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Mild traumatic brain injury (mTBI) accounts for more than 80% of the total number
of TBI cases. The mechanism of injury for patients with mTBI has a variety of
neuropathological processes. However, the underlying neurophysiological mechanism
of the mTBI is unclear, which affects the early diagnosis, treatment decision-making, and
prognosis evaluation. More and more multimodal magnetic resonance imaging (MRI)
techniques have been applied for the diagnosis of mTBI, such as functional magnetic
resonance imaging (fMRI), arterial spin labeling (ASL) perfusion imaging, susceptibility-
weighted imaging (SWI), and diffusion MRI (dMRI). Various imaging techniques require
to be used in combination with neuroimaging examinations for patients with mTBI.
The understanding of the neuropathological mechanism of mTBI has been improved
based on different angles. In this review, we have summarized the application of
these aforementioned multimodal MRI techniques in mTBI and evaluated its benefits
and drawbacks.

Keywords: mild traumatic brain injury, functional MRI, arterial spin labeling, susceptibility weighted imaging,
diffusion MRI

INTRODUCTION

Mild traumatic brain injury (mTBI) is one of the most common neurological diseases, the incidence
rate in North America and Europe is as high as 600/100,000, and two-thirds of cases occur in men
(Maas et al., 2017; Carroll et al., 2020). mTBI is a serious social and economic challenge because it
may be a risk factor leading to the consequences of cognitive decline, early dementia, and mental
illness (McInnes et al., 2017). According to the American Association of Rehabilitation Medicine,
mTBI is a traumatic physiological interruption of brain function with one or more of the following
symptoms: Post-traumatic amnesia (PTA), loss of consciousness (LOC), neurotic disorder, and
focal neurological deficit occurring after trauma, and the Glasgow Coma Scale (GCS) score was
13–15 within 30 min after trauma (Carroll et al., 2004). From the perspective of diagnosis, the
evaluation of mTBI at present relies heavily on subjective clinical symptom reports (Samuelson
et al., 2020). However, due to the different severity of clinical symptoms of mTBI, these reports are
often unclear. In order to avoid the influence of subjectivity as much as possible, objective auxiliary
inspection is particularly important.

With the development of magnetic resonance imaging (MRI) techniques, several novel
multimodal imaging approaches can clearly show the potential neuropathological changes
of mTBI, such as functional MRI (fMRI), arterial spin labeling (ASL) perfusion imaging,
susceptibility-weighted imaging (SWI), and diffusion MRI (dMRI). These imaging techniques
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can be used to locate the injured brain functional area more
accurately, so as to comprehensively evaluate the severity of
the craniocerebral injury, greatly improve the early diagnosis
accuracy of mTBI, and play a pivotal role in prognosis evaluation
(Lunkova and Guberman, 2021). Nevertheless, these results have
been blended with a more common application and a slower
integration into the clinical setting. This paper has described the
benefits and drawbacks of the aforementioned multimodal MRI
techniques applied in mTBI published in recent years and the
contributions from different angles to a deeper understanding of
the underlying neuropathological mechanisms following mTBI.

METHODS

These studies were searched using the PubMed, with the filters
set to the time period of the past 7 years from the moment
when the paper was written (2015–2022) for task-based fMRI,
for the past 6 years (2016–2022) for resting-state fMRI (rs-fMRI),
and for the past 9 years (2013–2022) for ASL, SWI, and dMRI.
The keywords were used for searching are as follows: “mTBI,”
“fMRI,” “task-based fMRI,” “resting-state fMRI,” “ASL,” “SWI,”
and “dMRI.”

Task-Based Functional Magnetic
Resonance Imaging
Task-based fMRI is based on the blood oxygenation level
dependent (BOLD) method, in which the MRI signal difference
between deoxyhemoglobin and oxygenated hemoglobin is
extracted and monitored by gradient echo (GRE) sequence
(Christen et al., 2013). Task-based fMRI activates the
corresponding brain regions by completing specific experimental
tasks, based on the activation of the neuronal response to
stimulation and the increase of metabolic demand in the
brain area, resulting in the change of local blood flow. These
changes were recorded as BOLD signal changes during scanning.
Brain function was evaluated by detecting and comparing
BOLD signals. Working memory task (N-back), because of
its advantages of easy presentation in the scanner and high
sensitivity to changes in brain activity, has been widely used
in the study of task-based fMRI. Other tasks included spatial
navigation task, flanker task, distracted emotion assessment task,
and visual tracking eye movement test.

In recent research, Hsu et al. (2015) found increased activation
in bilateral frontal and parietal regions in the N-back study
of patients with mTBI. van der Horn et al. (2017) found
reduced neural activity of the medial prefrontal cortex in the
N-back study of patients with mTBI. Moreover, Astafiev et al.
(2015) observed reduced activation of the right anterior internal
capsule and the right upper longitudinal tract in the visual
tracking eye movement test in patients with mTBI. Combined
with other recent similar studies (Saluja et al., 2015; Chen
et al., 2016), it can be inferred that the compensation changes
during task execution may be that some areas of the brain
with increased activation compensate for those damaged areas
showing decreased activation. In addition, it cannot be excluded
that the increased or decreased activity of patients with mTBI

during task execution may also be related to the cognitive
needs of the task.

The dorsolateral prefrontal cortex (DLPFC) is one of the main
components of the working memory network (Barch et al., 2003).
Up to one-third of patients with mTBI demonstrated persistent
cognitive deficits in executive function. Patients with mTBI had
shown prefrontal cortex activity deficits during the performance
of executive tasks that required active information maintenance
and manipulation (Witt et al., 2010). Zhang et al. (2020) found
that the weakening of DLPFC activation was the main brain
region to distinguish patients with mTBI from healthy controls.
Cognitive defects may be related to the weakening of DLPFC
activation, which may be due to the decline in the recruitment
ability of neural networks involved in controlling attention. It was
found that the change in DLPFC activation was related to the
participation of additional parahippocampal areas (Saluja et al.,
2015; Holmes et al., 2019). During spatial working memory, the
hippocampal prefrontal direct afferent pathway plays a key role
in continuous updating of task-related spatial information. We
suggested that the abnormal neural activity of the prefrontal
cortex following mTBI likely influenced more basic, elemental
cognitive processes that can still be thought of as “executive” in
nature, not simply on difficult tasks requiring substantial mental
effort or cognitive control (Witt et al., 2010).

In general, task-based fMRI has been widely used in
patients with mTBI. Although its results are diverse, it has
been proved to be an effective tool for diagnosing mTBI and
predicting prognosis. However, its limitations include complex
procedures and time-consuming, such as task development
and patient training, making it difficult to popularize fMRI in
clinical practice.

Resting-State Functional Magnetic
Resonance Imaging
Similar to task-based fMRI, rs-fMRI examines synchronous
activation between different spatial regions based on the
measurement of BOLD signal fluctuations to identify resting-
state networks (RSNs) (Lv and Wang, 2018). Compared with
task-based fMRI, this method focuses on the activation without
task or stimulation. It is simpler and easier to study the
spontaneous activity of the human brain in the resting state
without the additional cooperation of subjects.

The default mode network (DMN) is one of the main RSNs in
mTBI research. DMN may be related to memory consolidation,
working memory, processing of significant emotional stimuli,
and the interaction between emotional processing and cognitive
function (Mohan et al., 2016). Madhavan et al. (2019) found in
the longitudinal rs-fMRI study of patients with mTBI that when
compared with the healthy control group, the DMN connectivity
in the mTBI group was increased, and the longitudinal functional
connectivity changes constituted a potential biomarker to predict
the recovery curve and clinical outcome of mTBI. Similar results
appeared in the study of van der Horn et al. (2017). However,
in the study of D’Souza et al. (2020) the rs-fMRI results of
the mTBI group within 7 days showed that DMN connectivity
was decreased, suggesting that there was a negative correlation
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between network connectivity and the severity of symptoms
after mTBI. A follow-up study of 6 months after injury showed
that the network connection was increased and the severity
of symptoms after concussion were improved. In addition, in
the study of Zhang et al. (2021) about the effect of frontal
white matter hyperintensities (WMH) on DMN connectivity
after acute mTBI, it was found that frontal WMH volume
was inversely proportional to DMN connectivity and directly
proportional to post-traumatic symptoms, indicating that the
WMH may be an effective biomarker for the diagnosis and
prognosis of acute mTBI.

It should be noted that changes in the interaction between
RSNs after mTBI may lead to a poor long-term prognosis. In the
parallel study of task related network (TRN) and DMN related
to attention activation, the change of interaction between DMN
and TRN may lead to poor long-term memory consolidation
(Lefebvre and D’Angiulli, 2019). In the study of Li et al. (2021)
when compared with mTBI patients without post-traumatic
headache (PTH), mTBI with PTH group showed four altered
interactions, i.e., decreased interactions in salience network (SN)-
sensorimotor network (SMN) and visual network (VN)-DMN
pairs, increased interactions in SN-executive control network
(ECN) and SMN-DMN pairs.

Moreover, mTBI is accompanied by changes in other RSNs,
such as sensory motor, visual, auditory, and dorsal attention
networks (Hou et al., 2019; Madhavan et al., 2019; D’Souza
et al., 2020; Amir et al., 2021). The changes in these networks
are also considered to be related to the manifestations of post-
concussion syndrome (PCS) (Madhavan et al., 2019). Combined
with the mTBI studies using rs-fMRI, there is a positive
correlation between the changes in network connectivity and the
manifestations of various PCSs. The changes in connectivity at
an acute stage after injury are considered to be a predictor of
subsequent cognitive difficulties (Palacios et al., 2017; Churchill
et al., 2018; Li et al., 2019; Lu et al., 2019). In addition,
previous studies used a graph theoretical approach to investigate
alterations in brain network topology based on resting-state
functional connectivity in patents with mTBI (Hou et al., 2019;
Boroda et al., 2021; Sun et al., 2021). Moreover, several studies
suggested that dynamic functional network connectivity (dFNC)
can be used to identify optimal dFNC states for the classification
of mTBI, which has shown potential as an important imaging
modality for the development of mTBI biomarkers (Vergara et al.,
2018; Li et al., 2021; Lu et al., 2022).

Resting-state fMRI study in mTBI shows the functional
changes of the brain after mTBI and may predict the subsequent
changes in cognitive ability. However, the complex post-
processing process is the main factor that the sequence has
not been included in clinical diagnosis. At the same time, the
limitations of this method also include the low repeatability and
specificity for rs-fMRI results.

Arterial Spin Labeling
The cerebrovascular changes caused by mTBI play a critical
role in the evolution of sequelae and brain repair after trauma.
The main mechanism of ASL is the magnetic labeling of water
protons in arterial blood and using them as endogenous tracers.

It is an effective means for the non-invasive quantification of
cerebral blood flow (CBF) (Bambach et al., 2022). ASL can be
divided into two groups: Absolute CBF (aCBF) and relative CBF
(rCBF). The aCBF value corresponds to the perfusion level of
the region of interest (ROI) and is independent of other regions,
while the rCBF value shows the change of ROI relative to other
brain regions. Therefore, rCBF is more sensitive to focal CBF
abnormalities, while aCBF value is specific to the whole brain.

Most mTBI-related studies using ASL found that when
compared with the healthy control group, CBF in patients with
mTBI showed a decrease (Peng et al., 2016; Wang et al., 2016,
2019; Churchill et al., 2017b) and further decrease in the first week
after injury (Wang et al., 2016; Churchill et al., 2017b). Among
them, at 24 h after injury, CBF in the mTBI group was decreased
mainly in the right supplementary motor area (SMA) and pre-
SMA regions (Wang et al., 2016). Within 24–48 h after injury,
the decrease of CBF in the mTBI group was mainly distributed
in the left inferior parietal lobe, the right superior marginal lobe,
the right middle frontal gyrus, the posterior cingulate gyrus,
the left occipital gyrus, and the thalamus (Wang et al., 2019).
In the acute phase (within 72 h) and subacute phase (3 days–
3 weeks), the CBF of the occipital lobe, the parietal lobe, the
central area, the subcutaneous area, and the frontal lobe was
decreased (Peng et al., 2016). Similarly, rCBF was decreased in the
right insula, temporal lobe, and bilateral thalamus 1 month after
injury (Bartnik-Olson et al., 2014; Meier et al., 2015). Moreover,
the results of long-term longitudinal studies in the recovery
period of mTBI also tend to have lower CBF or are statistically
equivalent to the control group within 1 month to 1 year after
injury (Churchill et al., 2019).

On the contrary, some studies showed that CBF was increased
or did not change in patients with mTBI, which is inconsistent
with the above studies. Doshi et al. (2015) found that rCBF
in frontal lobe, occipital lobe, and left striatum was increased
within 10 days after mTBI, but its sample size was small and
its interpretation ability was limited. Stephens et al. (2018)
investigated the adolescent athletes 2–6 weeks after injury. When
compared with the control group, the rCBF of the left dorsal
anterior cingulate cortex (ACC) and left insula was increased after
2 weeks. After 6 weeks, high rCBF was only present in the left
dorsal ACC. One possible explanation may be that patients with
more symptoms will have higher CBF values. Barlow et al. (2017)
observed an overall increase of CBF in symptomatic mTBI and an
overall decrease of CBF in asymptomatic mTBI when compared
with the controls. Churchill’s study showed that for athletes
with concussion, more serious symptoms were associated with
increased CBF in the posterior cortex (Churchill et al., 2017a).

In addition, Peng et al. (2016) found that CBF in the temporal
lobe and the marginal lobe was decreased in the acute and
subacute phases but was recovered in the chronic phase (more
than 3 months). Meier et al. (2015) found in the longitudinal
study of mTBI that CBF in the right insular and upper temporal
cortex was gradually recovered 1 day, 1 week, and 1 month
after injury. Moreover, in athletes with slow recovery, CBF in
the dorsal cortex of the insula was decreased 1 month after
injury and was inversely proportional to the size of the initial
mental symptoms. It is suggested that CBF has the potential
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to predict prognosis as a biomarker. Moreover, relevant studies
have shown that there is a correlation between CBF changes and
cognitive impairment after mTBI. Bai et al. (2019) showed that
the increase of CBF in the posterior parietal cortex (PPC) of men
with mTBI when compared with healthy men can predict the
worse cognitive performance of male patients. The decline of CBF
was associated with lower clinical cognitive assessment scores
24–48 h after injury in athletes with sport-related concussion
(Wang et al., 2019).

However, although most ASL studies try to control the
differences between subjects in data analysis, such as age, gender,
genetics, biomechanics, and predisease psychological function,
which may affect CBF before and after the disease. The impact of
these factors has not been clarified in the existing studies of ASL
on mTBI. Moreover, ASL has the disadvantages of low signal-to-
noise ratio, poor time resolution, and post-labeling delay, which
makes ASL need to be combined with other MRI techniques in
order to reflect a greater value in the clinical diagnosis of mTBI.

Susceptibility-Weighted Imaging
Susceptibility-weighted imaging is a full flow compensated 3D
GRE sequence, which is particularly sensitive to microbleeds,
venous blood, and iron levels (Haller et al., 2021). The main
principle of SWI sequence is to use the magnetism of iron,
especially in different hemoglobin states, to cause magnetic
field distortion, affect T2∗ relaxation time and phase data, and
superimpose the collected and processed phase information on
the amplitude information, to enhance the difference of magnetic
sensitivity between different tissues, and form the final SWI
diagram. Paramagnetic substances (vein, bleeding metabolites,
calcium, and iron deposition, etc.) show the loss of signal of SWI.

Microbleeding is a sign of traumatic axonal injury (TAI) and
one of the main signs of mTBI. Einarsen et al. (2019) detected
TAI lesions on SWI scan at 3 and 12 months after injury in
the mTBI group. Studies have shown that SWI can detect more
microbleeds than CT and conventional MRI (de Haan et al.,
2017) and can show more clearly the boundary and scope of
microbleeds (Tao et al., 2015). Early detection of microbleeds
in mTBI helps to predict prognosis in the presence of PCS
(Beauchamp et al., 2011; Geurts et al., 2012). Studerus-Germann
et al. (2018) found that the presence of acute cerebral tissue
microbleeds detected by SWI was associated with poor cognitive
outcomes and persistent PCS in patients with mTBI. Wang et al.
(2014) compared the difference in microbleeding lesions on SWI
between the depression group and the non-depression group
1 year after mTBI and found that the number and volume of
microbleeding lesions in the depression group were greater than
those in the non-depression group.

Scholars have studied the location of microbleeds in different
brain regions. Wang et al. (2014) found that the difference in
the number and volume of microbleeding lesions was only in
the frontal, parietal, and temporal lobes. In the chronic phase of
mTBI, microbleeds mainly occurred in the frontal and temporal
lobe regions, and the prognosis of poor function was only related
to the number and scope of microbleeds in the temporal cortex
(de Haan et al., 2017). In addition, in the study of evaluating the
changes in brain iron deposition level in patients with chronic

mTBI through SWI, Lu et al. (2015) found that the angular radian
value of the mTBI group (related to excessive iron deposition) was
significantly higher in the head of caudate nucleus, hippocampus,
thalamus, lenticular nucleus, right substantia nigra, red nucleus,
and corpus callosum than other parts and found that the
decline of cognitive ability in patients with mTBI was negatively
correlated with the angular radian value of right substantia nigra.

Due to the biophysical properties of microbleeds, SWI is
less sensitive to hyperacute bleeding (Környei et al., 2021).
SWI showed that the sensitivity of traumatic microbleeds
was positively correlated with the severity of injury (Trifan
et al., 2017), and traumatic microbleeds were not detected in
some mild patients (Toth et al., 2013). In addition, SWI may
overestimate the microbleeding focus due to its high spatial
resolution, and other factors cannot be excluded, such as the
existence of microbleeding focus caused by hypertension and
vascular malformation, and some structures show susceptibility
effects that can simulate microbleeding, such as iron deposition
in the basal ganglia and artifacts at the bone air interface.
Nevertheless, the above studies still show the superiority of
SWI when compared with other techniques in detecting small
bleeding lesions. SWI is a complementary and valuable imaging
technique of mTBI.

Diffusion Magnetic Resonance Imaging
Previous studies have found that mTBI often leads to axonal
shear damage to WM microstructure (Manley and Maas, 2013).
Diffusion tensor imaging (DTI) is a non-invasive magnetic
resonance diffusion imaging technique that is commonly used
to examine the microstructure and pathological changes of
cerebral WM fibers (Assaf and Pasternak, 2008). DTI quantifies
the water diffusion pattern related to brain structure. Based
on the assumption that water molecules follow Gaussian
distribution, the characteristics of proton diffusion are described
by using apparent diffusion coefficient (ADC), mean diffusivity
(MD), and partial fractional anisotropy (FA). The main
quantitative index is FA, and the higher FA value reflects the
diffusion of water molecules along an axis, indicating that
the axons are large in diameter, dense in axons, and high in
myelination. The lower FA value reflects the diffusion of water
molecules in all directions, which may indicate histopathological
changes, such as axonal degeneration, demyelination, and
increased edema.

The acute phase change of DTI index after injury varies greatly
in different studies, and the expression of FA value increase or
FA decrease is different (Yallampalli et al., 2013; Eierud et al.,
2014; Churchill et al., 2017b; Palacios et al., 2020; Kim et al.,
2022). Churchill et al. (2017b) found that when compared with
the control group, the FA value was decreased 1–3 days after
injury and increased 5–7 days after injury. The main change areas
include the left upper radiation crown, corpus callosum, and the
right junction of posterior thalamic radiation. In the study of
Palacios et al. (2020), 2 weeks after injury, the FA of the knee
and body of the corpus callosum, the anterior and posterior limbs
of the internal capsule, the radiation anterior crown, the anterior
radiation of the thalamus, the external capsule, and the cingulate
gyrus in the mTBI group were lower than the healthy controls.
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In the chronic phase after mTBI, most reports believe that FA
values are reduced (Palacios et al., 2020; Oehr et al., 2021;
Stenberg et al., 2021).

In addition, DTI plays a role in predicting cognitive changes
and recovery after mTBI. Veeramuthu et al. (2015) performed
DTI scanning in patients with mTBI at an average of 10 h after
trauma and evaluated their neuropsychological performance at
an average of 4.35 h after the complete recovery of Glasgow Coma
level. It was found that the FA value was negatively correlated
with cognitive task performance in the hyperacute phase. Strauss
et al. (2016) found that the increase of the FA value of the
left frontal lobe and the left temporal lobe was related to the
better performance of attention-related tasks by comparing the
DTI scanning results on the 16th day and 1 year after injury.
Meier et al. (2016) found that the increase in FA in the left
upper longitudinal tract was associated with a longer recovery
time in the post-acute and subacute concussion stage. Prior
studies have demonstrated that patients with mTBI experience
microstructural damages in the long-distance WM connections,
which disrupt the functional connectome of large-scale brain
networks that support cognitive function (Jia et al., 2021; Zhang
et al., 2021; Palacios et al., 2022). Jia et al. (2021) provided
novel evidence for functional and structural alterations of WM
networks in patients with mTBI. Importantly, the convergent
damage of the inferior fronto-occipital fasciculus network might
imply its crucial role in our understanding of the pathophysiology
mechanism of patients with mTBI. Furthermore, a multimodal
MRI strategy was applied to capture dynamic topological features
of both structural and functional connectivity networks, provide
more sensitive detection of altered functional connectivity
networks from its anatomical backbone, and identify novel
biomarkers of mTBI (Wang et al., 2021).

However, the limitations of DTI are also obvious. Traditional
DTI indicators, such as MD and FA, represent the basic statistical
description of diffusion and do not directly correspond to the
biophysical parameters of the underlying tissue. In addition,
DTI relies on the assumption of Gaussian diffusion in a single
microstructure, so it is not sensitive to the complexity of
the WM microstructure. Therefore, although FA can easily
detect WM damage in the context of mTBI, due to its poor
specificity, it cannot be used to distinguish different forms of
WM neuropathology and may lead to conflicting results in
previous DTI studies.

More and more studies are applying novel dMRI methods on
mTBI. Among them, the role of neurite orientation dispersion
and density imaging (NODDI) has been used. NODDI uses the
high-performance magnetic field gradient of an MRI scanner,
which can realize the diffusion weighting factor much higher than
DTI standard, so as to detect the more complex non-Gaussian
characteristics of WM diffusion (Zhang et al., 2012). Palacios
et al. (2020) found that NODDI was more sensitive to WM
microstructure changes caused by mTBI than DTI by comparing
the DTI and NODDI inspection results of long-term longitudinal
WM changes after mTBI. The same comparison was confirmed
in the experiment of Oehr et al. (2021).

CONCLUSION

Taken together, the damage mechanism of patients with mTBI has
a variety of pathological processes. The above methods elaborate
the neuropathological mechanism of mTBI from different angles,
but there is a lack of general neuroimaging diagnostic methods,
indicating that a variety of imaging methods need to be used in
combination with neuroimaging examination for patients with
mTBI. In addition, there exist several problems in previous
studies, such that the sample size of patients with mTBI
is relatively small and the type of mTBI is various due to
different injury mechanisms. Large-scale long-term longitudinal
research is required to draw systematic and standardized research
conclusions to verify the common applicability and practicability
in the clinical settings.
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