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The birth and decline of disciplines are critical to science and society. How do scientific disciplines emerge?
No quantitative model to date allows us to validate competing theories on the different roles of endogenous
processes, such as social collaborations, and exogenous events, such as scientific discoveries. Here we propose
an agent-based model in which the evolution of disciplines is guided mainly by social interactions among
agents representing scientists. Disciplines emerge from splitting and merging of social communities in a
collaboration network. We find that this social model can account for a number of stylized facts about the
relationships between disciplines, scholars, and publications. These results provide strong quantitative
support for the key role of social interactions in shaping the dynamics of science. While several ‘‘science of
science’’ theories exist, this is the first account for the emergence of disciplines that is validated on the basis of
empirical data.

U
nderstanding the dynamics of science as a human endeavor — the birth, evolution, and decline of
disciplines — is of critical importance for allocating resources and planning toward positive societal
impact. For example, the emergence of new fields such as bioinformatics, nanophysics, quantum com-

puting, and data science promises ‘‘converging technologies’’ with unparalleled potential to influence our lives.
Efforts to describe, explain and predict different aspects of science have intensified in recent years1–3 spanning a
wide range of theoretical, mathematical, statistical and computational approaches. This paper is about modeling
the dynamic evolution of scientific disciplines.

Definitions of scientific discipline encompass complex mixtures of bodies of knowledge, norms, methods, and
organizations. Correspondingly, these shared elements emerge from the collaborations among groups of scholars
in a discipline. What drives the birth of these communities? Quantitative work on modeling the emergence of
disciplines is lacking to date, owing in part to the difficulty of formally defining the notion of scientific field, and
the consequent sparsity of data to inform and validate models. Many theories have been inspired by Kuhn’s
seminal notion of paradigm shifts triggered by unexplained observations4. Some models of science dynamics have
attributed the evolution of fields to branching, caused by growth and new discoveries5,6 or specialization and
fragmentation7. Examples of this kind of branching include nanophysics and molecular biology. Other models
focus on the synthesis of elements of preexisting disciplines8, as in bioinformatics and quantum computing. All of
these models point to the self-organizing development of science exhibiting growth and emergent behavior9–11.

No matter the cause or specific dynamics leading to the birth of a new discipline, such an event is reflected in the
social community of scholars12. New journals emerge, new collaborations are established, and new departments
are created. Some theories emphasize the formation of social groups of scientists as the driving force behind the
evolution of disciplines13–15.

Here we offer a first quantitative model to describe the various dynamics of discipline evolution independently
of their underlying causes. We assume a purely social dynamics of science, without explicit references to exogenous
events such as scientific discoveries, technological advances, and availability of new data or methods. In our
model, agents represent scholars who choose their collaborators, while groups of collaborating scholars represent
scientific disciplines16. The key idea behind our model is that new scientific fields emerge from splitting and
merging of these social communities. Splitting can account for branching mechanisms such as specialization and
fragmentation, while merging can capture the synthesis of new fields from old ones. The birth and evolution of
disciplines is thus guided mainly by the social interactions among scientists.

The proposed approach falls within the class of agent-based models17. While agent-based models have been
used to study science dynamics18–20, the focus was primarily on coauthorship, publication, and citation behavior
rather than the emergence of disciplines. A key advantage of agent-based models is the capability to generate
macroscopic predictions from micro-level mechanisms guiding the behavior of individuals, thus providing
testable hypotheses about the emergence of disciplines. The social model of science proposed here will be
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validated against independent empirical datasets about the relation-
ships between disciplines, scholars, and publications.

Results
The critical assumption of our model is the correspondence between
the social dynamics of scholar communities and the evolution of
scientific disciplines. To illustrate this intuition, let us look at the
coauthorship network for papers published by the American
Physical Society (APS). Using journals as proxies for scholarly com-
munities, we can track the changes in community structure over
time. Fig. 1 plots the modularity21 of the partition induced by the
journals; higher values indicate a more clustered structure (see
Methods). To gauge the significance of the network modularity, we
construct a null model by shuffling the edges of the co-authorship
network in such a way that the degree sequence of the network is
preserved.

We observe noticeable changes in modularity around the intro-
duction of new journals. Some of these changes suggest a scenario in
which a new field emerges (e.g., quantum mechanics in the late
1920’s), and a new journal captures the corresponding scholar com-
munity, leading to an increase in modularity. Interdisciplinary inter-
actions across established areas lead to a decrease in modularity (e.g.,
prior to the introduction of Physical Review E in the 1990’s). Note
that the modularity baseline of the shuffled network is significantly
lower, and does not display clear spikes in proximity of the intro-
duction of new journals. This suggests that the birth of new scholar
communities reflects the introduction of new journals and cannot be
explained solely by the increased number of nodes and edges. An

alternative, suggestive visualization of the emergence of topics can be
obtained by tracking communities over time in the citation net-
work22. These observations motivate the use of community detection
algorithms in a model of discipline evolution.

Model description. In the proposed model, which we call SDS (So-
cial Dynamics of Science), we build a social network of collaborations
whose nodes represent scholars, linked by coauthored papers as
illustrated in Fig. 2(a). Each scholar is represented by a list of disci-
plines indicating the scientific fields they have been working on, and
every discipline has a list of papers. Similarly, each link is represented
by a list of disciplines with associated papers describing the colla-
borations between two scholars. The social network starts with one
scholar writing one paper in one discipline. The network then evolves
as new scholars join, new papers are written, and new disciplines
emerge over time.

At every time step, a new paper is added to the network. Its first
author is chosen uniformly at random, so that every scholar has the
same chance to publish a paper. In modeling the choice of collabora-
tors, we aim to capture a few basic intuitions: (i) scholars who have
collaborated before are likely to do so again; (ii) scholars with com-
mon collaborators are likely to collaborate with each other; (iii) it is
easier to choose collaborators with similar than dissimilar back-
ground; and (iv) scholars with many collaborations have higher
probability to gain additional ones23,24. We model these behaviors
through a biased random walk25, illustrated in Fig. 2(b). The random
walk traverses the collaboration network starting at the node corres-
ponding to the first author. At each step, the walker decides to stop at

Figure 1 | Modularity Q of APS journal-induced scholar communities (solid blue line). For each year t, we build a collaboration network based on the

papers published in the 5-year time interval between t 2 2 and t 1 2. Such a network snapshot consists only of active scholars, who published at least one

paper in that time window. If a scholar published papers in more than one journal, we select the first journal in that period. The grey areas correspond to

the introduction of major new journals. The dashed red line plots the modularity obtained from a shuffled version of the collaboration network that

preserves the degree of every node.

Figure 2 | (a) Illustration of the social network structure. Nodes and edges represent scholars and their collaborations. They are annotated with lists of

(co)authored papers grouped by scientific fields. For example, scholar b has five papers including four in computer science (CS) and one in Math. Papers 1

and 2 are coauthored with a, papers 5 and 6 with c, and paper 5 with d. Paper 4 is authored by b alone. (b) Illustration of the random walk mechanism to

select authors. For the new paper 7, the first author a is chosen randomly and then walks to b and c, stopping at d. These four authors become connected to

each other if they have not collaborated before; for example, new edges connect a to c and d. Paper 7 acquires topics CS, Math and Physics (Phy). The main

(majority) field of the paper, CS, diffuses across the collaborators, including d who joins this discipline as a result.
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the current node i with probability pw, or to move to an adjacent node
with probability 1 – pw. In the latter case a neighbor j is selected
according to the transition probability Pij~wij

�P
k wik where wij is

the weight of the edge connecting scholars i and j, that is, the number
of papers that i and j have coauthored. Each visited node becomes an
additional collaborator. Note that the walk may result in a single
author.

Each paper is characterized by one main topic and possibly addi-
tional, secondary topics. The discipline that is shared by the majority
of authors is selected as the main topic of the paper. Each coauthor
acquires membership in this main topic, to model exposure of scho-
lars to new disciplines through collaboration. Additionally, a paper
with authors from multiple disciplines inherits the union of these
disciplines as topics. This choice is motivated by a desire to capture
highly multidisciplinary efforts that are likely to lead to the emer-
gence of new fields. This mechanism could be modified to reflect a
more conservative notion of discipline by adopting a stricter rule for
discipline inheritance.

At every time step, with probability pn, we also add a new scholar
to the network. The parameter pn regulates the ratio of papers to
scholars. The new scholar is the first author of the paper created at
that time step. To generate other collaborators, an existing scholar is
first selected uniformly at random as the first coauthor. Then the
random walk procedure is followed to pick additional collaborators.
The new scholar acquires the main topic of the paper.

We introduce a novel mechanism to model the evolution of dis-
ciplines by splitting and merging communities in the social collab-
oration network. The idea, motivated by the earlier observations
from the APS data, is that the birth or decline of a discipline should
correspond to an increase in the modularity of the network. Two
such events may occur at each time step with probability pd. The
process is illustrated in Fig. 3.

For a split event we select a random discipline with its collaborator
network and decide whether a new discipline should emerge from a

subset of this community. We partition the collaboration network
into two clusters (see Methods). If the modularity of the partition is
higher than that of the single discipline, there are more collabora-
tions within each cluster than across the two. We then split the
smaller community as a new discipline. For papers labeled with the
discipline corresponding to the smaller community in the split, this
discipline label may be updated; all other labels remain unchanged.
In particular, the papers whose authors are all in the new community
are relabeled to reflect the emergent discipline. Borderline papers
with authors in both old and new disciplines are labeled according
to the discipline of the majority of authors. Some authors may as a
result belong to both old and new discipline.

For a merge event we randomly select two disciplines with at least
one common author. If the modularity obtained by merging the two
groups is higher than that of the partitioned groups, the collabora-
tions across the two communities are stronger than those within each
one. The two are then merged into a single new discipline. In this
case, all the papers in the two old disciplines are relabeled to replace
the old discipline with the new one; other labels of those papers
remains unchanged.

Empirical validation. To evaluate the predictive power of the SDS
model we consider a number of stylized facts, i.e., broad empirical
observations that describe essential characteristics of the dynamic
relationships between disciplines, scholars, and publications. Our
model provides an explanation for the evolution of scientific fields
if it can reproduce these empirical observations. The complex
interactions of a changing group of scientists, their artifacts, and
their disciplinary aggregations can be captured by the broad
empirical distributions of six quantitative descriptors: the number
of authors per paper AP (collaboration size); the number of papers
per scholar PA (scholar productivity); the number of scholars per
discipline AD (discipline popularity); the number of disciplines per
scholar DA (scholar interdisciplinary effort); the number of papers
per discipline PD (discipline productivity); and the number of
disciplines per paper DP (publication breadth).

To validate the SDS model, one would ideally require a single
real-world dataset mapping the three-way relationships between
scholars, publications, and disciplines. Unfortunately, no such
dataset is available to date. One possibility would be to use a
dataset such as those derived from Web of Science or Scopus,
and attempt to infer associations between subjects, papers, and
authors based on the subject categories of the journals in which
the papers are published. However, such an inference approach is
necessarily arbitrary. A less biased validation approach is to trade
off the single dataset in exchange for multiple ones that capture
the desired associations explicitly. We therefore adopt three large
datasets that each map a binary projection of the three-way rela-
tionships: NanoBank26 to validate the relationship between scho-
lars and papers, Scholarometer27 to study the relationship between
scholars and disciplines, and Bibsonomy28 to analyze the relation-
ship between papers and disciplinary topics. The datasets are
described in the Methods section. The parameters pn, pw, and pd

of our model are tuned to fit the quantitative descriptors of each
dataset (see Methods).

Fig. 4 presents a compelling fit between the real data and the
predictions of our model. SDS reproduces the stylized facts about
the relationships between scholars, publications, and disciplines,
characterized by these six distributions.

These results focus on the relationships between disciplines, scho-
lars, and papers, for which there is little prior quantitative analysis.
The collaboration network, on the other hand, has been studied
extensively in the past29,30. As shown in Fig. 5, the SDS model gen-
erates collaboration networks whose long-tailed degree distributions
are consistent with the empirical data, as well as with those in the
literature.

Figure 3 | Discipline evolution. (a) The collaboration network of

discipline D1 is split into two disciplines D2 and D3. The modularity

increases from Q 5 0 to Q 5 0.4. The dashed line indicates the partition of

the network suggested by the community detection algorithm. Some nodes

in the new discipline D3 have also published papers with scholars in D2, and

therefore belong to both disciplines. (b) Two collaboration networks of

disciplines D4 and D5 are merged into new discipline D6. For scholars in

both original disciplines, we pick one based on the number of papers

published in each discipline. The dashed line shows the resulting partition,

with very low modularity Q 5 20.1. The merged community D6 has still

low, but higher mudularity Q 5 0.
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Discussion
The match between the predictions of our model and the empirical
distributions describing the relationships between scholars, publica-
tions, and disciplines (Fig. 4) deserves further discussion. The expo-
nential distribution of AP is captured by the random walk process.
The broad distribution of scholar productivity PA is well accounted
for by the bias in the random walk, which incorporates a kind of
preferential attachment mechanism regulated by prior collabora-
tions. The distributions of discipline popularity AD and productivity
PD also display heavy tails, which cannot be attributed to a specific
mechanism in the model; they emerge from the non-trivial interac-
tions between (i) merging and splitting of the discipline communities
and (ii) knowledge diffusion from the collaborations. The distri-
bution of publication DP shows that there is a continuum in the
breadth of papers, rather than a sharp separation between disciplin-
ary and interdisciplinary work.

The prediction is not as good for DA: our model produces a rela-
tively large number of highly interdisciplinary scholars. One could
correct this effect, for example, by requiring more than one paper in a
discipline as a condition for membership. However, this would
require an additional parameter and thus a more complicated model.

Another possible modification of the model would be to alter the
random walk process with occasional jumps, allowing scholars to go
beyond their close collaborators with a finite probability. Such a
mechanism could facilitate interdisciplinary papers by creating
shortcuts across different fields. While we leave this extension for
future work, we do not expect significant changes in the results as far
as the jumps are not too common, given the small diameter of the co-
authorship network. For high jump probability, the weaker locality
would lead to a more random and therefore inherently less clustered
network. By definition one would still find and possibly split com-
munities, but the resulting clusters would be much less meaningful.

In summary, we introduced an agent-based model to simulate the
evolution of science as a process driven only by social dynamics. Our
model captures for the first time major stylized facts about the com-
plex socio-cognitive interactions of a changing group of scholars,
publications, and scientific communities. The model is relatively
simple when one considers the complexity of the science dynamics
process being studied, yet powerful in its capability to reproduce the
emergence of patterns similar to those observed in three real datasets
about scientific production and fields.

The SDS model provides us with strong quantitative support for
the key role of social dynamics in shaping the birth, evolution, and
decline of scientific disciplines. Future ‘‘science of science’’ studies
will have to gauge the role of scientific discoveries, technological
advances, and other exogenous events in the emergence of new dis-
ciplines against this purely social baseline.

Methods
Modularity. Modularity21 measures the strength of a network partition into clusters
of nodes. It compares the number of edges falling within groups with the expected
number in an equivalent network from a null model with the same degree sequence
but shuffled edges. Larger values indicate stronger community structure. For Fig. 1 we
consider the weighted extension of modularity. Let wij be the weight of an edge
(number of coauthored papers) between nodes i and j, and Wij its expected value. The
weighted modularity is defined as

Q~
1

2m

X

ij

wij{Wij
� �

d gi,gj
� �

ð1Þ

where d(gi, gj) 5 1 if gi 5 gj (i and j are in the same group) and 0 otherwise; m is the
sum of all edge weights in the network. Wij is computed as

Wij~
sisj

2m
ð2Þ

where si is the strength or weighted degree of node i, si~
P

j wij.
When splitting and merging disciplines in the model, we compare the merged and

split partitions and select the option with higher modularity. Although the modularity
measure does not allow to detect very small communities31, the advantages of this
simple and intuitive approach outweigh those of more sophisticated algorithms. In
practice, we use the leading eigenvector method32 based on the (non-weighted)
modularity matrix, as an efficient and effective algorithm to split a collaboration
network into two groups.

Datasets. The APS dataset (Fig. 1) was made available by the American Physical
Society (publish.aps.org/datasets/). We consider the papers appearing in eight
journals during the period of 1913–2000: Physical Review (PR) 1913–1955, Review of
Modern Physics (RMP) 1929–2000, Physical Review Letters (PRL) 1958–2000,
Physical Review A, B, C, D (PRA-D) 1970–2000, and Physical Review E (PRE)
1993–2000.

The SDS model is validated against three datasets:

NanoBank (version Beta 1, released on May 2007)26,33 is a digital library of
bibliographic data on articles, patents and grants related to nanotech-nology.
Articles in NanoBank were selected from the Science Citation Index Expanded,

Figure 4 | Stylized facts characterizing relationships between scholars,
papers, and disciplines. We plot the distributions of (a) authors per paper,

(b) papers per scholar, (c) scholars per discipline, (d) disciplines per

scholar, (e) papers per discipline, and (f) disciplines per paper. Circles

represent the SDS predictions, while other symbols represent the empirical

data from the three datasets. The results of the model are averaged over 10

runs.

Figure 5 | Degree distribution of the collaboration network generated by
the SDS model, compared to the empirical distribution from the
Bibsonomy dataset. A few papers with more than 100 authors were

excluded as they generate an anomaly in the tail; each such paper generates

at least 100 nodes with degree at least 100. A similar match is also observed

for other datasets.
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Social Sciences Citation Index, and Arts and Humanities Citation Index
produced by the Institute for Scientific Information (ISI, now Thomson Reuters).
Unlike most disciplinary datasets that are selected by subject categories of
journals and are therefore rather narrow in their focus, NanoBank was
constructed by selecting articles containing a large number of terms. This resulted
in a database that is very multidisciplinary in nature34, containing articles
belonging to 226 out of 245 ISI JCR subject categories, from humanities and social
science to core nano subjects such as the applied physics and material science. In
that respect the database has enough variety to cover a wide range of authoring
practices, from mostly single-authored papers in humanities and mathematics to
extremely large teams in biosciences and physics, including high-energy physics.
We used this dataset to validate the relationship between authors and papers.

Scholarometer (scholarometer.indiana.edu) is a social tool for scholarly services
developed at Indiana University, with the goal of exploring the crowdsourcing
approach for disciplinary annotations and cross-disciplinary impact metrics35,27.
Users provide discipline annotations (tags) for queried authors, which in turn are
used to compare scholar impact across disciplinary boundaries. The annotations
of an author must include at least one discipline from a predefined list (ISI JCR
subject categories), and may include any additional free-style tags. This accom-
plishes a tradeoff between quality and flexibility of disciplinary annotations. The
data collected by Scholarometer is available via an open API. We use this data to
study the relationship between scholars and disciplines.

Bibsonomy (www.bibsonomy.org) is a system for sharing bookmarks and literature
lists28. Users freely annotate papers with tags, resulting in a folksonomy, or
emergent ontology. To deal with the noise inherent in these annotations, we
removed the tags associated with fewer than 3 papers or more than 6,000 papers,
amounting to 4% of the tags and 2.5% of the annotations. These thresholds were
selected manually to maximize the signal to noise ratio. The data is publicly
available for research purposes. We analyze the relationship between papers and
disciplines from a dataset including data until 2012-01-01.

Model calibration. The SDS model has three parameters. The value of pn is set to the
empirical ratio of scholars to papers. The value of pw is set by matching the expected
length of the random walk to the empirical average number of authors per paper; in
doing so we assume that the random walk does not visit the same node twice. Finally,
pd is the frequency of network split and merge events. Since our different datasets rely
on different notions of disciplines, we explore a range of values for pd and select the
one yielding the best match to the empirical number of disciplines for each dataset.
Note that, even if we used a fixed ontology of disciplines, such as APS PACS or
PubMed MeSH, one could select different granularity levels yielding different
numbers of disciplines; each level of granularity would require a different value of pd.

Table 1 reports the main properties of the three empirical datasets and the model
parameters used to generate predictions from numerical simulations of the model.
For each dataset we run the simulations until the empirical number of papers or

scholars is reached (shown in bold). As shown in Table 2, the SDS model is capable of
approximating the basic statistics of the empirical data.
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