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Abstract: Chikungunya virus (CHIKV) is a positive-sense RNA virus transmitted by Aedes 

mosquitoes. CHIKV is a reemerging Alphavirus that causes acute febrile illness and severe 

and debilitating polyarthralgia of the peripheral joints. Huge epidemics and the rapid spread 

of CHIKV seen in India and the Indian Ocean region established CHIKV as a global health 

concern. This concern was further solidified by the recent incursion of the virus into the 

Western hemisphere, a region without pre-existing immunity. Nonhuman primates (NHPs) 

serve as excellent animal models for understanding CHIKV pathogenesis and pre-clinical 

assessment of vaccines and therapeutics. NHPs present advantages over rodent models because 

they are a natural amplification host for CHIKV and they share significant genetic and 

physiological homology with humans. CHIKV infection in NHPs results in acute fever, rash, 

viremia and production of type I interferon. NHPs develop CHIKV-specific B and T-cells, 

generating neutralizing antibodies and CHIKV-specific CD4+ and CD8+ T-cells. CHIKV 

establishes a persistent infection in NHPs, particularly in cynomolgus macaques, because 

infectious virus could be recovered from spleen, liver, and muscle as late as 44 days post 

infection. NHPs are valuable models that are useful in preclinical testing of vaccines and 

therapeutics and uncovering the details of CHIKV pathogenesis. 
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1. Introduction 

Chikungunya virus (CHIKV) is a mosquito-transmitted RNA virus that causes acute febrile illness 

and severe debilitating joint pain. CHIKV belongs to the Semliki Forest virus clade of Old World 

Alphaviruses [1,2]. CHIKV historically caused sporadic outbreaks in Africa and Southeast Asia [3]. 

Globalization and ease of overseas travel have increased risk of spread of CHIKV to other regions 

without preexisting immunity and competent Aedes mosquito vectors. In densely populated regions of 

susceptible humans it is estimated that the infection rate is between 30%–75% [4–6]. The 2004–2007, 

endemic in the Indian Ocean region and India demonstrated the potential of CHIKV to rapidly spread 

and establish itself in new geographical regions. In December of 2013, CHIKV achieved autochthonous 

transmission in the Western hemisphere in the Caribbean Islands [7,8] and subsequently became 

established in Central and South America, Mexico, and the mainland United States (Florida) [9]. According 

to the Centers for Disease Control and Prevention (CDC), over 1.5 million cases have occurred in the 

Western hemisphere [10]. Risk of spread could be reduced with increased vector control such as removal 

of mosquito breeding sites, mosquito repellent, and community awareness. 

CHIKV has a 12 kb positive-sense single stranded RNA genome consisting of four nonstructural 

proteins (nsp1-4) and five structural proteins (capsid, E3, E2, 6k, and E1) [11]. CHIKV is an enveloped 

virus studded with 80 trimers of E1/E2 dimers [12]. While the cellular receptor for the virus is unknown, 

CHIKV enters cells via clathrin-mediated endocytosis and the capsid containing genomic RNA is 

released into the cytoplasm [13]. The nonstructural proteins are translated from the genomic RNA and 

together form the NSP protein complex that includes the viral RNA-dependent RNA polymerase which 

is necessary for minus and plus strand genomic RNA replication [14]. The NSP complex also synthesizes 

the subgenomic RNA from minus-strand RNA that codes for the structural polyprotein. During 

translation of the structural polyprotein, the capsid autocatalytically cleaves itself, exposing an N-

terminal ER localization signal [15,16]. The envelope proteins are folded in the endoplasmic reticulum 

(ER), and they undergo further processing and glycosylation in the ER and Golgi secretory network before 

being presented on the plasma membrane. The capsid complex assembles around the genomic RNA and 

interacts with the envelope proteins at the plasma membrane [17,18]. The virions bud and are released for 

the next round of infection. 

The acute stage of CHIKV disease, in humans, is characterized by rash, high fever, headache, and 

arthralgia. These symptoms can appear within 3–7 days and typically last for two weeks. After a bite 

from an infected Aedes mosquito, the virus replicates locally in the skin and disseminates via the blood 

to peripheral joints, muscle, tendons, liver, and lymph nodes. Replication in these tissues results in 

inflammation, synovitis, and tenosynovitis causing intense pain in the joints, tendons, and muscles. The 

sub-acute phase of CHIKV or convalescent phase is associated with resolution of viremia, fever, and 

induction of CHIKV-specific T-cell and antibody immune responses. A significant portion of those 

infected will enter into the chronic phase of CHIKV disease, characterized by recurring polyarthritis, 

myalgia, and tenosynovitis [19,20], that can last for months to years post infection [19,21–25].  
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The prevailing hypothesis is that incomplete clearance of CHIKV from specific tissues leads to chronic 

infection. Persistent CHIKV may replicate at low levels in the joints and muscles, causing long-term 

arthritic pain and myalgia. Risk factors in developing persistent CHIKV associated rheumatic 

manifestations are increased age (>45 years old), preexisting arthritis or joint disease, hypertension, and 

increased disease severity during the acute phase of disease [24]. Though considered a relatively benign 

disease, CHIKV can cause serious, even fatal disease in neonates, aged, and immunocompromised 

populations. Other underlying medical conditions such as diabetes, cardiovascular disease, neurological 

disorders, and chronic pulmonary diseases are risk factors for developing severe CHIKV disease [26]. 

Atypical symptoms include encephalitis, seizures, heart failure and arrhythmias, renal failure, skin 

lesions, and blindness [26–28]. There is documented evidence of perinatal mother-to-child transmission 

resulting in severe disease, including fever, rash, hemorrhagic disease, and seizures from La Reunion, 

an Indian Ocean Island where 30%–40% of the population was infected during the 2005–2006 Indian 

Ocean Island epidemic [29]. 

CHIKV has natural cycles of reemergence that occur in patterns of several years to decades after 

previous epidemics [3,30]; the virus is thought to maintain itself in NHPs or other vertebrate reservoirs 

and is reintroduced to regions with susceptible populations lacking preexisting immunity to CHIKV. 

The transmission cycle from NHPs (or other vertebrate such as rodents) to humans using a mosquito 

vector is known as the zoonotic sylvatic transmission cycle. However, CHIKV does not require an 

animal intermediate. In densely populated areas CHIKV utilizes an urban transmission cycle involving 

only humans and mosquitoes. The most important mosquito vectors in urban transmission cycles are the 

anthropophilic species Aedes aegypti and Aedes albopictus. The zoonotic sylvatic transmission cycle is 

believed to occur in West and Central Africa involving forest-dwelling Aedes mosquitoes, NHPs, and 

other vertebrate reservoirs [31–34]. It is possible that a zoonotic sylvatic transmission cycle exists in 

Asia because of isolation of infectious virus from NHPs in Malaysia [35] and CHIKV-specific antibodies 

present in Asian NHPs [36,37]; however, the nature of the transmission cycle in Asia needs to be more 

thoroughly studied. Both humans and NHPs serve as amplification hosts for CHIKV, thus highlighting 

the importance of studying CHIKV in NHPs. Genetic analysis of several CHIKV isolates revealed that 

there are three distinct CHIKV lineages: the Asian clade, West African clade, and East/Central/South 

African (ECSA) clade [38]. Sequence analysis showed that CHIKV isolates from the Indian Ocean outbreak 

were of the ECSA lineage. Importantly, CHIKV isolates from the Indian Ocean outbreak contained a point 

mutation in E1 (A226V) that increased its infectivity in Aedes albopictus mosquitoes [39–41].  

The CHIKV-LR isolates were sampled during the Indian Ocean outbreak and contain this point mutation. 

Other CHIKV isolates commonly used in NHP studies include the Senegal isolate CHIKV-37997 from 

the West African clade and the ECSA isolate CHIKV-DHS-4263 obtained from a traveler in India during 

the Indian Ocean Island outbreak [42]. The circulating strain in the Caribbean stems from the Asian 

lineage, but the Caribbean isolates have not been used in any reported NHP studies [43]. 
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2. Animal Models of CHIKV 

2.1. Mouse Models of CHIKV Infection and Disease 

There are many different animal models that have been used for studying CHIKV pathogenesis, 

mostly involving different laboratory mouse strains. Of note, neonatal mice and mice that lack the type 

I interferon receptor are highly susceptible to CHIKV infection, indicating the importance of type I 

interferon in controlling virus infection [44]. Rag1−/− mice, which are deficient in mature B and  

T-cells, develop a persistent CHIKV infection in which infectious virus can be recovered from tissues 

and serum for the lifetime of the mouse [45,46]. Transfer of immune sera into the Rag1−/− mice results 

in a transient reduction of infectious virus in the serum [45] that returns after a few weeks [46]. This 

demonstrates that though antibodies can clear virus in the serum for a short time, they are not sufficient 

for complete viral clearance. The direct role for T-cells still remain elusive, but it has been shown that 

CD4+ T-cells may play a role in joint swelling [47]. Infection of young and adult C57BL/6 mice with 

CHIKV in the footpad can recapitulate the arthritis and myositis symptoms seen in humans [48,49]. In 

addition, CHIKV RNA can be detected in this mouse model for several weeks post infection, providing 

evidence for CHIKV persistence [45,48]. However, unlike the polyarthritis that occurs during human 

CHIKV infections, arthritis in mice is usually limited to the infected ipsilateral joint. There are several 

mouse models available for understanding different aspects of CHIKV pathogenesis and immunity; 

however, uncovering the details of CHIKV infection in NHPs may be more relevant to human infection 

and disease due to immunological and physiological similarities. Thus, the NHP model of CHIKV infection 

more accurately predicts the human outcomes of antiviral therapeutics and vaccines. 

2.2. NHP Models of CHIKV Infection 

The first CHIKV NHP experiments were performed in 1953 in the Newala district of Tanzania. R.W. 

Ross demonstrated that rhesus macaques developed neutralizing antibodies to inoculations with viremic 

human sera [50]. Other early studies in rhesus macaques showed development of viremia 2–4 days post 

infection (dpi), production of neutralizing antibodies, and protection from reinfection [51]. Three recent 

studies have provided a more detailed picture of CHIKV pathogenesis using the following animal 

models: adult (6–13 years old) and aged rhesus macaques (>17 years old) [52]; cynomolgus macaques [53]; 

and pregnant rhesus macaques [42]. 

2.2.1. Acute Stage of CHKV Infection in NHP 

The acute stage of CHIKV infection in NHPs has similarities to acute CHIKV infection in humans. 

In humans, viremia lasts an average of 4–6 days, but can last up to 12 days post-onset of illness, with 

viremia reaching between 105 to 1012 pfu/mL [54–58]. Development of viremia in CHIKV-infected 

NHPs has been studied since the 1960s [42,51,53,59–61]. CHIKV has been experimentally administered 

to NHP by a variety of means including subcutaneous, intravenous, and intramuscular injections. 

However, it is unclear how the specific routes of infection and reliance on mosquito-specific delivery 

mechanisms and/or saliva effect CHIKV transmission and subsequently pathogenesis. Elegant intravital 

microscopy analysis of feeding patterns of Anopheles mosquitoes demonstrated the impact of mosquito 
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age and malaria infection on increasing feeding behavior and pathogen transmission, which highlights the 

importance of determining pathogen: vector interactions and their role in mosquito transmission [62]. In the 

early CHIKV macaque studies, monkeys infected with either CHIKV-African E-103 or CHIKV-Asian 

BAH-306 developed viremia that lasted 4-5 days with peak viremia levels occurring 2–4 dpi, reaching 

104–106 pfu/mL [51]. Results from more recent studies utilizing rhesus macaques inoculated with either 

CHIKV-LR or CHIKV-37997 at varying doses (107, 108, or 109 pfu) reported that regardless of 

inoculating dose, animals were viremic by 2 dpi with resolution around 5 dpi. Animals infected with 

CHIKV-LR had slightly higher peak viremias compared to CHIKV-37997 infected animals (5.7 × 106 

vs. 5.9 × 105 vRNA/10 μL plasma, respectively) [59]. Cynomolgus macaques infected with CHIKV-LR 

at the same dose range also developed peak viremia by 2 dpi with higher viral loads than those observed 

in rhesus (5 × 109 vRNA/mL plasma) [53]. In contrast to rhesus, the higher the inoculation dose the 

sooner viremia peaked and the higher peak viremia levels occurred in cynomolgus macaques. Pregnant 

rhesus macaques infected with CHIKV-37997 or DHS-4263 developed viremia lasting from 1–5 dpi, 

peaking at 2–3 dpi. Maximum viral load in pregnant rhesus macaques infected with CHIKV-DHS-4263 

was significantly higher compared to infection with CHIKV-37997 [42]. These studies show that 

infection with specific CHIKV isolates such as CHIKV-LR or CHIKV-DHS-4263 results in higher peak 

viremia compared to CHIKV-37997, and that cynomolgus macaques are generally more susceptible to 

development of high titer viremia compared to rhesus macaques. 

As described for humans, clinical presentation of acute CHIKV infection in NHPs included high fever 

at 1–2 dpi that persisted for 2–7 days in cynomolgus, 3–7 days in rhesus, and 17–19 days in pregnant 

rhesus macaques; fever coincided with rash during the first week of infection [42,53,59]. In cynomolgus 

macaques, severity of symptoms correlated with CHIKV dose. Those animals receiving a high dose of 

CHIKV-LR (107–108 pfu) exhibited joint swelling of the wrist and ankle in addition to viremia, fever 

and rash. A moderate dose (102–106 pfu) caused only viremia, fever and rash, while a low dose (101 pfu) 

caused no clinical symptoms except for viremia in some animals. 

Leukopenia has been described following CHIKV infection of both cynomolgus macaques and 

pregnant rhesus macaques. Additional alterations in the hemogram included monocytopenia, 

lymphopenia, granulocytosis, and thromobocytopenia. Changes in blood cell numbers correlated with 

viremia, with the biggest decrease occurring during peak viremia, 2–4 dpi, followed by levels returning 

to normal by 10–15 dpi. Both lymphocyte and neutrophil counts were significantly decreased in pregnant 

rhesus macaques at the time of peak viremia (Table 1) [42]. Similar patterns have also been observed 

during outbreaks of CHIKV in humans [3,19,42]. In a retrospective study of patients infected during the 

La Reunion outbreak in 2005, lymphopenia was the most common laboratory abnormality, observed in 

79% of patients, followed by moderate thrombocytopenia, which was detected in 43.9% of patients [23]. 

Results from these NHP studies, along with what has been reported during human infection, support the 

idea that during CHIKV infection at peak viremia, immune cells are recruited from the blood into the 

surrounding tissues to control viral loads and reduce dissemination. 
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2.2.2. CHIKV Tissue Dissemination in NHPs 

Dissemination of CHIKV from the site of infection to other tissues throughout the body occurs as 

early as 2 dpi in infected macaques [53]. Infection of cynomolgus macaques with an intermediate dose 

of CHIKV-LR (102–106 pfu) resulted in virus dissemination to multiple tissues along with mononuclear 

cell infiltration in the liver and lymphoid tissues of infected animals. Viral RNA was quantified in tissue 

lysates from liver, lymph node, liver, joint, muscle, skin, brain, and spinal cord of infected cynomolgus 

macaques. The viral load in most tissues peaked by 6 dpi but remained detectable for longer periods of 

time in many tissues including lymphoid organs, liver, synovial and muscular tissues, and CSF [53]. In 

rhesus macaques at 7 dpi, CHIKV was detected in joints, musculoskeletal tissues, heart, lung, liver, 

kidney, and lymphoid tissues, demonstrating the ability of CHIKV to disseminate to various tissues in 

this macaque model [63]. Similar to human infections, persistence of CHIKV in the infected adult rhesus 

monkeys is much more limited when compared to cynomolgus macaques. However, CHIKV-LR 

persisted in the spleen of aged rhesus macaques [59]. In the pregnant rhesus macaque model viral RNA 

was detected in the spleen and lymph node at 21 dpi. Detection of virus in other tissues was dependent 

on the CHIKV strain used for infection [42]. 

Infection of cynomolgus macaques with CHIKV resulted in histological abnormalities detected 

primarily in the liver, lymph nodes, and spleen. In the spleen, an increase of mononuclear cell infiltrates 

into the red pulp was observed 6–97 dpi [53]. Lymph nodes of infected animals also showed increased 

infiltration of mononuclear cells, primarily into the cortex, which was associated with enlargement of 

the follicular region 32–44 dpi. In the liver, there were abnormally high levels of hepatocyte death mainly 

due to apoptosis, peaking at 6 dpi. At an intermediate dose, CHIKV did not cause any major 

abnormalities in muscle, synovial samples or central nervous tissues. Using a high dose of CHIKV-LR 

(≥107 PFU) histological findings were detected starting at 5 dpi and remained detectable until 186 dpi in 

some tissues [53]. The liver, lymph nodes, and spleen presented with the same histological findings as 

the intermediate dose of CHIKV, but cell infiltration was detectable to 186 dpi [53]. In addition, there 

were also regions of muscle fiber isolated at 186 dpi with areas of detectable necrosis, associated with 

monocyte and macrophage infiltrates [53]. 

The ability of CHIKV to cause neurological symptoms in humans has been reported since the  

1960–1970s [64–68] and also observed during more recent outbreaks [26,69–71]. Cynomolgus 

macaques infected with the high dose of CHIKV-LR exhibited symptoms of meningoencephalitis. 

Analysis of cerebrospinal fluid (CSF) collected from animals with signs of encephalitis, revealed a large 

number of mononuclear cells at 4 dpi. Characterization of the individual cell populations in the CSF by 

flow cytometry revealed that the majority of the cells were lymphocytes (67%) with a small 

monocytes/macrophages contribution (9%) [53]. Neurological symptoms are most commonly 

manifested in neonates after mother-to-child transmission. The incidence rate of neurological 

manifestations in adults is much lower; during the recent La Reunion outbreak only 15%–25% of adults 

that required hospitalization due to CHIKV infection had neurological symptoms [72]. Recapitulating 

neurological symptoms of CHIKV infection using a relevant infectious animal model has proven 

difficult. Mother-to-child CHIKV transmission is a rare event, unless the mother is viremic at or near 

the time of childbirth, in which case transmission can be as high as 50% [73]. CHIKV was not transmitted 

to the fetus of pregnant rhesus macaques by transplacental transmission because the fetal tissues and 
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placenta were found to be negative for CHIKV [42]. However, this study was limited to animals at 

gestation days 121–132. Future pregnant rhesus macaque studies need to investigate vertical CHIKV 

transmission closer to the end of gestation to determine whether the rhesus macaque model mimics CHIKV 

vertical transmission observed in humans. Additional studies need to be performed in NHP models in order 

to understand the neurological manifestations following CHIKV infection. 

2.2.3. CHIKV Persistence in NHPs 

There is mounting evidence for CHIKV persistence in both humans and rhesus macaques. A 

proportion of people infected with CHIKV may have recurring arthralgia but it is not known whether 

CHIKV chronic joint pain is caused by low-level persistent CHIKV replication or whether acute CHIKV 

replication disrupts an inflammatory equilibrium that causes arthritic pain after infection has resolved. 

The first evidence of CHIKV persistence in nonhuman primates was shown in adult, immunocompetent 

cynomolgus macaques infected with CHIKV-LR, and infectious virus was recovered as late as 44 days 

post infection from spleen, liver, and muscle (Table 1) [53]. The authors also postulated that CD68+ 

macrophages might be reservoirs of persistence in the spleen. Another group showed evidence of 

CHIKV persistence in the spleen and lymph nodes in pregnant rhesus macaques at 21 days post infection 

by RT-PCR, but no infectious virus was recovered [42]. In addition, they did not detect CHIKV in the 

fetal tissues or placenta. Our group detected CHIKV RNA at 35 dpi in the spleen of aged, but not adult 

rhesus macaques. When aged rhesus macaques were given 109 pfu CHIKV-LR, CHIKV RNA was 

detected in the spleen 35 dpi; however this was not the case when aged rhesus macaques were given the 

same dosage of CHIKV-37997 [52], suggesting that CHIKV-LR may be more virulent than CHIKV-37997 

in aged macaques. Regardless of the macaque model, the consensus is that CHIKV RNA can be detected 

long-term in the spleen. In addition, CHIKV infections may be more severe and more persistent in 

cynomolgus macaques compared to rhesus macaques. 

Table 1. Stages of Chikungunya virus (CHIKV) infection in non-human primates (NHPs). 

 (a) Acute Stage 

1-6 dpi 

(b) Convalescent Stage 

7-34 dpi 

(c) Persistent 

stage >35 dpi 

Reference 

Symptoms 
Fever, rash, joint 

swelling, 

lymphopenia 

Resolution of fever and 

lymphopenia 

Rash and joint swelling 

resolving 

Not determined [42,51,53,59,74] 

Virus Detection 
Virus detectable in 

the blood, lymph 

nodes, liver, and 

spleen 

Virus detectable in the 

liver, lymph nodes, 

spleen, joints, muscles, 

and organs 

Virus detectable 

in the liver, 

spleen, joint 

synovial tissue, 

and muscle 

[42,51,53,59,61,74–77] 
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Table 1. Cont. 

 (a) Acute Stage 

1-6 dpi 

(b) Convalescent Stage 

7-34 dpi 

(c) Persistent 

stage >35 dpi 

Reference 

Innate 

Response 

Active monocyte and 

mDC in the blood 

 

Robust pDC, mDC, & 

monocytes/macrophages 

Not determined [33,34] 

Cytokine and 

Chemokine 

Production 

Increased IFN-α/β & 

γ, IL-6, TNF-α, IL-

15,  

IL-1Ra, IL-2, CCL-

2, CCL-3, CCL-4, & 

VEGF 

Increased levels of IFN-

γ, TNF-α, IL-2, CCL-2, 

CCL-3, & CCL-4 

Not determined [42,53,59] 

Virus-Specific 

Immunity 

Virus-specific 

immunity is 

developing 

T-Cell Response:  

Virus-specific CD4+ and 

CD8+ (EM and CM) 

B-Cell Response: 

Virus-specific IgM & 

IgG 

T-Cell Response: 

Not determined 

 

B-Cell 

Response: 

Virus-specific 

IgG  

[42,51,53,59,61,78] 

(a) During the acute stage of infection (1–6 dpi) CHIKV infection of NHPs results in viremia lasting an average 

of 4–5 days, fever, rash, and joint swelling. A reduction in numerous cell populations of the blood results in 

monocytopenia, lymphopenia, granulocytosis, and thromobocytopenia. The innate immune response is also 

initiated during the acute stage, supported by evidence of an increase in the number of monocytes and mDCs 

in the peripheral blood. Effectors of the type 1 IFN response are detected early in the acute stage, along with 

other proinflammatory cytokines/chemokines. (b) The convalescent stage of infection (7–34 dpi) is marked by 

dissemination of the virus from the blood to other organs of the body including the liver, lymph nodes, spleen, 

joints, muscles, and organs. The innate immune response continues, and the adaptive immune response is 

initiated during this stage of infection, including T and B-cell responses, and the production of both IgM and 

IgG virus specific antibodies. (c) During the persistent stage of infection (>35 dpi) in NHPs, virus remains 

detectable in the liver, spleen, joint synovial tissues, and muscle. CHIKV is capable of persisting within NHP CD68+ 

macrophages of the spleen. Virus specific IgG antibody responses have also been detected during this stage. 

2.2.4. NHP Immune Responses Following CHIKV Infection 

Innate Immune Cell Activation in NHP 

Research by our group reported a difference in both the monocyte and dendritic cell (DC) numbers after 

CHIKV infection between adult and aged rhesus macaques infected with CHIKV-LR or CHIKV-37997. The 

levels of plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) increased at 14 dpi before returning to 

baseline levels following infection of adult rhesus macaques with CHIKV-LR. In contrast, adults 

infected with CHIKV-37997 had high blood pDC levels by 4 weeks post infection (wpi) and moderate 

mDC recruitment by 14 dpi. Aged animals infected with either strain showed reduced levels of pDCs in 

the blood and a late mDC recruitment at 4 wpi [59]. These data indicated that aged macaques have 

defective and delayed DC recruitment in the blood. Monocytes/macrophage numbers were increased 

only in adult animals, with a more dramatic increase reported in CHIKV-37997 infected animals 

compared to CHIKV-LR infected rhesus macaques [59]. Interestingly, beginning at 2 dpi the monocyte 
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and mDC populations in the peripheral blood of CHIKV-LR infected rhesus macaques become highly 

activated demonstrating increased surface expression for CD169. The level of CD169 returns to baseline 

between 5–7 dpi suggesting that this level of activation is transient and reflects the level of viremia 

(Streblow: unpublished data [79]). 

In the cynomolgus macaque model of CHIKV infection, macrophages were not only reported to 

traffic to lymphoid tissues, but also stained positive for CHIKV antigen. CHIKV antigen positive CD68+ 

macrophages were also reported in the spleen and lymph nodes of CHIKV-LR infected cynomolgus 

macaques as early as 2 dpi until 3 months after infection [53]. Further analysis of spleen CD68+ 

macrophages, utilizing in situ hybridization and immunohistochemistry, confirmed the presence of 

CHIKV genomes in macrophages at both 6 and 19 dpi [53]. 

Cytokine Response in CHIKV-infected NHP 

A key component of the immune response against CHIKV is the production of cytokines and 

chemokines. In humans, the type 1 IFN response plays a key role in controlling the severity of CHIKV 

infections [22,49,80]. In the cynomolgus macaque model, IFN-α/β levels were increased 1–2 dpi and 

then fell sharply at 4 dpi, following the same pattern as viremia [53]. In other studies with NHPs, 

specifically rhesus macaques, plasma levels of bioactive IFN were measured at 3 dpi through activation 

of interferon stimulated gene (ISG) expression. Fibroblasts treated with plasma from adult animals 

increased ISG expression but not when treated with serum from aged animals [59]. This demonstrated 

that aged animals are defective in their ability to produce functional type 1 IFNs. 

The plasma levels of numerous other proinflammatory cytokines and chemokines also correlated with 

levels of peak viremia in cynomolgus macaques. IFN-α/β, CCL2, IL-6, and IFNγ levels increased sharply 

with viremia at 2 dpi in the blood [53]. Other cytokines and chemokines that showed a significant 

increase over baseline levels during infection of cynomolgus macaques included TNF-α, CCL-3 and 

CCL-4 [53]. A similar pattern of increase in cytokines with levels of viremia was reported for pregnant 

rhesus macaques infected with CHIKV. Peak levels of cytokines IL-2, IL-6, IL-15, IL-1Ra, and the 

chemokines CCL-2 and VEGF increased at 3 dpi and then decreased to baseline following the peak and 

decline of viremia (Table 1) [42]. 

Antiviral T-Cells in CHIKV-Infected NHP 

The exact role that T-cells play in controlling CHIKV infection is still unclear. During human 

infection of CHIKV CD8+ T-cells seem to be preferentially activated during the first few days of 

infection followed by a switch to CD4+ T-cells [22,81]. At later stages during chronic infection, the  

IFN-γ T-cell response appears to be driven primarily by CD8+ T-cells [22]. Mouse models have been key in 

demonstrating the importance of the adaptive immune response in controlling CHIKV infection [45]. 

CHIKV infection of laboratory mouse strains demonstrated the ability of both CD4+ and CD8+ T-cells 

to infiltrate the joints [48,82]. According to these models, CD4+ T-cells may have an important 

contributing role to the severity of inflammation and joint damage, recapitulating what is seen in 

autoimmune arthritis [47]. In rhesus macaques, CD4+ and CD8+ T-cells proliferate normally: central 

memory (CM) T-cell subsets were generally detected prior to effector memory (EM) T-cell subsets. 

There was a diminished T-cell response in aged animals infected with CHIKV-37997 compared to adult 
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animals infected with the same CHIKV strain [59]. Rhesus macaques infected with CHIKV develop T 

cell responses specific for several CHIKV proteins as shown by IFN-γ ELISPOT analysis. The 

magnitude of antigen-specific T-cell responses in adult animals was higher compared to aged animals. 

T-cells specific for nsp1 were highest in frequency for both adult and aged animals. The breadth of T 

cell responses to CHIKV proteins differed in adult compared to aged animals; adults responded well to nsp1, 

capsid, E2, and nsp3 while aged animals responded mainly to nsp1 and nsp4 [59]. The results from these and 

other studies suggest that aged animals mount reduced and delayed T cell responses compared to adult 

animals to CHIKV infection, which may be a contributing factor to increased persistence in aged animals. 

NHP Humoral Responses against CHIKV 

Human infection with CHIKV results in rapid seroconversion. Anti-CHIKV antibodies appear within 

the first week of infection, but can be detected as early as the day of symptoms onset [55,58]. IgM peaks 

at 2–3 dpi and can persist at low levels for weeks to months. IgG anti-CHIKV antibodies are detectable 

10–13 days post-onset and remain detectable for years after infection [83]. Antibodies from convalescent 

patients, in vitro are highly neutralizing, and in vivo can protect mice against CHIKV infection when 

given both prophylactically and therapeutically [84]. Some of the earliest examples of detecting and 

measuring anti-CHIKV antibodies in NHPs are from Binn et al. in 1967, and Nakao et al. in 1973 [51,60]. 

Binn et al. reported that in sera collected from Japanese monkeys (Macaca fuscata) infected with either 

the CHIKV-Asian or African strain, neutralizing antibodies were present 30 dpi as determined by  

plaque-inhibition assays [51]. Nakao et al. utilized two forms of inactivated CHIKV, UV-inactivated or 

formalin treatment, to generate an antibody response in inoculated Japanese monkeys [60]. Animals 

were given three injections of inactivated virus at 0, 2, and 9 weeks. After the second inoculation 

neutralizing antibodies were present (400, 50% PRNT) in the sera of animals, followed by a dramatic 

increase after the third injection [60]. UV-inactivated CHIKV was a far superior inducer of antibodies 

than the formalin treated CHIKV. 

In the limited number of studies that have investigated NHP antibody response to CHIKV, the kinetics 

of the antibody response was similar to what has been described for humans. Anti-CHIKV antibodies in 

serum samples from CHIKV-LR infected cynomolgus macaques were detectable at 9 dpi. At this early 

time point 90% of the response was made up of the IgM isotype. By 16 dpi the IgM antibody response 

was replaced by IgG [78]. At later times post infection (100 and 180 dpi), IgG antibodies remained 

detectable (Table 1) [78]. 

Comparable antibody response kinetics was reported for rhesus macaques infected with CHIKV-LR 

and CHIKV-37997. In this model, anti-CHIKV IgG end point titers were compared in aged and adult 

animals using ELISA plates coated in either purified virions or cellular lysates from infected cells. For 

CHIKV-LR and CHIKV-37997 infected adult and aged animals, anti-CHIKV antibodies peaked near 21 

dpi. The antibody kinetics were similar between the two age groups, but aged animals had significantly 

reduced IgG levels against virions [59]. Furthermore, when cellular lysates were used as a coating 

antigen, instead of purified virions, anti-CHIKV levels increased until 35 dpi, with similar levels reported 

for both adult and aged CHIKV-LR or CHIKV-37997 infected animals [59]. In pregnant rhesus 

macaques, anti-CHIKV antibodies were detectable at 7 dpi and continued to rise until 21 dpi [42]. The 
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antibodies were highly neutralizing at 14 and 21 dpi for pregnant rhesus macaques infected with  

CHIKV-DHS-4263 compared to animals infected with CHIKV-37997 [42]. 

CHIKV-LR or CHIKV-37997 infection induces robust proliferation of memory B cell subsets that 

precedes the detection of IgG in adult rhesus macaques. As described for T cells, B cell proliferation in 

aged animals was also delayed and decreased [59]. MZ-like B-cell proliferation was detected at 10 dpi, 

peaked at 14 dpi, and returned to baseline by 21 dpi in adult CHIKV-LR infected rhesus macaques. 

Compared to adult animals, proliferation of MZ-like B-cells in aged animals was delayed. Proliferation 

of memory B-cells in adult rhesus-macaques infected with either CHIKV-LR or 37997 was biphasic; 

two peaks in proliferation occurred at 14 dpi and 28 dpi [59]. In aged animals, proliferation of memory 

B-cells was decreased and the second peak at 28 dpi was absent. The lack of this second peak could be 

due to the waning immune response caused by age [59]. 

Both NHPs and humans develop similar CHIKV antibody epitope recognition after CHIKV infection. 

The N-terminal region of the E2 glycoprotein was highly recognized by anti-CHIKV antibodies from 

CHIKV-LR infected cynomolgus macaques. Antibodies recognizing the same region from human 

patients infected with CHIKV has been found to provide a long-lasting protective response during the 

whole course of disease [85,86]. The specific E2 epitope recognized by human antibodies is called 

E2EP3 (amino acids 2800-2818) [86,87]. The same E2EP3 region is recognized by anti-CHIKV 

antibodies in sera of CHIKV-infected macaques up to 100 dpi [78]. There was only one other common 

E2 epitope identified by antibodies from both patients and cynomolgus macaques (amino acids 3025-

3058) [78,85,86]. Anti-E2EP3 antibodies from infected cynomolgus macaques make up a large 

percentage of the antibody responses during the early stage of infection, which has also been shown for 

humans [78,86]. At later stages of disease, the convalescent and recovery phase, there is an equal 

distribution of the epitopes recognized by anti-CHIKV cynomolgus macaque antibodies including linear 

B-cell epitopes from E2, E3, capsid, nsp3, nsp1 and nsp4 proteins [78]. 

2.3. Efficacy Testing of CHIKV Vaccines and Therapeutics in NHP 

2.3.1. CHIKV Vaccine Trials in NHP 

A benefit to the NHP model is the ability to test the efficacy of vaccines and therapeutics in an outbred 

species while maintaining controls over experimental conditions. NHPs have been used as models to test 

the antibody producing potential of CHIKV treatments and vaccines [60,76]. Early studies showed that 

vaccination of Japanese Macaques with UV-inactivated or formalin treated CHIKV resulted in a 

neutralizing antibody response that could be enhanced by booster immunizations [60]. 

One of the early vaccines was a live-attenuated CHIKV 181/clone 25 derived from serial passaging 

the virus in MRC-5 cells [77]. Immunization of rhesus macaques resulted in low viremia and induced 

production of neutralizing antibodies by day 14. Immunized animals were protected from subsequent 

challenge, demonstrated by absence of virus in the serum. The vaccine progressed to phase II clinical 

trials but was halted because a small percentage of volunteers developed transient arthralgia [88].  

Two live-attenuated CHIKV-IRES vaccine candidates, which contain a picornavirus internal 

ribosome entry site (IRES) to attenuate the virus, were recently tested in cynomolgus macaques [74]. A 

single vaccination with either CHIKV/IRES construct protected the cynomolgus macaques from 
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viremia, fever, and rise in heart rate. At 35 dpi, virus titers were analyzed in axillary, bronchial, and 

inguinal lymph nodes and serum, and no virus was found. One limitation of the study was that they did 

not titer muscle, spleen, or liver tissues previously determined to be sites of persistence in the 

cynomolgus macaque model [53]. 

A CHIKV virus-like particle (VLP) vaccine protected rhesus macaques from CHIKV challenge [76]. 

Compared to control animals, VLP-vaccinated animals did not develop viremia, or show signs of acute 

CHIKV disease, demonstrating protection from infection. The VLP vaccine required at least two 

vaccinations for production of high titer neutralizing antibodies and passed phase 1 clinical trials [89]. 

The vaccines and therapeutics for CHIKV that have been tested in NHPs are listed in Table 2. 

Table 2. CHIKV Vaccines and Therapeutics Tested in NHPs. 

Vaccine Type 
Number of 

Vaccinations 

Immunogenicit

y Measured 

Challenge 

Dose/Strain/Route 
Reference 

Formalin-inactivated/ 

UV-inactivated 
3 

Neutralizing 

antibodies 
Not reported [60,90] 

Live-attenuated 1 
Neutralizing 

antibodies 

105 PFU / CHIKV-15561 / 

i.m. 
[77] 

Virus-Like Particle (VLP) 3 
Neutralizing 

antibodies 

1010 PFU / CHIKV-LR/ 

i.v. 
[76] 

DNA 5 

Neutralizing 

antibodies / T 

cells 

Not reported [91] 

CHIKV/IRES 1 
Neutralizing 

antibodies 

105 PFU / CHIKV-LR / 

s.c. 
[74] 

Therapeutic Type 
Infection 

Dose/Strain/Route 

Therapeutic 

Delivery 
Measure of Protection  

Antibody Therapeutic 
107 PFU / CHIKV-LR 

/ s.c. 
1 & 3 dpi / i.v. Virus dissemination [63] 

2.3.2. CHIKV Antiviral Therapeutic Trials in NHP 

Immunotherapeutics have also been tested in rhesus macaques as prophylactic treatment options for 

CHIKV infections. Two humanized monoclonal antibodies (mAb CHK-152 and CHK-166) that 

recognize epitopes within the structural EI and E2 proteins, previously shown to be protective as a 

prophylactic treatment in Ifnar−/− mice [75], were tested in combination as a post-exposure therapeutic 

for CHIKV in rhesus macaques [63]. In this study, rhesus macaques were infected subcutaneously in 

both arms with a total of 107 pfu CHIKV-LR distributed over 10 sites. Then at 1 and 3 dpi the animals 

were intravenously infused into the saphenous vein with either a cocktail of anti-CHIKV mAbs CHK-152 

and CHK-166 or a control mAb (WNV E16). Although both groups had detectable CHIKV in the serum 

at 1 dpi, no virus was detected in serum at 2 dpi of animals that received CHIKV mAb therapy. At 7 dpi 

viral RNA load and tissue dissemination was quantified. Viral burden was similar in the arm muscles, 

joints and axillary lymph nodes between the anti-CHIKV mAb treated group and the control group. 

However, viral burdens in the joints and tissues of the legs, as well as the inguinal lymph node that drains 

the leg were reduced in the animals that received the anti-CHIKV mAb compared to controls. 
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Measurement of viral burdens in other organs revealed that virus levels were also reduced in the kidney, 

lungs, and mesenteric lymph nodes in animals treated the anti-CHIKV mAb. In contrast there was no 

difference in the viral burden in the heart and spleen between the two study groups. 

These results have generated interesting mechanisms about how CHIKV disseminates from the initial 

point of infection in NHPs. From this study, we speculate that CHIKV travels from the arm (the infection 

site) into the draining axillary lymph nodes where it then causes widespread viremia in the blood. Once 

in the blood the virus quickly infects the spleen and heart. Then it establishes infection in the distal joints 

and muscles, their draining lymph nodes as well as the secondary organs like the lungs and kidneys. 

However, animals that received antibody therapy were much more limited in their level of viral 

dissemination to the distal joints, muscles, and secondary organs. The ability to accurately detect 

blockage of viremia, as well as CHIKV dissemination to tissues away from the site of infection in an 

animal model, as was demonstrated in this study, makes rhesus macaques an ideal preclinical model for 

testing therapeutics [63]. 

3. Conclusions 

Experimental infection of cynomolgus or rhesus macaques with CHIKV provide models that 

recapitulate many of the key features of human CHIKV infection. The acute stage of infection in both 

macaque models is characterized by the development of viremia, fever, rash, increase in cytokines and 

chemokines, and leukopenia. CHIKV replicates locally at the site of infection and quickly disseminates 

to tissues where it replicates robustly, especially spleen, muscle, and joints (Table 1). The early 

convalescent stage of infection is marked by a return of leukocyte numbers in the blood to normal, along 

with infiltration of infected macrophages along with virus into lymphoid organs and joints, as shown in 

the cynomolgus macaque infection model. During the convalescent stage of infection, the rhesus 

macaque model was key in defining the kinetics of the adaptive immune response against CHIKV. 

Cynomolgus macaques show viral persistence, which has been the most difficult aspect of CHIKV 

infection to model in small animals. Infectious virus was isolated from infected animals up to 2 months 

post infection in lymphoid organs and liver. In these tissues, CHIKV was detected in activated 

macrophages, providing further insight into the nature of CHIKV persistence [53]. The similarities 

between CHIKV infections of NHPs and humans make NHPs an ideal model to not only study the immune 

response to CHIKV, but also to evaluate the potential of anti-viral treatments and vaccines. 
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