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Abstract

Motivation: Untargeted mass spectrometry experiments enable the profiling of metabolites in complex biological
samples. The collected fragmentation spectra are the metabolite’s fingerprints that are used for molecule identifica-
tion and discovery. Two main mass spectrometry strategies exist for the collection of fragmentation spectra: data-
dependent acquisition (DDA) and data-independent acquisition (DIA). In the DIA strategy, all the metabolites ions in
predefined mass-to-charge ratio ranges are co-isolated and co-fragmented, resulting in multiplexed fragmentation
spectra that are challenging to annotate. In contrast, in the DDA strategy, fragmentation spectra are dynamically and
specifically collected for the most abundant ions observed, causing redundancy and sub-optimal fragmentation
spectra collection. Yet, DDA results in less multiplexed fragmentation spectra that can be readily annotated.

Results: We introduce the MS2Planner workflow, an Iterative Optimized Data Acquisition strategy that optimizes the
number of high-quality fragmentation spectra over multiple experimental acquisitions using topological sorting.
Our results showed that MS2Planner increases the annotation rate by 38.6% and is 62.5% more sensitive and 9.4%
more specific compared to DDA.

Availability and implementation: MS2Planner code is available at https://github.com/mohimanilab/MS2Planner. The
generation of the inclusion list from MS2Planner was performed with python scripts available at https://github.com/
lfnothias/IODA_MS.

Contact: hoseinm@andrew.cmu.edu or louisfelix.nothias@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Untargeted tandem mass spectrometry is widely used for analysis of pro-
teins and metabolites in complex biological samples (Koelmel et al.,
2017; Schrimpe-Rutledge et al., 2016; Wang et al., 2019; Zha et al.,
2018). Data-dependent acquisition (DDA) is the most commonly used
strategy to collect fragmentation mass spectra (MS2) (Hu et al., 2016;
Rudomin et al., 2009). The fragmentation spectra are then identified by
searching into spectral libraries or annotated with in silico tools (Cao
et al., 2019; Mohimani et al., 2017, 2018). In the standard DDA strat-
egy, a survey full-scan mass spectrum (MS1) is periodically acquired to
inform on the selection of top N most abundant precursor ions for subse-
quent MS2 acquisition, where N is often between 3 and 10 precursor
ions per cycle (Fig. 1a). While the sample complexity and the acquisition
parameters influence the performance of DDA, many less abundant ions
are left without any fragmentation spectra (Koelmel et al., 2017;
Rudomin et al., 2009). Moreover, a portion of MS2 spectra collected in
DDA have a low quality because they were collected at sub-optimal in-
tensity levels. Repeating DDA on the same sample leads to the recollec-
tion of the most abundant ions and marginally improves the MS2
coverage (Table 1) (Hoopmann et al., 2009; Kreimer et al., 2016).

One way to circumvent these disadvantages is by marking the precursor
ions sampled in the previous run to exclude them from the next experi-
ments in an iterative fashion (Hodge et al., 2013; Koelmel et al., 2017).
Recently, dataset-dependent acquisition (DsDA) was introduced on
quadrupole time-of-flight mass spectrometer to iteratively prioritize MS2
collection on the entire dataset in an automated fashion (Broeckling
et al., 2018). However, neither DDA nor DsDA optimizes the number
of unique high-quality MS2 acquired for MS1 features.

Data-independent acquisition (DIA) systematically fragments all the
available precursors for MS2 scans in large predefined m/z windows
over time. Due to its large precursor ion isolation window, the resulting
MS2 are typically multiplexed (several molecules captured in the same
spectrum) (Bilbao et al., 2015; Doerr, 2015). The post analysis of these
fragmentation spectra requires advanced spectral deconvolution meth-
ods. In proteomics applications, large reference spectral libraries can be
leveraged to improve the deconvolution process, which has facilitated
the adoption of DIA (Gillet et al., 2012; Wang et al., 2019; Zha et al.,
2018). However, the application of DIA to metabolomics is more chal-
lenging due to lower molecular weights of ions and narrower mass range
that increases the multiplexing effect (Zha et al., 2018). While efficient
spectral deconvolution methods for metabolomics are also available
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(Tsugawa et al., 2015), the deconvoluted fragmentation spectra are
harder to identify by spectral library matching and by in silico annota-
tion because they could be convoluted to some degree or inversely lacked
actual fragment ions (Schmid et al., 2020).

To overcome these limitations, we introduce MS2Planner, an
Iterative Optimized Data Acquisition (IODA) strategy for maximiz-
ing the coverage and quality of MS2 acquisition by untargeted mass
spectrometry. While DDA acquisition collects MS2 spectra dynam-
ically, MS2Planner requires a preliminary mass spectrometry experi-
ment performed in MS1 full-scan mode. That preliminary data are
used by MS2Planner to compute and schedule the optimal MS2 ac-
quisition path across multiple subsequent iterative experiments. In
proteomics, several strategies have been proposed to optimize MS2
coverage (Jaffe et al., 2008; Rudomin et al., 2009; Zerck et al.,
2013). MS2Planner is different from them in that it not only maxi-
mizes the number of ions with MS2 spectra acquired, but also main-
tains their quality. Our evaluation showed that MS2Planner
outperforms DDA in sensitivity, specificity and quality of MS2 spec-
tra collected. MS2Planner is currently available for Orbitrap-based
instruments and could be adapted to other tandem mass spectrome-
ters. Table 2 describes the terminologies used in this article.

2 Materials and Methods

2.1 Problem formulation
Based on a full preliminary MS1 run, our goal is to schedule an opti-
mal data collection path to maximize the number of distinct MS2

acquisitions while avoiding sub-optimal intensity acquisitions. This
problem can be formalized as follows:

argmax
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i¼1

1
XT

t¼1
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where there are N metabolite features and T MS1 scans. Intt;i is the
MS1 intensity of metabolite feature i at retention t, while Xt;i is a
binary indicator of whether metabolite feature i is collected at reten-
tion time t by MS2. f is a function that predicts the total ion current
(TIC) of MS2 based on the MS1 intensity. 1 is an indicator function.
TIC is a user defined threshold of MS2 TIC.

The objective function (1) maximizes the number of distinct
MS2 acquisitions. Constraint (2) means the expected MS2 TIC is
greater than the user defined threshold TIC. Constraint (3) guaran-
tees that each metabolite feature is only acquired once within a sin-
gle interval of retention times. If a feature i is collected in two or
more separate intervals, e.g. X:;i ¼ 0; 0; 0;1;1; 1; 0;0; 1; 1; 0;0, thenPT�1

t¼1 jXtþ1;i �Xt;ij ¼ 4, violating the constraint (3). Constraint (4)
guarantees that at each retention time, there will be at most one ac-
quisition. Zerck et al. also proposed a strategy based on preliminary
full MS1 scans, but their optimization criteria does not maximizes
the number high-quality features collected (Zerck et al., 2013).

Overview of MS2Planner

MS2Planner recruits a dynamic programming approach to solve the
optimization problem (1). The raw data of the preliminary MS1 run
is a list of peaks in triplet format as m/z, RT and peak intensity,
which are processed by OpenMS to detect MS1 apexes. After pre-
processing, MS2Planner algorithm takes both the raw MS1 signals
(defined as LC-MS features) and the apexes as input and computes
the optimal MS2 acquisition paths in the m/z-RT. MS2Planner con-
sists of the following steps: (i) raw MS1 signals are clustered based
on their apexes, (ii) a directed acyclic graph (DAG) is constructed on
MS1 features, referred to as feature-DAG, (iii) the MS2 acquisition
path that maximizes the number of distinct features collected under
the sub-optimal intensity constraints in the feature DAG is pre-
dicted, (iv) all the features on current path are excluded and the next
optimal paths are predicted (Fig. 2). Here, step (i) reduces the
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Fig. 1. Comparison ofDDA and DIA strategy. (a) DDA strategy acquires a survey

full-scan mass spectrum to select top N most abundant precursor ions for fragmenta-

tion spectra acquisition in the next several MS2 scans. (b) DIA fragments all the avail-

able precursors for MS2 scans in large predefined m/z and RT windows. The resulting

MS2 are typically multiplexed and require further spectral deconvolution

Table 1. Comparison of different MS2 acquisition methods in untargeted tandem mass spectrometry experiments

Sensitivity Specificity Coverage Multiplexed spectra

DDA Medium Medium Low Infrequent

DIA Low Low High Frequent

IODA with MS2Planner High High Medium Infrequent

Note: Sensitivity stands for the ratio of molecules present in the sample that can be identified by spectral library search. Specificity stands for the ratio of ions

identified by spectral library search that correspond to a molecule in the sample. The coverage indicates proportion of ions with a fragmentation spectra collected.

Note that high coverage is not equivalent to high sensitivity, since the spectra can be low quality/multiplexed, making it impossible to identify them by spectral li-

brary search. Note that due to the differential ionization response of each metabolites and instrument limit of detection, the sensitivity is fundamentally limited to

a portion of molecules in these mass spectrometry experiments. Table is concluded from Wang et al. (2019), Broeckling et al. (2018), Schrimpe-Rutledge et al.

(2016), Bilbao et al. (2015), Hu et al. (2016), Bauer et al. (2014), Vidova and Spacil (2017), Amodei et al. (2019).
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possibility of collecting chimeric spectra by targeting at apexes of
peaks. The feature-DAG construction algorithm in step (ii) encodes
the constraints ð2Þ � ð4Þ, while the path finding algorithm in step
(iii) guarantees that the paths will cover the maximum number of
distinct features. The path scheduled by MS2Planner is the solution
of optimization problem (1) (see Supplementary Note 1).

2.2 Mass spectrometry feature detection
The preliminary mass spectrometry experiments (acquired in full
MS1 scan mode) are processed using OpenMS to detect and align
MS1 features (Supplementary Note 2) (Junker et al., 2012; Pfeuffer
et al., 2017). MS1 signals are collected on both the biological sample
of interest and the background/control sample, and MS1 features
are detected using FeatureFinderMetabo and aligned across the sam-
ples using FeatureLinkerKD. Then, the apexes of MS1 features are
detected and their intensities in the biological sample and in the
background/control sample are reported. Features present in back-
ground/control samples are discarded.

2.3 Constructing feature-DAG
Feature-DAG is constructed based on raw MS1 features in four steps
detailed below (Fig. 3).

2.3.1 Clustering MS1 signals

MS2Planner utilizes raw MS1 signals and apexes from the OpenMS
workflow. Raw signals are then mapped to clusters with apexes as
centers, using nearest-neighbor model (Fig. 3a) (Altman, 1992).

2.3.2 Creating feature-DAG nodes

Given clusters of MS1 features, MS2Planner bins raw MS1 signals
in each cluster based on their retention times (Fig. 3b). The intensity
of the node is defined as the sum of intensity of the all raw MS1 sig-
nals inside it.

2.3.3 Creating feature-DAG edges

First, we connect each node to other nodes in the same cluster with
a directed edge of weight 1 if: (i) the retention time of the second
node is larger than that of the first node, and (ii) the total ion current
(TIC) for the m=z�RT window between the two nodes is higher

Table 2. Definitions of the terminologies

Term Definitions

MS1/MS1 scan Molecules are ionized and separated by retention time (RT) and mass-to-charge ratio (m/z). RT, m/z and intensity are

obtained for each of the ions.

MS1 intensity The intensity of the ions. It is acquired during MS1 scan.

MS1 feature It refers to the whole MS1 profiles from a molecule.

MS1 apex MS1 scan data are processed by OpenMS workflow. It aligns MS1 features and removes ions found in the background con-

trol. It outputs an apex that consists of a tuple made by RT, m/z, and intensity of each MS1 feature.

MS1 run It refers to an entire run of MS1 scans over the RT range of the experiment.

MS2/MS2 scan Designate fragmentation spectra that results from the fragmentation of molecules detected in MS1 scan and selected for tan-

dem mass spectrometry experiment. It acquires RT, m/z and intensity for each ion of the fragments. These data can be

used for molecule identification.

Total ion current It refers to the summation of intensities of ions in a scan or multiple scans.

IODA Iterative Optimized Data Acquisition: an iterative acquisition strategy that relies on a preliminary analysis for optimizing the

acquisition of MS2 scans over one or more iterative targeted-MS2 experiments.

Target ions/inclusion list It refers to a list of target ions to select for MS2 scan acquisition. When an inclusion list is added to the DDA method, the in-

strument triggers MS2 scan even if they are not amongst the topN most intense ions observed in the previous MS1 scan.

When using the PRM scan, MS2 scans are collected for the target ions regardless of their detection in previous MS1 scans.

Dynamic exclusion Dynamic exclusion instructs the instrument to stop collecting additional MS2 scan for a period after the first MS2 collection.

This avoids collecting duplicate fragment spectra based on mz of recently collected ion.

Parallel reaction

monitoring

In this acquisition mode, MS2 scan(s) are collected for target ions regardless of their detection in MS1 scan.
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Fig. 3. Constructing feature-DAG. Feature-DAG is constructed based on raw MS1

signals in the following steps: (a) MS1 signals are clustered based on apexes. (b) For

each cluster, all raw MS1 signals with the same retention times are regarded as a sin-

gle node. (c) Edges with weight 1 (black) and weight 0 (green) are created depending

on retention times and intensity of the nodes. (d) Each node is split into an in-node

(ui) and an out-node (uo) to prevent recollecting the same feature
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than a user-defined threshold. MS2Planner trains a linear regression
model to predict TIC for each m=z� RT window based on the inte-
gral of the intensity of features within the window (Fig. 4 and
Supplementary Note 3). In practice, this is equivalent to imposing a
threshold on integrated MS1 signal or apex intensity directly. Here,
as we assume that the majority of fragmentation spectra detected
are not chimeric or multiplexed, TIC can be used as a proxy to esti-
mate signal-to-noise level of a fragmentation mass spectrum (Moore
et al., 2000). Hence, constraint (2) is imposed to guarantee that the
features collected are high quality.

Second, we connect each node to nodes from other clusters with
a directed edge of weight 0 if the retention time of the second node
is larger than the first node.

Under different platform/acquisition parameters, the relationship
between MS2 TIC and integral of raw MS1 signal could be very dif-
ferent. It is necessary for the user to first run a standard DDA-ex ex-
periment to obtain the training data of a particular platform/
acquisition parameters setting, and then learn a customized TIC pre-
diction model with the training data. In this study, the threshold for
the TIC of MS2 scan was empirically established based on the per-
formance of the q-Orbitrap instrument used and the target level of
sensitivity.

2.3.4 Splitting the nodes

One of the challenges with finding the maximum score path in fea-
ture-DAG is that it is possible for paths to explore and score some
clusters multiple times (Fig. 5). In order to avoid this phenomenon,
we split each node to an in-node and an out-node. Inside each clus-
ter, all the edges are directed from in-nodes to out-nodes. Between
clusters, the edges are directed from out-nodes to in-nodes.

2.4 Scheduling the optimal path
MS2Planner schedules the optimal path in m=z=RT plane that maxi-
mizes the number of unique features with TIC higher than a

threshold (here we use threshold 103). This is equivalent to finding
the longest path that traverses maximum number of weight 1 edges
in the feature-DAG. MS2Planner uses topological sorting to solve
this problem efficiently (Kahn, 1962).

2.5 Iteratively scheduling the next optimal paths
Once a longest path is found, features in the path are excluded and
MS2Planner is applied again to the rest of the features to find the
next optimal path. This procedure is continued till reaching a user
specified number of iterations.

3 Results

3.1 Sample preparation
The ‘NIH-NP’ sample consists of a mixture of ground truth mole-
cules from the National Institute of Health natural product library.
A biological background of fecal/tomato plant extracts was added
to increase the complexity of the sample. The ‘Euphorbia’ plant ex-
tract was prepared by extracting the latex of Euphorbia peplus with
acetonitrile. See the details of sample preparation and mass spec-
trometry experiments in Supplementary Note 5.

3.2 Data collection
The IODA experiments were initiated by analyzing the sample in
MS1 full-scan mode. The MS1 data were then processed with the
MS2Planner workflow to schedule the optimal path for MS2 acqui-
sition. Subsequently, iterative acquisitions are performed to collect
MS2 in targeted mode. Three different methods were used for
MS2Planner: DDA with MS2Planner inclusion list (MS2Planner-
DDA-inex), targeted-MS2 mode with MS2Planner inclusion list
(MS2Planner-Targeted-inex) or targeted-MS2 mode with
MS2Planner inclusion list without dynamic exclusion (MS2Planner-
Targeted-in). Five replicates of standard DDA (DDA-ex) were col-
lected as baseline comparison. Table 3 details various features of
these approaches.

3.3 Ms2planner detects more high quality unique

compounds
It is known that DDA-ex is biased toward collecting MS2 for the
most intense ions. When running technical replicates in DDA, the in-
strument recollects MS2 for duplicate most intense ions. Figure 6 il-
lustrate that 95.1% of the features in MS2Planner-Targeted-in
mode appear in 1–2 MS2 spectra, while it is only 24.6% in DDA-ex
mode. Therefore, as expected, MS2Planner-Targeted-in has a lower
redundancy in fragment spectra acquisition.

MS2Planner-Targeted-in also outperforms other methods in the
cumulative number of detected unique ground truth molecules (Fig.
7a). Only spectral annotations corresponding to ‘ground truth’ mol-
ecules that are known to be present in the NIH-NP sample are con-
sidered. These annotations are required to have: a cosine score
� 0:5, shared peaks � 2 and part-per million (ppm) error � 20
compare to reference spectra. Over five experiments, with the same
filter parameters, MS2Planner-Targeted-in, MS2Planner-Targeted-
inex and MS2Planner-DDA-inex allowed to identify þ38.6% (79)
and þ28.1% more ground truth molecules compared to DDA-ex
(57), while MS2Planner-DDA-inex identified þ8.7% more (57).
Furthermore, we used the modified cosine score between the experi-
mental MS2 spectra and the reference library spectra as a proxy to
estimate the quality of experimental spectra collected. The cosine
score represents the similarity of two MS2 spectra and ranges from
0 (not similar at all) to 1 (identical). Figure 7 shows that
MS2Planner-Targeted-in produces also more high quality unique
compounds than other three methods for all cosine thresholds.

MS2Planner improves sensitivity and specificity of data acquisition

Sensitivity and specificity are computed from the ground truth
compounds annotated from spectral library search. Sensitivity
(true positive rate) is denoted as the number unique MS2 annotated
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Fig. 4. Predicting TIC in m/z-RT intervals. Total ion current is linearly correlated to

the integration of the intensity of all raw MS1 signals in the window. In order to

make the prediction more robust against fluctuation in retention times, �D andþD
is added to scan start time (ts) and scan end time (te), respectively, where D ¼ 0:2 s.

Figure is reproduced from Pluskal et al. (2010)
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as ground truth molecules over the number ground truth molecules
in the sample. Specificity is defined as the number of unique MS2
ground truth molecules that were identified over the unique num-
ber of fragment spectra collected. Figure 8 shows that
MS2Planner-Targeted-in and MS2Planner-Targeted-inex outper-
form DDA-ex and MS2Planner-DDA-inex. At cosine threshold of
0.5, the sensitivity of DDA-ex, MS2Planner-Targeted-in,
MS2Planner-DDA-inex and MS2Planner-Targeted-inex is 11.2%,
18.2%, 12.7% and 15.9% respectively, while their specificity is
52.2%, 57.1%, 56.3% and 63.6%.

3.4 Performance on the Euphorbia plant sample
To benchmark MS2Planner on a more complex plant extract, we per-
formed a similar analysis on a Euphorbia extract. Mass spectral data

were searched against all public spectral libraries and NIST. Over three
replicates DDA-ex and three iterative acquisitions were performed for
MS2Planner-Targeted-in, MS2Planner-DDA-inex collected 23.8%,
71.9%, 40.9% of features only 1–2 times. MS2Planner-Targeted-in has
a lower redundancy in fragment spectra acquisition (Fig. 9).

4 Discussion

Standard DDA and its variants use a greedy strategy that always col-
lect the most abundant ions for MS2 acquisition based on the previ-
ous MS1 scan. MS2Planner, on the contrary, first acquires a
complete MS1 profile of a sample, and then schedules the path in
the m=z=RT plane to maximize the coverage and the quality of MS2
acquired. MS2Planner is an IODA strategy for untargeted mass
spectrometry analysis who has ‘see the future’ and can plan ahead.
Our evaluation showed that IODA with MS2Planner offers higher
annotation rate than standard DDA, as well as higher sensitivity and
specificity. While its iterative nature implies more experimental
time, IODA with MS2Planner expands the analytical depth of untar-
geted mass spectrometry. In addition, and unlike DIA, the supple-
mentary MS2 spectra collected can be readily employed for in silico
annotation. We argue that the possibility of high coverage in quali-
tative MS2 coupled with the recent methodological advances in
MS2 annotation is opening the ‘deep metabolomics’ era, where
metabolites content can be detected and annotated at unprecedented
depths. MS2Planner can be applied on other mass spectrometry
platforms but is particularly adapted to q-Orbitrap instrument as it
empowers the dynamic C-trap filling capability. Indeed, ion accu-
mulation time is adjusted for each MS2 based on the input stream of
ions available. Actually, the modulation of C-trap specific

Table 3. Comparison of acquisition methods used in the study

Method MS2 acquisition mode DDA Inclusion list Dynamic exclusion Acquire MS2 from MS1

MS1 full scan None No No No N/A

DDA-ex DDA Yes No Yes Yes

MS2Planner-DDA-inex DDA þ targeted MS2 Yes Yes Yes Yes

MS2Planner-Targeted-inex Targeted MS2 No Yes Yes Yes

MS2Planner-Targeted-in Targeted MS2 No Yes No No

Note: In standard DDA (DDA-ex), acquisition is done in DDA mode (top five ions detected in MS1 scans), and MS2 dynamic exclusion is used to avoid col-

lecting duplicate fragment spectra on recently collected ions. The MS2Planner-DDA-inex is a hybrid method that uses DDA for the ions detected in the previous

MS1 survey scans, but prioritizes the acquisition of MS2 spectra for target ions which are predicted by MS2Planner. In the MS2Planner-Targeted-inex mode, the

MS2 are collected only once for the targets in the inclusion list produced by MS2Planner. In the MS2Planner-Targeted-in method, the MS2 scans are collected for

the targets regardless of their detection in the previous MS1 scans and no dynamic exclusion is used which can result in the acquisition of additional MS2 scans

for target ion if extra duty cycle is available.

Fig. 6. Distribution of frequency of duplicate feature collection. In the MS2Planner

IODA experiments, 98.8% and 95.1% of features are collected 1–2 times for

MS2Planner-Targeted-inex and MS2Planner-Targeted-in, respectively, indicating a

minimal redundancy in fragment spectra acquisition. In DDA-ex and MS2Planner-

DDA-inex, this rates is approximately 25% indicating that 75% are redundantly

collected more than 2 times as these strategies collect MS2 for the most intense fea-

tures detected (once in each acquisition)

Fig. 7. Benchmarking on number of unique compounds and spectrum quality. (a)

Number of unique compounds versus number of runs for different methods.

MS2Planner-Targeted-in collects most unique compounds over five iterations among

all methods. (b) Number of unique compounds identified at different cosine thresh-

olds. MS2Planner-Targeted-in produce more high quality spectra than other methods

Fig. 8. Sensitivity and specificity of different acquisition methods. Sensitivity and

specificity for the NIH-NP dataset. These are computed from the annotation rate

obtained by spectral library search against reference spectra. Here for cosine thresh-

olds ranging from 0.1 to 0.6. MS2Planner-Targeted-in and MS2Planner-Targeted-

inex outperform DDA-ex and MS2Planner-DDA-inex
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parameters (maximum filling time and maximum number of ions
accumulated) has the potential to further increase the sensitivity of
IODA with MS2Planner. From a practical standpoint, a typical use
case for deep metabolomics acquisition would be analyzing all sam-
ples by high-throughput DDA or DIA and performing IODA on rep-
resentative sample(s) for comprehensive MS2 acquisition and
annotation.

While MS2Planner improves on the sensitivity of the existing meth-
ods, currently the sensitivity of all the presented methods remain below
30%. Various experimental and computational improvements are
needed to achieve higher sensitivity rates, including improvements in re-
tention of small molecules in liquid chromatography, improvements in
acquisition of low intensity features, and improvement in spectral library
search. In practice, to reach sensitivity rates near 100%, one needs to
conduct ionization in both positive and negative modes (as many small
molecules do not fragment in positive mode), while using both liquid
and gas chromatography with different chromatographic conditions.
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