-

tion of their populations. Hence species movement and

interaction often give rise to the formation of a spatial

pattern in their homogeneous environment. The concept of

Turing instability was introduced by Turing (1852) to

dispense the interaction of species in a homogeneous

environment. Levin and Jackson (1972) first employed the

concept of Turing pattern formation in the spatiotemporal

system and later, extended by Levin and Segel (1976).

In the past quarter-century, many researchers (Alonso

et al. 2002; Banerjee and Abbas 2015; Banerjee and Vol-

pert 2017; Banerjee and Banerjee 2012; Sabrina and Ara-

ujo 2007) studied two species model systems for pattern

formulation in one and two-dimensional space. Gauss

(1935) studied stabilization scenario and the long-term

existence of certain species in the spatial domain. He

observed that diffusivity of the population has the power to

stabilize as well as destabilize the coexistence states.

Extension properties, persistence and effect of spatial dis-

tribution on the stability of population was studied by

Luckinbill (1973). Liu et al. (2008) studied a spatiotem-

poral phytoplankton-zooplankton model with additive

noise and periodic forcing. Gazi (2012) studied the role of

diffusive instability of a marine plankton system. Nowa-

days a wide variety of literature is available evidencing

spatial patterns like the spiral, spot, target and spatiotem-

poral chaos (Cantrell and Cosner 2003; Malchow 1993;

Pascual 1993). Upadhyay et al. (2009) observed a wave of

chaos (WOC) in the plankton fish model and confirm the

generation of two-dimensional time-independent spatial

patterns due to the wave of chaos.

Recently, some researchers (Parshad et al. 2014; Won-

lyul and Inkyung 2013; Zhifu 2012) studied Turing insta-

bility and the formation of patterns for two and more

interacting species. Maionchi et al. (2006) studied the

complex dynamics in the spatiotemporal three species food

chain model due to the diffusion of species. They observed

very complex patterns in the food chain model. Baghel and

Dhar (2014) performed a high-order stability analysis in a

three-species food chain model. Guin et al. (2017) derived

essential condition for Hopf and Turing bifurcations in a

predator–prey model. Also, the study complied with self

and cross-diffusion patterns. Upadhyay et al. (2013) stud-

ied dynamics induced by the predator interference with

generalist predator and Parsad et al. (2016) extended this

model and pointed out some other properties of predator

interference. They also showed the spatial chaos and Tur-

ing instability for the model. Enlightened by the above

literature, we have proposed and analyzed a food chain

model including a specialist top predator. We have
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attempted to study the effect of mutual interference

between two predators over the prey population. A very

limited number of articles have published focusing on

pattern formulation in three species predator–prey system.

Therefore, in this study, the spatial complexity of the

model is also investigated with the help of pattern

formulation.

The paper is ascertained as follows: Sect. 2, carries the

description of the proposed predator–prey model system.

Conditions for boundedness, Kolmogorov and stability of

model (3) is presented in Sect. 3. Section 4 deals with

stability and Turing instability conditions of spatial model

system (2). Numerical results are intricately exhibited in

Sect. 5 with the help of MATLAB. Section 6 comprises the

summed results of our model.

2 Description of Model System

Here we have considered a food chain model with prey and

two predators. The prey is assumed as the primary con-

sumer whereas predators are assumed to be secondary and

tertiary consumers, respectively. The secondary consumer

feed on prey U according to the Holling type II functional

response and tertiary consumer W feeds on V according to

the Beddington–DeAngelis type functional response. Prey

(U) has a logistic growth delineated by the functional

expression a1U
�

1 � U

K

�
, including intrinsic growth

parameter a1 and carrying capacity K. Secondary con-

sumers (V) has a decline in population density with a death

rate of a2 and c expresses the death rate of tertiary con-

sumer (W). Usually, it is seen that species diffuse or show

movement in the exploration of food, mate, habitat, and

sometimes in fear of predators. Thus, to explain the

movement of species (U, V, W) in the x� y direction, we

have induced diffusion to the model system.

Now the assumed three species reaction–diffusion food

chain model is represented as:

oU

oT
¼ a1U

�
1 � U

K

�
� eUV

ðU þ DÞ þ Dur2U;

oV

oT
¼ �a2V þ w1UV

ðU þ D1Þ
� w2VW

ðV þ D2 þ bWÞ
þ Dvr2V;

oW

oT
¼ �cW þ w3VW

ðV þ D2 þ bWÞ þ Dwr2W ;

8>>>>>>>>><
>>>>>>>>>:

ð1Þ

with initial conditions

Uðx; y; 0Þ[ 0; Vðx; y; 0ÞÞ[ 0; Wðx; y; 0Þ[ 0;

for ðx; yÞ 2 X;

and boundary conditions
oU

on
¼ oV

on
¼ oW

on
¼ 0 for

ðx; yÞ 2 oX, t[ 0.

In model (1),
V

ðV þ D2 þ bWÞ represents the Bedding-

ton–DeAngelis functional response with predator interfer-

ence parameter (b).
U

ðU þ DÞ and
U

ðU þ D1Þ
express the

Holling type II functional response. D and D1 symbolizes

the assistance of the environment given to prey species

where D reveals the advantage of prey to evade predation

and D1 describes the loss in maximum gain of secondary

consumer Y. The authenticity of this kind of situation in the

environment is also given by Upadhyay et al. (2013).

Ecological importance and units of adapted positive

parameter values are expressed in the Table 1. We have

assumed Du;Dv and Dw as the diffusion coefficients as the

associated species actively diffuses in the x� y direction. n

shows the outward normal to oX. Here r2 ¼ o2

ox2 þ o2

oy2 is the

Laplacian operator in 2D Cartesian coordinate system

(x, y).

The non-dimensional model of system (1) is represented

as:

ou

ot
¼ u

�
1 � u

�
� uv

ðuþ w4Þ
þ d1r2u;

ov

ot
¼ �w5vþ

w6uv

ðuþ w7Þ
� vw

ðvþ w8wþ w9Þ

þ d2r2v;

ow

ot
¼ �w10wþ w11vw

ðvþ w8wþ w9Þ
þ d3r2w;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2Þ

where t ¼ a1T , u ¼ U
K, v ¼ eV

a1K
, w ¼ ew2W

a2
1
K

, w5 ¼ a2

a1
, w4 ¼ D

K,

w7 ¼ D1

K , w9 ¼ WD2

a1K
, w6 ¼ w1

a1
, w11 ¼ w3

a1
, w8 ¼ a1b

w2
, w10 ¼ c

a1
,

d1 ¼ Du

a1L2, d2 ¼ Dv

a1L2, d3 ¼ Dw

a1L2. Corresponding to system (2),

the initial populations and no-flux boundary conditions

transform to

uðx; y; 0Þ[ 0; vðx; y; 0Þ[ 0; wðx; y; 0Þ[ 0;

for ðx; yÞ 2 X;

ou

on
¼ ov

on
¼ ow

on
¼ 0 for ðx; yÞ 2 oX; t[ 0:

In the next section, we will analytically examine the

behavior of the non-spatial system (3).

3 Analysis of Temporal System

Here, we study the model (2) without diffusion and the

transformed food chain model is given by the following

system of autonomous ordinary differential equation:
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du

dt
¼ u

�
1 � u

�
� uv

ðuþ w4Þ
¼ ug1ðu; v;wÞ;

dv

dt
¼ �w5vþ

w6uv

ðuþ w7Þ
� vw

ðvþ w8wþ w9Þ

¼ vg2ðu; v;wÞ;
dw

dt
¼ �w10wþ w11vw

ðvþ w8wþ w9Þ
¼ wg3ðu; v;wÞ:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3Þ

We have limited the non-dimensionalized system (3) with

only eight parameters. Here ug1, vg2 and wg3 are contin-

uous smooth functions and Lipschizian on R3
þ

=fðu; v;wÞ : uð0Þ[ 0; vð0Þ[ 0;wð0Þ[ 0g. Hence the

solution of system (3) exists and unique.

Theorem 1 Assume that condition w7 �w4 holds and let K
be the set defined by

K ¼
h
ðu; v;wÞ 2 R3

þ : 0� u� 1; 0� uþ v

w6

� vc;

0� uþ v

w6

þ dw�wc

i
;

where d ¼ 1

w6w11

, p ¼ minfw5;w10g and vc ¼
�
1 þ 1

4w5

�
,

wc ¼
�
1 þ 1

p

�
, then

(i) K is positive invariant.

(ii) All positive solution of temporal system (3) is

uniformly bounded and as time varies the critical

solution eventually converges to the region K.

(iii) The temporal model (3) is dissipative.

Theorem 1 confirms the boundedness and dissipative-

ness of the system (3). The proof of this theorem is given in

‘‘Appendix 1’’.

Now, to justify the feasibility and existence of our

proposed food chain model, system (3) need to satisfy the

Kolmogorov sufficient and necessary conditions (May

1973). Kolmogorov system ensures periodic oscillations or

chaotic dynamics in 3D system if two subsystem of any 3D

system is K-system. Let us consider the reduced subsystem

of temporal model system (3), we have

du

dt
¼ u

�
ð1 � uÞ � v

uþ w4

�
¼ uFðu; vÞ;

dv

dt
¼ v

�
� w5 þ

w6u

uþ w7

�
¼ vGðu; vÞ:

8>><
>>:

ð4Þ

In the two species dynamical models, the Kolmogorov

theorem assures the existence of a stable limit cycle or

stable equilibria and ensures biologically relevant para-

metric values for the model. Therefore, for the biologically

relevant predator–prey model, we assume that the subsys-

tem (4) should qualify as K-system. The subsystem (4)

contemplate a K-system with the conditions:

0\
w5w7

w6 � w5

\1; w5\w6: ð5Þ

Moreover, the Kolmogorov system (4) contains three

positive equilibrium points. The sustainability of these

equilibria are summed as:

1. The equilibrium E00 ¼ ð0; 0Þ is exists with eigenvalues

1;�w5. Thus, the nature of the eigenvalue is charac-

terized as saddle point.

2. The equilibrium E10 ¼ ð1; 0Þ always exist and is

stable and eigenvalues are �1; �w5

3. The equilibrium E20 ¼ ð~u; ~vÞ, where

Table 1 Description of Model

(1) Parameters
Var/para Units Description

T Time Time

U Biomass Population density of prey

V Biomass Population density of secondary consumer

W Biomass Population density of tertiary consumer

a1 Per day Intrinsic growth rate of prey

a2 Per day Death rate of V

K Biomass Carrying capacity of environment in support of prey

e Per day Reduction rate of U due to predation

w1 Per day Maximum gain of V due to consumption of prey U

D Biomass Half saturation constant of prey U at which reduction rate is half of e

D1 Biomass Half saturation constant of prey U at which gain in V is half of w1

w2 Per day Reduction rate of V due to predation

w3 Per day Maximum gain of W due to consumption of V

D2 Biomass Normalizing coefficient to the environment for interaction of V and W

b Per day Predator interference parameter

c Per day Death rate of W
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~u ¼ w5w7

w6 � w5

;

~v ¼ ð1 � ~uÞð~uþ w4Þ;

8<
: ð6Þ

always exist and if

2
� w5w7

w6 � w5

�
þ w4 � 1[ 0; ð7Þ

holds then E20 is locally asymptotically stable.

3.1 Stability of Temporal System

In this subsection, we obtain existence conditions for

equilibrium points of the temporal model (3) and the sta-

bility for positive equilibria E3=ðuH; vH;wHÞ is

investigated.

3.1.1 Stability and Hopf Bifurcation Analysis

The equilibrium points E0ð0; 0; 0Þ and E1ð1; 0; 0Þ always

exist for model (3). The equilibrium point E2ð~u; ~v; 0Þ exist

in u� v plane, where ~u and ~v are given in Eq. (6). Further,

due to deficiency of secondary consumer (v) there is no

equilibria exists in the v� w plane.

Now to study the existence of equilibrium point

E3 ¼ ðuH; vH;wHÞ, we consider following algebraic non-

linear equations:

g1ðu; v;wÞ ¼ 1 � u� v

uþ w4

¼ 0;

g2ðu; v;wÞ ¼ �w5 þ
w6u

uþ w7

� w

vþ w8wþ w9

¼ 0;

g3ðu; v;wÞ ¼ �w10 þ
w11v

vþ w8wþ w9

¼ 0:

8>>>>>>>>><
>>>>>>>>>:

ð8Þ

Thus, solving the system (8), we get

vH ¼ ð1 � uHÞðuH þ w4Þ;

wH ¼ ðw11 � w10ÞvH � w9w10

w9w10

:

8><
>:

ð9Þ

For vH [ 0 and wH [ 0 it follows that

0\uH\1; 0\
w9w10

w11 � w10

\vH: ð10Þ

Next, we explore the dynamical behavior of the model (3)

via local stability around the feasible equilibrium points.

The calculated variational matrix of the system at the point

(u, v, w) is rendered as:

Vðu; v;wÞ ¼

u
og1

ou
þ g1 u

og1

ov
u
og1

ow

v
og2

ou
v
og2

ov
þ g2 v

og2

ow

w
og3

ou
w
og3

ov
w
og3

ow
þ g3

0
BBBBBB@

1
CCCCCCA
;

ð11Þ
og1

ou
¼ �1 þ v

ðuþ w4Þ2
;
og1

ov
¼ � 1

ðuþ w4Þ
;

og1

ow
¼ 0;

og2

ou
¼ w6w7

ðuþ w7Þ2
;

og2

ov
¼ w

ðvþ w8wþ w9Þ2
;

og2

ow
¼ � vþ w9

ðvþ w8wþ w9Þ2
;

og3

ou
¼ 0;

og3

ov
¼ w11ðw8wþ w9Þ

ðvþ w8wþ w9Þ2
;

og3

ow
¼ � w8w11v

ðvþ w8wþ w9Þ2
:

The linear stability around the critical points Ei; i ¼
0; 1; 2; 3 are distinguished as:

(i) The equilibrium E0 is saddle point and eigenvalues

are given by 1; �w5; �w10.

(ii) The equilibrium point E1 exist and eigenvalues are

given by �1;
�
� w5 þ w6

1þw7

�
;w10. It is stable if

w6\w5ð1 þ w7Þ and unstable if w6 [w5ð1 þ w7Þ.
(iii) The root of characteristic equation p3ðkÞ ¼ 0 of

the above variation matrix (11) about E2 ¼
ð~u; ~v; 0Þ satisfy the following condition:

k1 þ k2 ¼ ~u
h
� 1 þ

� ~v

ð~uþ w4Þ2

�i
;

k1k2 ¼ w6w7 ~u~v

ð~uþ w4Þð~uþ w7Þ2
;

k3 ¼ w11 ~v

ð~vþ w9Þ
� w10:

The equilibrium point E2 ¼ ð~u; ~v; 0Þ is stable or

unstable in the positive w-direction contingents on

parameter w10 and w11. If
w11 ~v

ð~vþ w9Þ
\w10, then E2

rests on being stable.

(iv) At EH, variational matrix VðuH; vH;wHÞ reforms

to

VðuH; vH;wHÞ ¼ ðaijÞ3�3; i; j ¼ 1; 2; 3; ð12Þ

where
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a11 ¼ uH
h
� 1 þ

� vH

ðuH þ w4Þ2

�i
;

a12 ¼ � uH

ðuH þ w4Þ
\0; a13 ¼ 0;

a21 ¼ w6w7v
H

ðuH þ w7Þ2
[ 0;

a22 ¼ vHwH

ðvH þ w8wH þ w9Þ2
[ 0;

a23 ¼ � vHðvH þ w9Þ
ðvH þ w8wH þ w9Þ2

\0;

a31 ¼ 0; a32 ¼ w11w
Hðw8w

H þ w9Þ
ðvH þ w8wH þ w9Þ2

;

a33 ¼ � w8w11v
HwH

ðvH þ w8wH þ w9Þ2
:

Then the characteristic equation of (12) is

k3 þ A1k
2 þ A2kþ A3 ¼ 0; ð13Þ

where

A1 ¼ �ða11 þ a22 þ a33Þ;
A2 ¼ ðða11 þ a22Þa33Þ � ða12a21 � a11a22Þ

� a23a32;

A3 ¼ ða12a21 � a11a22Þa33 þ a11a23a32;

A1A2 � A3 ¼ ða2
11 � a32a23Þð�a22 � a33Þ

þ ða2
33 � a12a21Þð�a11 � a22Þ

þ a2
22ð�a11 � a33Þ � 2a11a22a33:

Therefore, from Routh-Hurwitz criterion if

a11\0; ða11 þ a22Þ\0;

ða12a21 � a11a22Þ\0;
ð14Þ

then the coefficients of Eq. (13) is strictly positive

with A1A2 � A3 [ 0. Hence, the coexisting equi-

libria E3ðuH; vH;wHÞ is locally asymptotically

stable.

Theorem 2 The condition for the happening of a Hopf

bifurcation for system (3) at w8 ¼ �w8 are following

(i) Aið �w8Þ[ 0; i ¼ 1; 2; 3,

(ii) A1ð �w8ÞA2ð �w8Þ � A3ð �w8Þ ¼ 0,

(iii) Re
h
dkðw8Þ

dw8

i
w8¼ �w8

6¼ 0.

Proof From the condition A1A2 � A3, we have

A1A2 � A3 ¼ða2
11 � a32a23Þð�a22 � a33Þ

þ ða2
33 � a12a21Þð�a11 � a22Þ

þ a2
22ð�a11 � a33Þ � 2a11a22a33 ¼ 0:

Since A2 [ 0 at w8 ¼ �w8, there exist an interval containing

w8 2 ð �w8 � �; �w8 þ �Þ, where �[ 0. Therefore for the

interval w8 2 ð �w8 � �; �w8 þ �Þ the characteristic equation

(13) cannot have real roots contain negative real part. For

w8 ¼ �w8, Eq. (13) can be written as

ðk2 þ A2Þðkþ A1Þ ¼ 0; ð15Þ

which has exactly three roots k1 ¼ i
ffiffiffiffiffi
A2

p
; k2 ¼ �i

ffiffiffiffiffi
A2

p
and

k3 ¼ �A1. Let

k1ðw8Þ ¼ aðw8Þ þ ibðw8Þ;
k2ðw8Þ ¼ aðw8Þ � ibðw8Þ;
k3ðw8Þ ¼ �A1ðw8Þ:

Now for transversality condition, substituting above given

value in Eq. (13), we get

U1ðw8Þa
0 ðw8Þ � U2ðw8Þb

0 ðw8Þ þM1ðw8Þ ¼ 0;

U2ðw8Þa
0 ðw8Þ þ U1ðw8Þb

0 ðw8Þ þM2ðw8Þ ¼ 0;

8<
: ð16Þ

where

U1ðw8Þ ¼ 3aðw8Þ þ 2A1ðw8Þaðw8Þ þ A2ðw8Þ � 3b2ðw8Þ;
U2ðw8Þ ¼ 6aðw8Þbðw8Þ þ 2A1ðw8Þbðw8Þ;
M1ðw8Þ ¼ a2ðw8ÞA

0

1ðw8Þ þ A
0

2ðw8Þaðw8Þ þ A
0

3ðw8Þ
� A

0

1ðw8Þb2ðw8Þ;
M2ðw8Þ ¼ 2aðw8Þbðw8ÞA

0

1ðw8Þ þ A
0

2ðw8Þbðw8Þ:

Now solving Eq. (16), we get

Re
h dkj

dw8

i
w8¼ �w8

¼ �U1M1 þ U2M2

U2
1 þ U2

2

6¼ 0; ð17Þ

where U1M1 þ U2M2 6¼ 0 and k3 ¼ �A1ðw8Þ. Thus, the

transversality condition Re
h
dkj
da

i
w8¼ �w8

6¼ 0 holds implying

the rise of a Hopf bifurcation at w8 ¼ �w8.

In the next theorem, we analyze the sustainability of

equilibria E�
3 irrespective of initial conditions in the domain

K.

Theorem 3 Under the conditions:

vH\w4ðuH þ w4Þ; ð18Þ

w6u
H\w5ðuH þ w7Þ; ð19Þ

w6w11vcðvH þ w8Þ\w9w10ðvH þ w8w
H þ w9Þ; ð20Þ

w2
8w

2
c\d2w9ðvH þ w9Þ; ð21Þ
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equilibrium point EH

3 is globally asymptotically stable in

the interior of the positive octant K and the set K is defined

in Theorem 1.

The proof of Theorem 3 is conceded in ‘‘Appendix 2’’.

4 Analysis of Spatio-Temporal System

4.1 Stability of Spatial Model

Here, we analyze the effect of diffusion for the spatially

homogeneous equilibrium E3ðuH; vH;wHÞ for the model

system (2). The interaction among the prey u(x, y, t), sec-

ondary consumer v(x, y, t) and tertiary consumer

w(x, y, t) is described in system (2).

To study the spatial dynamics of model system (2), we

linearize the model about the equilibrium E3ðuH; vH;wHÞ
as follows

o�u

ot
¼ a11 �uþ a12 �vþ a13 �wþ d1r2 �u;

o�v

ot
¼ a21 �uþ a22 �vþ a23 �wþ d2r2 �v;

o �w

ot
¼ a31 �uþ a32 �vþ a33 �wþ d3r2 �w;

8>>>>>>><
>>>>>>>:

ð22Þ

where we introduce small perturbations

�u ¼ u� uH; �v ¼ v� vH; �w ¼ w� wH. Let the solution of

the system (22) is of the form

�u

�v

�w

0
B@

1
CA ¼

c1

c2

c3

0
B@

1
CA expðkktÞ cosðkxxÞ cosðkyyÞ: ð23Þ

Here ci, i ¼ 1; 2; 3 are constants. kx and ky are the com-

ponents of wave number along Cartesian plane (x, y) with

wave length kk.
The variational matrix of the linearized model system is

given by Eq. (22) is defined as

�J ¼
a11 � d1k

2 a12 a13

a21 a22 � d2k
2 a23

a31 a32 a33 � d3k
2

0
B@

1
CA; ð24Þ

where k is the wave number given by k2 ¼ k2
x þ k2

y and

characteristic equation of (24) is given by

k3
k þ q1k

2
k þ q2kk þ q3 ¼ 0; ð25Þ

where

q1 ¼ ðd1 þ d2 þ d3Þk2 þ A1;

q2 ¼ ðd1d2 þ d2d3 þ d1d3Þk4 � ½d1ða22 þ a33Þ
þ d2ða11 þ a33Þ þ d3ða11 þ a22�k2 þ A2;

q3 ¼ d1d2d3k
6 � ½a11d2d3 þ a22d1d3 þ a33d1d2�k4

þ ½d1ða22a33 � a23a32Þ þ d2a11a33

þ d3ða11a22 � a12a21Þ�k2 þ A3;

with A1; A2 and A3 are defined in Eq. (13).

Theorem 4 Uniform steady state E� of system (2) is

locally asymptotically stable if following conditions satisfy:

(i) qiðk2Þ[ 0 where i ¼ 1; 2; 3.

(ii) q1ðk2Þq2ðk2Þ � q3ðk2Þ[ 0.

The proof of this theorem is simple and determined by

the Routh-Hurwitz criterion. Hence, the proof is omitted

here.

Theorem 5 The globally asymptotically stable steady state

of the temporal model is also globally stable for the cor-

responding spatial model.

This theorem states that if the temporal system (3) is

globally asymptotically stable around the positive equi-

librium E3 ¼ ðu�; v�;w�Þ, then corresponding spatial sys-

tem (2) is also globally asymptotically stable in presence of

diffusion. Theorem 5 verification is remitted in ‘‘Appendix

3’’.

4.2 Turing Instability

This subsection deals with the derivation of conditions that

ensure the occurrence of Turing instability of the model

system (2). Turing instability occurs when the stable equi-

librium point of the temporal system becomes unstable by

adding diffusion. It may occur for a certain range of wave

number with an authentic choice of parameter values.

However, The Turing instability conditions need not be

determined by the geometry of the model system, it

determined by the reaction rates and diffusion coefficients

(Baek et al. 2013). Turing instability may occur if at least

one root of Eq. (25) has the positive real part for some

k� 0. Disregarding the sign of q1 and q2 in Eq. (25), the

equation has a positive real root if q3 ¼ qðk2Þ� 0. There-

fore, diffusion driven instability occurs when qðk2Þ� 0.

Hence condition for diffusion instability is given by

qðk2Þ ¼ p0k
6 þ p1k

4 þ p2k
2 þ A3;

where
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Fig. 1 Turing instability occurs at negative q3 for some k with diffusion coefficients a d1 ¼ 1, d2 ¼ 0:01, d3 ¼ 0:01, b d1 ¼ 0:5, d2 ¼ 0:05,

d3 ¼ 0:06, and rest of parameters are defined on Eq. (26)
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Fig. 2 a Chaotic attractor for model (3) at w9 ¼ 0:08, b time series for chaos, c time versus Lyapunov exponent
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p0 ¼ d1d2d3;

p1 ¼ �ða11d2d3 þ a22d1d3 þ a33d1d2Þ;
p2 ¼ d1ða22a33 � a23a32Þ þ d2a11a33

þ d3ða11a22 � a12a21Þ:

The minimum value of qðk2Þ occur at k ¼ kcr given by

kcr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�p1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1 � 3p0p2

p
Þ

3p1

s
:

Straight forward algebraic calculations show at least one

root of Eq. (25) has positive real part, and thus diffusive

instability occur if either p2\0 or p0\0 and p2
1 [ 3p0p2.

However, Turing instability does not not exist for model

(2) if condition (14) hold.

We have discussed the Turing instability conditions of

the model system (2) for a particular set parameter values

with diffusion coefficients. For example, the following

parameter values

w4 ¼ 0:5;w5 ¼ 1:15;w6 ¼ 2:93;w7 ¼ 0:58;

w8 ¼ 0:21;w9 ¼ 0:16;w10 ¼ 0:35;w11 ¼ 0:55;

�
ð26Þ

the conditions q1ð0Þ ¼ 0:3251[ 0, q2ð0Þ ¼ 0:2093[ 0,

q3 ¼ 0:0264[ 0 and

q1ð0Þq2ð0Þ � q3ð0Þ ¼ 0:04164434[ 0;

thus E3ðuH; vH;wHÞ is locally stable. Further, in presence

of diffusion d1 ¼ 1, d2 ¼ 0:01, d3 ¼ 0:01, q3 changes its

sign with any positive wave number k[ 0 as shown in

Fig. 1.

5 Numerical Simulations

5.1 Numerical Simulation of Temporal System

In this subsection, we venture to support our analytical

findings numerically via MATLAB programming. Also,

we perceive the diverse and complex dynamics of the

model system in this section. These observations are
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Fig. 3 a Limit cycle for model (3) at w9 ¼ 0:12, b time series of species population for limit cycle, c time versus Lyapunov exponent
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inspected via phase portraits, time evolution, and Lya-

punov exponent. It is observed that for parameter values

given in Eq. (26) of model system (3) shows distinct

attractors for the parameter value of w9 as given in Figs. 2,

3, 4. We fix biological relevant parameter values defined in

(26) for numerical experiments. We obtain positive equi-

librium point as E5ðuH; vH;wHÞ ¼
�
0:684; 0:374; 0:255

�
for parameter values defined in Eq. (26). We testify that the

model (3) manifests the global behavior for this parameter

set.

The model system (3) shows chaotic behaviour at

w9 ¼ 0:08, simulated in the Fig. 2a with time evolution of

species populations in Fig. 2b. The Lyapunov exponent for

this attractor is calculated as 0.065479, - 0.057648, and

- 0.38053 accumulated in Fig. 2c. Here the appearance of

both positive and negative Lyapunov exponent reinforces

the existence of chaos for the model system (3). We have

simulated the periodic behavior at the parameter value

w9 ¼ 0:12 for the model system (3) in Fig. 3. We have

ascertained the Lyapunov exponent for this attractor as

0.0096048, - 0.14618, and - 0.16712, and the conver-

gence of the first Lyapunov exponent toward 0 validates

the periodic behavior of the model system (3).

As we increase the parameter value of w9, the system

emergence towards stability, and finally at w9 ¼ 0:16, we

witness the stable focus dynamics for the temporal model

as given in Fig. 4a, b. Negative Lyapunov exponents

- 0.022655, - 0.031018, and - 0.20335 as simulated in

Fig. 4c authenticates this argument. The tertiary consumer

free equilibrium point E2 with condition (6) is calculated as

u ¼ 0:375; v ¼ 0:547;w ¼ 0, as presented in Fig. 5.

5.1.1 Bifurcation Analysis

In this section, bifurcation analysis is performed for the

non-spatial model. All the bifurcation diagrams are plotted

for the parameter values given in Eq. (26). The bifurcation

diagrams show intricate and rich dynamics representing

various sequences of period-doubling and period-halving

bifurcation leading to limit cycles and chaos. Also, we can
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Fig. 4 a Stable focus for model (3) at w9 ¼ 0:16, b time evolution showing stability, c time versus Lyapunov exponent
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verify the phase portrait dynamics by bifurcation diagrams

corresponding to the parameter. In Fig. 6, we present

bifurcation diagram for successive maxima of u, v, w in the

ranges [0.0, 1.0], [0.0, 0.8] and [0.0, 0.3], respectively as a

function of w8 in the range 0:0�w8 � 0:3 . In Fig. 7, the

successive maxima of u, v, w is given for the variation of

parameter value w10 in the range 0:2�w10 � 0:4. In Fig. 8,

the successive variations of prey (u), consumer (v) and

consumer (w) are taken concerning the parameter w11 in

the interval 0:5�w11 � 0:75.

5.2 Numerical Simulation for Spatial Model

In this section, we have found inclusive results for the

spatial model (2). We have assumed the following set of

parameters for the numerical solution of the spatial model

system (2):

w4 ¼ 0:5; w5 ¼ 1:3; w6 ¼ 2:93; w7 ¼ 0:58;

w8 ¼ 0:21; w9 ¼ 0:16; w10 ¼ 0:35;

w11 ¼ 0:55; d1 ¼ 1; d2 ¼ 0:01; d3 ¼ 0:01:

ð27Þ

5.2.1 One Dimensional Simulation

This subsection deals with the simulation of the system (2)

with one dimensional Laplacian operator r2 ¼ o2

ox2. Here,

the populations uðx; 0Þ[ 0, vðx; 0Þ[ 0 and wðx; 0Þ[ 0,

x 2 ½0;R�, and zero flux boundary conditions are given by

Fig. 5 Equilibrium point E2 ¼ ð0:375; 0:547; 0Þ

Fig. 6 Bifurcation diagrams corresponding to parameter w8 for the temporal system (3)
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ou

ox
¼ ov

ox
¼ ow

ox
¼ 0: ð28Þ

We have plotted space versus population density to scru-

tinize the spatial dynamics. Here, we have considered the

non-monotonic initial conditions as

uðx; 0Þ ¼ uH þ �ðu� x1Þðu� x2Þ;
vðx; 0Þ ¼ vH; wðx; 0Þ ¼ wH;

where ðuH; vH;wHÞ is steady state for the coexistence of

primary consumer (prey), secondary consumer and tertiary

consumer populations and � ¼ 10�8, x1 ¼ 1200, x2 ¼ 2800

is the parameter affecting the model dynamics. We have

studied the behavior of model system (2) in 1D space for

the set of parameter values given in Eq. (27).

Spatial dynamics of model (2) is given in the form of

phase portrait diagram for different value of w8 in Fig. 10.

We obtain the spatial dynamics of the model (27) varying

time. System is stable at time t ¼ 10 but as we increase

time, there are onset chaotic faces at t ¼ 500 and t ¼ 5000.

In Fig. 9, the population density of prey and predator shows

some jagged patterns representing the chaotic behavior.

This phenomenon is known as Wave of Chaos (see

Petrovskii and Malchow 2014; Upadhyay et al. 2009, 2016)

in spatio-temporal system.

5.2.2 Two-Dimensional Simulation

This section deals with the simulation of the spatial system

in two-dimensional space. We study spatio-temporal

complexity with the help of pattern formulation.

Fig. 7 Bifurcation diagrams corresponding to parameter w10 for the temporal system (3)
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We have adopted the forward difference scheme to solve

the reaction part and the standard five points explicit finite

difference scheme method for the two-dimensional diffu-

sion term. Further, we have exerted nonzero initial and

zero-flux boundary conditions with the system size of

50 � 50. Also, we can implement Euler methods to deter-

mine time evaluations. Here, the values of the time and

space for simulation of the spatial model system is con-

sidered as Mh ¼ 0:25; Mt ¼ 0:001. The dynamics of the

spatiotemporal system depends upon the choice of initial

conditions (Medvinsky et al. 2002). The initial distribution

of the species for two-dimensional simulation is considered

as

uðx; y; 0Þ ¼ uH þ 0:1 cos2ð10xÞ cos2ð10yÞ;
vðx; y; 0Þ ¼ vH þ 0:1 cos2ð10xÞ cos2ð10yÞ;
wðx; y; 0Þ ¼ wH þ 0:1 cos2ð10xÞ cos2ð10yÞ;

about steady state.

Now, we present the evolutionary process of Turing

pattern formulation and complex spatial patterns for the

two different set of parameter values. Snapshots of the

spatial distribution are shown for different time intervals

t ¼ 500; 5000, 10,000 in Fig. 11. We plot the contour

spatial distributions for population u, v, w at different time

intervals with 50 � 50 points for d1 ¼ 1, d2 ¼ 0:001, d3 ¼
0:01 and rest parameter values defined in Eq. (27). In

Fig. 11a, we observe stripe patterns with emergence of

interference patterns in the left lower boundary of domain.

Fig. 8 Bifurcation diagrams corresponding to parameter w11 for the temporal system (3)

Iran J Sci Technol Trans Sci (2021) 45:1417–1436 1429

123



A close examination on these patterns suggest that as time

increases, the spatial distribution changes from one pattern

to another chaotically and we get very complex patterns. At

t ¼ 5000, mixture of stripe and interference patterns are

observed, although interference pattern dominate in this

case (see Fig. 11b). Finally, at time t ¼ 10,000, we see

interference patterns dominating in the whole domain (see

Fig. 11c).

From Figs. 12, 13, we observe that pattern of spatial

distribution depends upon mutual interference parameter

w8. Here the blue spot signifies the patches at low popu-

lation density and the red spot exposes the patches at high

population density. Also, these patterns are named as spot

patterns in literature (see Malchow 1993; Medvinsky et al.

2002). Increasing the value of w8 in Hopf-Turing domain

effect in spatial distribution and it can be seen that complex

spot (or ‘leopard’) patterns changed into the mixture of

spot and stripe pattern.

6 Discussion and Conclusion

If food is abundant the predator does not interfere with

each other but a striking competition occurs between

predators for food while the scarcity of prey species hap-

pens. The main purpose of this work is to detect the

complex dynamics in the tri-tropic food chain model when

mutual interference is adopted by the predators during the

predation. We incorporate Bedington-DeAngelis functional

as a predation function between the predators. The
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Fig. 9 One dimensional (1D) space series for spatial model (2) at time a t ¼ 10, b t ¼ 500, c t ¼ 2000 and all other parameter values are given in

Eq. (27)
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dynamics of the non-spatial model system have been

studied with the help of phase portrait, time evolution, and

bifurcation diagram. Several studies have been investigated

respecting the predator–prey model with Beddington–

DeAngelis functional response. The research exposes the

diverse dynamics including species extinction, persistence,

stable or unstable equilibria, limit cycles, and strange

attractors (commonly known as chaos) (see Baghel and

Dhar 2014; Dobromir and Dimitrov 2005; DeAngelis et al.

1975; Hwang 2003; Naji and Balasim 2007; Upadhyay

et al. 2013). Boundedness and Kolmogorov conditions are

obtained for non-spatial model. Figure 4 shows the locally

asymptotically positive equilibria E3 for model (3). We

have simulated the equilibria E2 in Fig. 5 and the coordi-

nate values where the u-nullclines and v-nullclines inter-

sect is calculated as u ¼ 0:375, v ¼ 0:547 and w ¼ 0. Also,

this confirms the stability of equilibrium point E20 for the

Kolmogorov system (4). We observe the non-spatial model

goes for Hopf bifurcation at some critical value of the

interference parameter. Bifurcation diagrams show the

consequences of mutual interference and other important

parameters of the predator–prey model. The study shows

that mutual interference plays a central role in the

dynamics of the predator–prey system. It is observed that a

large value of interference parameter (w8) ensures stability,

but leads to a fall in the top predator population. In Fig. 6,

this result is simulated and for w8 � 0:17, the system is

approaching toward stability. Furthermore, the interference

parameter (w8) has also the ability to stabilize the spatial

model (2) and Fig. 10 witness this result.

It is seen that some individual among a group of prey

changes location either in search of resources, food or to

avoid the threat of predation. During this movement of

prey species, predator senses the insufficiency of food and
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Fig. 10 Phase portrait of spatial model (2) for a w8 ¼ 0:15, b w8 ¼ 0:2, c w8 ¼ 0:25, d w8 ¼ 0:3 at t ¼ 5000 and all other parameter values are

given in Eq. (27)
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Fig. 11 Turing patterns represented by contour plot at a t ¼ 100, b t ¼ 5000, c t ¼ 10,000 in two dimension ðx� yÞ plane and all other

parameters defined in Eq. (27)

Fig. 12 Spatial distribution of species at the time t ¼ 5000 and w8 ¼ 0:1 in two dimension ðx� yÞ plane where parameter values are defined in

Eq. (26) and diffusion coefficients are given by d1 ¼ 1:5; d2 ¼ 0:01; d3 ¼ 0:01
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they also follow them toward the prey rich habitat. The

biological conformity to these sequential movements of

species produces structure distinguished as the travelling

wave, modulated chaotic wave or chaotic behavior. Many

different aspects like random dispersal of species, self prey

growth, conversion rule, mutual interference and death rate

of predators are considered. It is observed that these aspects

of the reaction–diffusion predator–prey model impersonate

the spatial structure for some period of interference during

diffusion instabilities.

We observe the Turing patterns especially emphasizing

on Beddington–DeAngelis functional response. A mixture

of dominating interference pattern and stripe patterns has

been observed and as time increases, one can see the

emergence of the interference pattern (see Fig. 11). From

the point of view of physics, if the light from two point

sources overlaps, the interference pattern maps out how the

phase difference between the two waves varies in space.

Here this is determined by the separation of the point

sources and the wavelength. An example of an interference

pattern is a generation of Newton’s ring pattern. We

observe that patterns are strongly dependent on interfer-

ence parameter (w8) and patterns change chaotically from

one pattern to another. For a small value of w8 ¼ 0:1, hot

and cold spot patterns can be seen. For instance when w8 is

varied from w8 ¼ 0:1 to w8 ¼ 0:25, mixture of spot with

stripe patterns are observed in Figs. 12 and 13. Hot spot

patterns are formed by the localized annular patches with a

high concentration of population density of secondary and

tertiary consumers. The appearance of such stripe (or ’ze-

bra’) patters is due to auto-catalysis saturation for high prey

concentration values. Since prey can not increase further

the region of high prey concentration become wider. The

model system (2) encounters structural transitions and

produces a variety of patterns (see Figs. 10, 11, 12, 13) for

interference parameter and diffusion coefficients,

indicating the significant importance of these parameters

on pattern selection.

The idea contained in this paper gives an impeccable

approach to examine how functional responses of species

and parameters influence on the dynamics of a food chain

model. We observe that the diffusion coefficients as well as

mutual interference parameter between predators are

responsible for the emergence of chaotic dynamics in the

ecological model. In this study, we observe the emergence

of complex patterns like spots, stripes and interference.

This study shows that patterns in ecological interaction are

an excellent tool to examine the fundamental mechanism of

complexity that arises in a spatiotemporal model. From the

study, we can conclude that if predators mutually interfere

during predation, chaotic dynamics can automatically

emerge in both temporal and spatial model.

Appendix 1: Proof of Theorem 1

Consider the following inequality from the system (3), we

have

du

dt
� uð1 � uÞ;

which implies uðtÞ�
� 1

ce�t þ 1

�
, where c ¼

� 1

u0

� 1
�

.

Hence, uðtÞ� 1; 8t� 0. Consider the function

rðtÞ ¼ uðtÞ þ vðtÞ
w6

, we have

dr
dt

¼ du

dt
þ 1

w6

dv

dt
;

) dr
dt

¼ uð1 � uÞ � w5

w6

v� uv
� w7 � w4

ðuþ w4Þðuþ w7Þ
�

ð29Þ

Fig. 13 Spatial distribution of species at the time t ¼ 5000 and w8 ¼ 0:25 in two dimension ðx� yÞ plane defined in Eq. (26) and diffusion

coefficients are given by d1 ¼ 1:5; d2 ¼ 0:01; d3 ¼ 0:01
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� vw

w6ðvþ w8wþ w9Þ
: ð30Þ

Here, the solutions of linearized ODE system (3) are

locally Lipschitz continuous functions. Then, if w7 �w4,

the equation (30) transforms to

dr
dt

� uð1 � uÞ � w5

w6

v; ð31Þ

holds for all positive u and v. Further, Eq. (31) is converted

to

dr
dt

þ w5rðtÞ� uð1 � uÞ þ w5u:

But, max fuð1 � uÞg ¼ 1
4
, hence we get

dr
dt

þ w5rðtÞ�
1

4
þ w5:

Now by using comparison lemma,

rðtÞ�
� 1

4w5

þ 1
�
�
h�

1 þ 1

4w5

� rð0Þ
�
e�w5t

i
;

rðtÞ�
� 1

4w5

þ 1
�

�
h�

1 þ 1

4w5

� fuð0Þ þ vð0Þ
w6

g
�
e�w5t

i
:

Thus, for all t� 0, we have

rðtÞ� 1

4w5

þ 1 ) uðtÞ þ vðtÞ
w6

� 1

4w5

þ 1:

If gðtÞ ¼ uðtÞ þ vðtÞ
w6

þ dwðtÞ with d ¼ 1

w6w11

, then for

w7 �w4, we get

dg
dt

� u� w5

w6

v� w10dw;

) dg
dt

þ pg�ð1 þ pÞ;

where p ¼ minfw5;w10g. By using comparison lemma, we

obtain for all t� ~T � 0,

gðtÞ�
�
1 þ 1

p

�
�
��

1 þ 1

p

�
� rð ~TÞ

	
e�pðt� ~TÞ:

If ~T ¼ 0, then

gðtÞ�
�
1 þ 1

p

�
�
��

1 þ 1

p

�
� rð0Þ

	
e�pt;

gðtÞ�
�

1 þ 1

p

�
; 8t� 0:

Appendix 2: Proof of Theorem 3

Let

S ¼
h
u� uH � uH logð u

uH
Þ
i
þ k1

2

�
v� vH

�2

þ k2

2

�
w� wH

�2

ð32Þ

is the considered Lyapunov function with constant k1 and

k2 around the equilibria E3 ¼ ðu�; v�; w�Þ for the temporal

system (3). Time derivative of Lyapunov function S is

dS

dt
¼ � 1

2
a11ðu� uHÞ2 þ a12ðu� uHÞðv� vHÞ

� 1

2
a22ðv� vHÞ2 � 1

2
a22ðv� vHÞ2

þ a23ðv� vHÞðw� wHÞ � 1

2
a33ðw� w�Þ2

� 1

2
a11ðu� u�Þ2 þ a13ðu� u�Þðw� w�Þ

� 1

2
a33ðw� w�Þ2;

ð33Þ

where

a11 ¼ 1 � vH

ðuþ w4ÞÞðuH þ w4Þ
;

a22 ¼ k1

�
w5 �

w6u
H

ðuH þ w7Þ

þ wðw9 þ w8wÞ
ðvH þ w8wH þ w9Þðvþ w8wþ w9Þ

�
;

a33 ¼ k2

�
w10 �

w11vðvH þ w8Þ
a3

�
;

a12 ¼
�
� 1

uþ w4

þ k1w6w7v

a2

�
;

a23 ¼
� k2w11w

Hðw8wþ w9Þ
ðvH þ w8wH þ w9Þðvþ w8wþ w9Þ

� k1v
HðvH þ w9Þ

ðvH þ w8wH þ w9Þðvþ w8wþ w9Þ
�
; a13 ¼ 0:

dS
dt is negative definite, if the following inequalities holds:

a11 [ 0; a22 [ 0; a33 [ 0; ð34Þ

a2
12\a11a22; ð35Þ

a2
23\a22a33; ð36Þ

a2
13\a11a33: ð37Þ

Since a13 ¼ 0, condition (37) is automatically satisfied.

Under the condition (18), a11 [ 0 and for conditions (19)

and (20), a22 [ 0 and a33 [ 0, respectively. If we choose

k1 ¼ uH þ w7

ð1 þ w4Þðw2
6vcÞ

and,

k2 ¼ k1w9v
HðvH þ w9Þ

w11wHðw8ðWc=dÞw9ÞðvH þ w8ðWcdÞ þ w9

;
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then the conditions (35) and (36) are fulfilled. Hence, EH

3 is

globally asymptotically stable.

Appendix 3: Proof of Theorem 5

Consider the function E(t) as

EðtÞ ¼
Z Z

X
Sðu; v;wÞdA; ð38Þ

where S(u, v, w) is a Lyapunov function defined in

Eq. (32).

For global stability of system (2), it is sufficient to show

that dE
dt � 0. Hence,

dE

dt
¼ I1 þ I2;

where

I1 ¼
Z Z

X

dS

dt
dA; and

I2 ¼
Z Z

X

�
d1

oS

ou
r2uþ d2

oS

ov
r2vþ d3

oS

ow
r2w

�
dA:

Using Green’s identity in the plane
Z Z

X
ðFr2GÞ dA ¼

Z

oX
F
oG

on
ds�

Z Z

X
ðrF:rGÞdA:

Now, we have
Z Z

X
ðd1

oS

ou
r2uÞ dA

¼ �d1

Z Z

X

o2S

ou2

h� ou

ox

�2

þ
� ou

oy

�2i
dA� 0;

Z Z

X
ðd2

oS

ov
r2vÞ dA

¼ �d2

Z Z

X

o2S

ov2

h� ov

ox

�2

þ
� ov

oy

�2i
dA� 0;

Z Z

X
ðd3

oS

ow
r2wÞ dA

¼ �d3

Z Z

X

o2S

ow2

h� ow

ox

�2

þ
� ow

oy

�2i
dA� 0:

From above analysis, it is clear that I2 � 0 and we have

only to show I1 � 0 to prove dE
dt � 0. Hence it is proved that

the globally stable equilibrium point E3 ¼ ðuH; vH;wHÞ for

system (3) will remain globally asymptotically stable for

the diffusive system (2).
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