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Evaluating the positive and negative outcomes of our behaviour is important for action selection and
learning. Such reinforcement learning has been shown to engage a specific neural circuitry including the
mesencephalic dopamine system and its target areas, the striatum and medial frontal cortex, especially the
anterior cingulate cortex (ACC). An intensively pursued debate regards the prevailing influence of feedback
expectancy and feedback valence on the engagement of these two brain regions in reinforcement learning
and their respective roles are far from being understood. To this end, we used a time estimation task with
three different types of feedback that allows disentangling the effect of feedback valence and expectancy
using functional magnetic resonance imaging (fMRI). Our results show greater ACC activation after
unexpected positive and unexpected negative feedback than after expected feedback and by this sensitivity to
unexpected events in general irrespective of their valence.

M
onitoring and evaluating the consequences of our behaviour is important for learning from past events
and for action selection in an uncertain environment. Crucially, both positive and negative outcomes
(i.e., reward and punishment, respectively) differentially influence our future behaviour. Such reinforce-

ment-guided learning has been shown to engage a specific neural circuitry including the mesencephalic dopamine
system and its prominent target areas, e.g., the striatum and the medial frontal cortex, especially the anterior
cingulate cortex (ACC). The present study was designed to elucidate the specific roles of these brain areas in
feedback processing.

The seminal work by Schultz and colleagues demonstrated that the presentation of an unpredicted reward
elicits a phasic response in mesencephalic dopamine neurons of monkeys. Dopamine neurons also decrease their
firing rate when a stimulus predicts an aversive outcome or when an expected reward is not given1. On the basis of
these results, it was assumed that dopamine neurons code the mismatch between expected and actual reward
outcomes2 and relay this information to target regions in order to drive learning3.

In one of the most influential theories, the reinforcement learning (RL) theory4, the above findings have been
adapted to humans and the mesencephalic dopamine system has been linked to error- and feedback-induced
learning. The RL theory, building on an actor-critic architecture, postulates that the basal ganglia play the role of
an adaptive critic that computes the value of events. Actor functions are carried out at least in part in the dorsal
ACC4. When an event is evaluated as ‘‘worse than expected’’ (as is the case for unexpected negative feedback),
decreased dopaminergic input disinhibits neurons in the ACC and train it to adjust control of the motor system.
The RL theory assumes that undesirable outcomes like negative feedback or reduced reward signal the need to
switch to an alternative response. In contrast, positive outcomes suppress ACC activity by inhibiting ACC
neurons via a phasic increase in dopaminergic activity in the basal ganglia. In both cases, the ACC uses these
signals to select a response that is most successful for the task at hand and by this guides future behaviour based on
experience. Supporting evidence for this view comes from studies showing a greater involvement of the ACC after
negative as compared to positive outcomes, e.g., after negative feedback in a dynamically adaptive motion
prediction task5, during category learning6,7, after negative feedback in a probabilistic learning task8, or after
feedback signalling reduced monetary reward9. Additional evidence comes from event-related potential (ERP)
studies showing that unexpected negative but not unexpected positive feedback elicits the feedback-related
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negativity (FRN)10,11, which is related to learning processes and gen-
erated in the dorsal ACC4,12–16. In accordance with the RL theory,
these results indicate that the ACC plays a crucial role in feedback
processing with undesired, i.e., negative outcomes leading to a
greater involvement of the ACC.

Despite such converging evidence for increased ACC activity
solely to negative feedback in a variety of tasks17, several other studies
have failed to find ACC activity that was specific for negative feed-
back. For instance, Nieuwenhuis and colleagues18 found a large area
in the posterior medial frontal cortex, extending from caudal ACC
into the presupplementary motor area, that was activated to a similar
degree by positive and negative feedback in a time estimation task
(for similar results see19–21). Other studies have observed even greater
ACC activation after positive than after negative feedback22 or after
unexpected rewarding events23. Similarly, several ERP studies
reported FRNs after unexpected positive outcomes24–27. These find-
ings cannot readily be explained by the RL theory. However, the
prediction of response-outcome (PRO) theory28,29 offers an alterna-
tive account to reconcile these apparent inconsistencies. The PRO
theory suggests that the key function of the ACC is predicting the
likely outcomes of actions and signalling unexpected non-occur-
rences of those events. This includes detecting not only unexpected
undesirable outcomes like negative feedback, but also unexpected
desirable or rewarding outcomes. Consistent with this view, resear-
chers found larger ACC activation in imaging studies after low-
frequency, surprising events30,31, signalling the need for increased
control32.

Taken together, the two competing theories make different pre-
dictions regarding the effects of valence (positive vs. negative feed-
back) and unexpectedness of the feedback stimulus on ACC activity.
However, a direct test of these different predictions, i.e., the question
of which of these aspects or maybe even a combination of both is the
determining factor of the involvement of the ACC in feedback pro-
cessing, has received little attention in previous research. In fact, in
studies using learning paradigms (where feedback is behaviourally
relevant) these two critical aspects are typically confounded.
Negative outcomes generally occur unexpectedly, while positive out-
comes can be expected after learning has taken place7,9,33. Hence, it is
conceivable that the ACC is activated not only by negative expect-
ancy violations but by expectancy violations independent of their
valence.

In an earlier ERP study, we applied a time estimation task with
unexpected positive, unexpected negative and expected intermediate

feedback. To disentangle feedback valence and expectancy, feedback
was given via an adaptive mechanism that was tied to participants’
performance. This mechanism ensured that positive and negative
feedback occurred in only 20% of cases, respectively, and thus was
unexpected, while intermediate feedback occurred in most cases
(60%) and therefore was expected. Our results showed that an
FRN (measured by applying a peak-to-peak approach) was elicited
for unexpected feedback irrespective of feedback valence25.
Assuming that the FRN is generated in the ACC12,13,15,16, our data
confirmed the PRO model of ACC function28,29. However, ACC
activation was inferred rather indirectly from scalp recorded ERPs
and conclusions about the underlying brain structures responsible
for specific processes from ERPs are problematic in general.
Therefore, the aim of the present study was to test the different claims
that can be derived from the PRO and RL model and to examine
whether the ACC is differentially activated by positive and negative
feedback by means of functional magnetic resonance imaging
(fMRI). To our knowledge, there is only one fMRI study with the
explicit goal of disentangling the contribution of these factors34. They
encouraged participants to choose a high-probability gamble over a
sure win by manipulating the win value (gamble: 4 cents with a
probability of .8, sure win: 3 cents) and found that feedback indi-
cating losses resulted in greater activity of the ACC than feedback
indicating wins. Crucially, the probability of these two outcomes is
rather unbalanced with losses being very improbable and thus the
result could be equally attributed to the valence and to the unexpect-
edness of losses. Moreover, feedback may play a different role in
gambling than in learning paradigms. In gambling tasks, feedback
expectations are not based on feedback frequency alone (cf. the gam-
blers’ fallacy) and the feedback cannot be utilized to improve per-
formance. Here, valence seems more important as it reports back the
outcome of the current trial. A similar reasoning also holds for other
tasks where feedback is invalid or fictive.

To disentangle the potential roles of feedback valence and expect-
ancy in learning tasks, we used a scanner-adapted version of our
above described time estimation task25 (see Figure 1). By comparing
positive and negative feedback, i.e., both extremes on the valence
dimension that are equally unexpected, we were able to investigate
the effects of feedback valence without the confounding influence of
differences in expectancy. Likewise, combining positive and negative
feedback into a single class of rare events minimizes the influence of
feedback valence when investigating feedback expectancy effects on
brain activation. Moreover, a completely crossed factorial design, as

Figure 1 | (a) Trial procedure for the time estimation task. Participants had to estimate 2500 ms from the offset of the fixation cross and to indicate their

estimate by pressing a response button. Feedback was provided 5000 ms after the offset of the fixation cross for 500 ms. (b) Time estimation

data and adjustment of the inner and outer time windows for one representative subject. The received feedback is represented in the colour bar

(positive 5 grey, negative 5 red, intermediate 5 blue). To keep the rate of positive and negative feedback low and thus unexpected an adaptive procedure

was used to adjust the feedback to the participants’ performance. The inner and outer time windows (indicated by the grey lines) were adjusted

independently of each other whenever negative or positive feedback occurred in less or more than 20% of cases.
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employed in previous studies separating the effects of feedback val-
ence and expectancy34, necessarily requires two different conditions
(one with rare positive and frequent negative outcomes and one with
the opposite frequency assignment) that have to be compared. This is
problematic as participants’ subjective evaluation of a bad outcome
critically depends on the context in which it occurred, i.e., amplitude
differences between equally probable positive and negative feedback
vary depending on whether participants expect to win in the upcom-
ing trials as compared to when they expect to lose35. Consequently, in
paradigms controlling feedback frequency across different blocks
there might still be a residual confound between feedback valence
and subjective expectancy. It should be further noticed that a) unlike
feedback in gambling tasks, positive and negative feedback in our
study are equally salient by virtue of their confirmatory or corrective
nature and are therefore relevant for adequately performing the time
estimations, and b) unlike feedback in probabilistic learning tasks,
the feedback in the present task was always valid since it was specif-
ically tied to the participants’ task performance19. On the basis of our
ERP results, our hypothesis was that the ACC should be more sens-
itive to unexpected events regardless of the feedback’s valence and
thus support the PRO theory.

Results
Behavioural data. The adaptive mechanism succeeded in generating
the intended feedback frequencies: Mean frequencies were 20.81%
(SE 5 .81) for positive, 18.58% (SE 5 .60) for negative and 60.37%
(SE 5 .79) for intermediate feedback. An ANOVA including the

factors Feedback (positive, negative, intermediate) and Block (1st,
2nd, 3rd, and 4th block of the experiment) with feedback frequencies
as dependent variable confirmed that there was a main effect for
Feedback (F(2,32) 5 676.12, p , .001, e 5 .98). As intended,
intermediate feedback was more frequent than the mean of
positive and negative feedback (F(1,16) 5 1123.98, p , .001), and
positive and negative feedback did not differ reliably (p 5 .08).
Feedback frequencies did not vary over experimental blocks
(p 5 .99).

Additionally, mean feedback frequencies over all four blocks of the
experiment and for the first block only were subjected to a x2 test
(a 5 .05, df 5 1) for each individual participant. The results indicated
that the adaptive mechanism succeeded in adequately adjusting the
time windows in all participants since the frequency distributions of
positive and negative feedback did not differ from the intended equal
distribution in any subject (all x2 values #1.81).

To evaluate participants’ performance the deviation of time
estimation error, i.e., the absolute difference between estimated time
and target time, across the four blocks of the experiment were com-
pared. This analysis revealed a significant variance reduction (linear
trend: F(1,16) 5 10.96, p 5 .004) indicating that participant’s time
estimations became less variable with learning.

fMRI data. The first analysis tested the effect of feedback expectancy.
Unexpected feedback elicited greater activity than expected feedback
in the ACC and in the anterior insula bilaterally (see Figure 2 and
Table I for a complete list of activations). To test whether there is a

Figure 2 | Increase in brain activity for unexpected (positive and negative) feedback as compared to expected (intermediate) feedback. The bottom right

corner depicts the mean % signal change of the BOLD response of all activated voxels in the ACC in the three feedback conditions. Whiskers denote

standard errors of the mean.
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significant difference in ACC activity as a function of valence, activity
elicited by unexpected negative and unexpected positive feedback
was extracted from the activated ACC cluster and subjected to a
repeated-measures ANOVA. Crucially, negative and positive
feedback did not differ from each other (p 5 .78; see Figure 2).

Although the adaptive mechanism was used to control for the
frequency of positive and negative feedback, there nevertheless were
some modest individual differences. This variability was used to
additionally analyse the relationship between feedback frequency
(for positive and negative feedback) and ACC activation by means
of a correlation analysis. Corroborating the above results, this cor-
relation analysis revealed that increased activity in the ACC was
associated with less expected feedback, i.e., the mean percent signal
change of all activated voxels in the ACC was negatively correlated
with the mean frequency of positive or negative feedback (r 5 2.32,
p 5 .034, one-tailed; see Figure 3).

The second analysis investigated the effect of feedback valence by
contrasting positive and negative feedback. Areas that were activated
significantly more by positive than negative feedback included bilat-
erally the ventral striatum (more specifically, the head of the caudate
nucleus, nucleus accumbens, and putamen; see Figure 4 and Table I).
Interestingly, for the reversed contrast, i.e., negative . positive, no
significant activations were observed. To further examine the activity
in striatum with respect to effects of feedback expectancy the activity
elicited by expected intermediate feedback was compared to the
activity elicited by rare positive and negative feedback, separately.
This analysis indicated that the striatal activity for intermediate feed-
back was smaller as compared to positive feedback (F(1,16) 5 36.18,
p , .001, g2

p 5 .693) but did not differ from the activity elicited by
negative feedback (p 5 .27). This suggests that there is no effect of
feedback expectancy on striatal activity per se but that this might
depend on the valence of the feedback.

Discussion
The aim of the current study was to examine whether the valence or
the unexpectedness of an event or a combination of both is the
determining factor of ACC involvement in feedback processing in
a task context where feedback is behaviourally relevant. More spe-
cifically, our goal was to investigate ACC activity after unexpected
positive feedback and by this corroborate our previous FRN find-
ings25. For this purpose, we used a time estimation task with three
different types of feedback. Because an adaptive procedure ensured
that positive and negative feedback stimuli were equally rare and thus
unexpected, while intermediate feedback was frequent and therefore
expected, we were able to compare positive and negative feedback
without the confounding influence of expectancy differences.

Examining the activity profile in the ACC as a function of feedback
expectancy, unexpected feedback as compared to expected feedback
was found to elicit greater activity in the ACC irrespective of its
valence. Importantly, both unexpected negative and unexpected pos-
itive feedback differed reliably from expected intermediate feedback
but did not differ from each other. Moreover, ACC was also sensitive
to the size of these expectancy violations as reflected in increased
activity for less expected feedback.

At first glance, our findings are at odds with those of several fMRI
studies showing ACC activation for negative feedback only5,7–9,33 and
ERP studies showing that unexpected negative feedback elicits an
FRN4,13,16. However, the present results are consistent with our pre-
vious ERP findings which demonstrated that a peak-to-peak FRN
can be elicited by unexpected feedback irrespective of feedback val-
ence25,26 (see also24,27). By this, they indicate that the ACC is a likely
generator for the peak-to-peak FRN. Note however, that there is an
ongoing debate on how the FRN should best be measured and that
the method used to quantify the FRN may have consequences for the
results obtained and the conclusions drawn (for a detailed discussion
see36). The present results are also well in line with other recent
studies demonstrating indistinguishable ACC activity to positive
and negative feedback in variants of a time estimation task18–20, but
also in a task switching paradigm21, in a probabilistic Pavlovian con-
ditioning procedure37, and in a problem solving task23. For example,
participants in the study by Amiez and colleagues23 had to choose the
reward stimulus out of four alternative choices. Greater activity in the
ACC was found after unexpected positive and negative feedback as
compared to expected positive feedback. Crucially, both types of
unexpected feedback were signalling participants to either change
their response (negative feedback in the exploration phase) or their
response strategy (first positive feedback in the exploration phase). In
addition, our findings fit in nicely with single cell recordings in
monkeys revealing that separate populations of neurons within the
same region of the ACC code positive and negative expectancy viola-
tions, respectively. One study38, for instance, found that macaque
ACC sulcal neurons respond after the omission of an expected
reward and that a similar number of ACC sulcal neurons also
respond to the delivery of positive reinforcers (see also39).

The present results might help to reconcile the apparent incon-
sistencies in previous results by taking into account the co-variation

Table I | Brain areas that exhibit a significant larger BOLD signal for unexpected than for expected feedback and for positive than for
negative feedback. Talairach coordinates, t- and p-values are given for the peak activity

Effect of Region Brodmann Area

Talairach coordinates

t-value p-value Number of Voxelsx y z

Expectancy ACC BA 32 1 20 43 9.28 1 e27 497
Right Insula BA 13 33 24 6 10.89 1 e27 2164
Left Insula BA 13 232 18 9 9.78 1 e27 531

Valence Right Ventral Striatum 9 5 1 5.51 1 e26 376
Left Ventral Striatum 218 5 21 6.01 1 e26 848

Figure 3 | Correlation between the percent signal change in the ACC for
positive and negative feedback and the mean frequency of positive and
negative feedback.
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of feedback valence and expectancy, a so far neglected problem in
research on reinforcement learning. In the study by Daniel and
Pollmann7, for instance, participants were trained to a criterion of
80% correct answers prior to scanning, thus positive and negative
feedback were probably not equally unexpected. Rather, participants
were likely to expect positive feedback in the actual experiment,
whereas at the same time negative feedback was more unexpected.
Similarly, in most of the learning studies mentioned above negative
outcomes become increasingly unexpected while positive outcomes
are more and more expected with learning. Consequently, these
particular learning paradigms render it difficult to find ACC activa-
tion in response to a positive expectancy violation.

The present results suggest a similar involvement of the ACC in
processing unexpected positive and negative outcomes of actions
when both carry information that is behaviourally relevant. Rather
than assuming that the ACC predicts both outcomes separately, the
most parsimonious explanation for this finding is that during per-
formance monitoring, the likely outcomes of actions are predicted,
and that the key function of the ACC is to signal unexpected non-
occurrences of those outcomes irrespective of their valence as sug-
gested by the PRO model28. In the context of the present study, this
would mean that the ACC is activated by the unexpected non-
occurrence of intermediate feedback rather than the unexpected
occurrence of the alternative outcomes, i.e., positive and negative
feedback. Note however, that the present design cannot distinguish
between these two cases. Since our results show that when the task

characteristics are optimal, similar responses to positive and negative
expectancy violations can be found in the ACC and thus, that the
influence of expectancy violation can override the role of valence, we
propose that the relative contribution of valence and expectancy to
ACC involvement might depend on the respective task requirements:
Tasks involving behaviourally irrelevant feedback (like gambling
tasks) or with partly invalid feedback (like probabilistic learning
tasks) put an emphasis on feedback valence (i.e., a difference between
positive and negative feedback) while learning tasks that involve
reliable and behaviourally relevant feedback emphasize the contri-
bution of feedback expectancy. Although expectancy is the most
parsimonious explanation of our data, we cannot exclude other
explanations. According to recent studies37, proposing that the
ACC is part of a brain network processing saliency, positive and
negative feedback should activate the ACC in a similar manner
because both are motivationally salient events. It is, thus, conceivable
that positive and negative feedback in our study in addition to being
unexpected can be regarded as salient because they carry possibly
task relevant information. In addition, the hierarchical reinforce-
ment learning (HRL) framework40 assumes that the ACC is respons-
ible for option selection and maintenance. In line with this model,
positive and negative rather than the intermediate feedback should
inform the selection and maintenance function of the ACC in order
to carry out the time estimation task at a high performance level. By
this, positive and negative feedback are behaviourally relevant to a
similar degree and should lead to a uniform ACC activation.

Figure 4 | Increase in brain activity for positive as compared to negative feedback. The bottom right corner depicts the mean % signal change of the

BOLD response of all activated voxels in the left (dark bars) and the right (brighter bars) ventral striatum in the three feedback conditions. Note

that the relative activation in the left and right hemisphere was quite similar. Whiskers denote standard errors of the mean.
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Although our data are consistent with both views further research is
required to directly test these alternative accounts.

Another brain region, showing greater activity for unexpected
positive and negative feedback than expected intermediate feedback
was the anterior insula, bilaterally. Although the insula consistently
shows up in studies on reward and feedback processing during mul-
tiple tasks, it did not get as much attention in this context as other
brain areas. Together with ACC activation, anterior insula activation
was found to be larger during the processing of negative than positive
feedback in learning tasks5,7 and larger for loss than gain feedback in a
gambling task34. Daniel and Pollmann7 also found that activity in the
insula was larger for negative than positive feedback, however, they
additionally found activation of the anterior insula when contrasting
the receipt of positive as well as negative feedback with fixation which
suggests that insula activation can in principle also be found after
positive outcomes. This is in line with Critchley’s view41, who sug-
gested that in contrast to the ACC, which is implicated in generating
autonomic changes, the insula is specialized in mapping visceral
responses and by this influences subjective feeling states in response
to arousing events. In this context, it has to be mentioned that in our
study design, positive as well as negative feedback can, in principle, be
regarded as more arousing than intermediate feedback because
arousal is coupled to the valence of a (feedback) stimulus. For this
reason, we cannot exclude the possibility that arousal might be an
explanation for our present ACC findings. However, we consider this
explanation as rather unlikely because arousal cannot explain earlier
findings showing greater activity in the ACC to negative as compared
to positive feedback despite rather minimal differences in
arousal5,7–9,33 and therefore it seems plausible that ACC is more sens-
itive to expectancy per se.

In stark contrast to the activation patterns in the ACC and insula
that did not distinguish between unexpected positive and negative
feedback, the ventral striatum did show an effect of feedback valence
in line with the predictions of the RL theory4. More specifically, the
head of the caudate nucleus and the putamen were significantly more
activated by positive than negative or intermediate feedback.
Interestingly, no significant activations were observed for the
reversed contrast. The striatum, like the ACC, is also a target area
of the mesencephalic dopamine system and has been shown to be
involved in a variety of tasks related to reward processing7,42–46.
Crucially, most of these studies reported increased activity in the
striatum related to the unexpected delivery of a reward47–49 and
decreases in activity for unexpected negative outcomes like reward
omission48. Other neuroimaging studies have implicated the striatum
in feedback learning differentiating between positive and negative
feedback5,50–54.

In light of these findings, the pattern of striatal activity observed in
the present study could be interpreted in terms of the special role of
the striatum in sustaining the rewarded action. It is conceivable that
the ventral striatum evaluates the positive outcome to boost the
immediate action that led to this positive outcome. This view is
supported by recent findings demonstrating that striatal activity to
positive feedback is dependent upon the action that led to this feed-
back55. Only when the reward required a specific action from their
participants (but not when it was delivered without any action), the
ventral striatum was active. The dependency upon an action leading
to positive outcome might also explain the identical activity for inter-
mediate and negative feedback observed in the present study as both
feedback types similarly indicate a need for response adjustment.
Unlike in tasks using only two response options (i.e., where the
correct response can also be inferred from negative feedback), in
the present task the three feedback types were largely independent
of each other and participants received intermediate or negative
feedback when they responded too fast or too slow. Consequently,
the correct response is much more difficult to infer from these two
types of feedback than from positive feedback which simply required

repeating this particular response. In other words, in the present task
positive feedback is of greater utility to the ‘critic’ function of the
ventral striatum to guide future behaviour because it implies a spe-
cific action. In contrast, negative and intermediate feedback only
indicates that the behaviour should be changed, while the specific
action that would lead to success is less clear. However, this idea
needs to be directly tested in future research.

A methodological issue that needs to be mentioned is that studies
examining the neuronal basis of time estimation have shown activity
in a distributed network which is partially overlapping with the one
responsible for feedback processing56. Consequently, it is important
to try to disentangle the activations related to the respective proces-
sing. In the present study, we did so by including the actual estima-
tion time as a predictor of no interest in our analyses and by
presenting feedback stimuli always 5 s after the start of the time
estimation so that the estimation process should already be finished
for some time by the time we measure brain activation related to
feedback presentation (except for some rare cases of extreme over-
estimation). Thus, although we think that the influence of activation
related to time estimation is low in the present data, the found pat-
tern of results should be replicated in the future with other experi-
mental tasks that are not dependent on time estimation.

Taken together, the present results illustrate a network of brain
structures differentially contributing to feedback processing during
learning. The functional role of the ACC in this network seems to be
the processing of unexpected non-occurrences of events irrespective
of the valence of the alternative event, as proposed by the PRO
model28,29. The striatum, on the other hand, was differentially acti-
vated by positive and negative feedback as proposed by the RL the-
ory4, and seems to be selectively associated with behaviourally
relevant positive events. By this, both structures contribute differ-
entially to a complex process of feedback-related behavioural adapta-
tion with their specific engagement depending on the current task
demands.

Methods
Participants. Twenty volunteers without any psychiatric, neurological, or medical
illness participated in the experiment. The study was approved by the local ethics
committee and was in accordance with the ethical guidelines of the Declaration of
Helsinki. All participants but one were right-handed and all had normal or corrected-
to-normal vision. All signed informed consent before the experiment and were paid
25 J.

One participant had to be excluded from all analyses because of an equipment
malfunction. Two further participants were excluded from the data analyses because
they systematically produced underestimations of the target time with their mean
estimation errors being larger than two standard deviations of the mean sample error.
These participants were excluded because it is not clear whether they actually per-
formed the time estimation task correctly. Consequently, all analyses were based on
the data of 17 participants (7 female/10 male, aged 19–31 years, mean age 5 23.4
years).

Task, stimuli, and procedure. After participants filled out a short demographic
questionnaire, they performed the time estimation task (adapted from25). The task
started with a fixation cross which was presented for 250 ms, 500 ms, 750 ms, or
1000 ms. Participants were instructed to press a response button 2.5 seconds after the
cross vanished from the screen. Five seconds after the fixation cross disappeared, they
received positive (‘‘excellent’’), negative (‘‘bad’’), or intermediate (‘‘ok’’) feedback
about their estimation accuracy in form of a yellow, purple, or blue rectangle (see
Figure 1a). To avoid differences in perceptual processing between the feedback
conditions, we used simple coloured rectangles as feedback stimuli. The assignment
of colours to the type of feedback was counterbalanced across subjects. In order to
prevent mere rhythmic responses variable presentation times were used for the
fixation cross (see above) and for the inter-trial interval (ITI). The ITI varied between
2–11 s (mean 5 4 s) in steps of 1 s and followed an exponential distribution in order
to get an optimal trade-off between detectability and estimation efficiency of the
BOLD response57,58. Participants completed 20 practice trials and 240 experimental
trials, i.e., four blocks of 60 trials each separated by a short self-paced break.

To keep the rate of positive and negative feedback low (at about 20%, respectively)
and thus unexpected, and the rate of intermediate feedback high (at about 60%) and
therefore expected, an adaptive procedure was used to adjust the feedback to the
participants’ estimation performance (for a detailed description of this procedure
see25). In the first 20 trials, positive feedback was given if the participant’s response
occurred within a 6100 ms time window around the target time (2.5 s), negative
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feedback was given if the response was outside a 6500 ms time window. For all other
responses intermediate feedback was given. In the following, the inner time windows
were adjusted every 20 trials whenever positive feedback occurred in less (more) than
20% of the last 20 trials and overall by symmetrically increasing (decreasing) the time
window by 30 ms. Outer time windows were adjusted likewise for negative feedback
by adding or subtracting 150 ms (see Figure 1b for an example).

To get used to the task, participants completed 20 practice trials in which they got
the feedback ‘‘faster’’ or ‘‘slower’’. This feedback was given to avoid expectancy
formation during practice concerning the positive, negative, and intermediate feed-
back that was used in the experiment. In these practice trials the adaptive mechanism
was already at work so that the experiment could start with already adjusted time
windows. After practice, subjects were told that they would receive ‘‘excellent’’
feedback when their time estimation had been very close to 2.5 s and ‘‘bad’’ feedback
when their button press was very late or very early and thus far away from 2.5 s. It was
also explained to them that they would probably receive the intermediate ‘‘ok’’
feedback most of the time because this type of feedback is easiest to get. They were also
told that they should try to get positive feedback as often as possible and avoid
negative feedback. Additionally, to prevent participants from getting the impression
that the feedback was not valid because the adaptive mechanism could change the
time windows according to participants’ performance over the course of the experi-
ment, they were told that they would play against the computer, which would try to
make the task more difficult for them when they succeeded too often.

fMRI acquisition. Structural and functional brain imaging was performed on a 3
Tesla Siemens Skyra scanner. A T1 weighted 3D whole brain scan was performed for
anatomical co-registration (MP-Rage sequence: TR 5 1900 ms, TE 5 4 ms, flip angle
5 15u, FOV 5 256 mm, 192 sagittal slices). During functional imaging, 28 axial slices
(3 mm thickness, .75 mm inter-slice distance, FOV 5 192 mm, 94 3 94 data
acquisition matrix) were acquired with a T2* weighted blood-oxygenation-level
dependent (BOLD) sensitive gradient echo planar sequence (TR 5 2000 ms, TE 5

30 ms, inter slice time 71 ms, flip angle 5 90u). A total of 325 functional volumes were
acquired during each experimental block.

Statistical analyses of behavioural data. Statistical analyses of behavioural data
included mean numbers of feedback frequencies and variance of time estimation
errors, timeout trials were excluded. Behavioural data were analysed using repeated
measures analyses of variance (ANOVAs) with an alpha level of .05. The Greenhouse-
Geisser correction for non-sphericity was applied whenever appropriate and epsilon-
corrected p-values are reported together with uncorrected degrees of freedom and
Greenhouse-Geisser epsilon values. Additionally, to ensure that the above reported
frequencies were actually due to an equal distribution of positive and negative
feedback in each subject, mean feedback frequencies over all four blocks of the
experiment and for the first block only were subjected to a x2 test (a 5 .05, df 5 2) for
each individual participant. For this assessment, we used the first block of the
experiment in addition to the overall mean because the beginning of the experiment
should be most critical for expectancy formation.

Analyses of fMRI data. Analyses of fMRI data were carried out using the
BrainVoyager software package (Brain Innovation B.V., Maastricht, The
Netherlands). The first 4 volumes of each experimental block were discarded to allow
for T1 equilibration. The remaining volumes were pre-processed using the standard
routines as implemented in BrainVoyager. First, to correct for the sequentially
executed interleaved slice acquisition a slice scan time correction was performed
using sinc interpolation. Next, a correction of 3D motion (sinc interpolation) was
performed to spatially align functional volumes of all four blocks to the first acquired
volume of the first block. An isotropic spatial Gaussian filter (FWHM 5 6 mm) was
then applied to the data. The data were high-pass filtered at 3 cycles per block to
account for low frequency signal changes and baseline drifts. Functional slices were
then co-registered to the high-resolution whole-brain anatomical scans obtained in
the beginning of the session, and were subsequently spatially transformed into
stereotactic Talairach space59 and re-sampled to a spatial resolution of 2 3 2 3 2 mm.

All blocks from each individual were analysed together using random effects
multisubjects general linear model (GLM). The three feedback types (i.e., positive,
intermediate, and negative feedback) were modelled as separate events with a dura-
tion of .5 s each for each participant. In addition, the fixation cross (duration mod-
elled according to the respective presentation time) and the estimation time
(modelled as an event of the projected estimation time of 2.5 s) as well as motion
parameters were added as predictors of no interest to the design matrix of each block.
Predictor time courses were adjusted for the hemodynamic response delay by con-
volution with a double-gamma hemodynamic response function (onset: 0 s, time to
response peak: 5 s, time to undershoot peak: 15 s)60. In a first analysis, contrasts tested
for differential BOLD-response as a function of feedback expectancy, i.e. positive and
negative feedback against intermediate feedback. The valence effect was estimated in a
second analysis by contrasting positive against negative feedback. Results are reported
at thresholds of voxel level p , .00001, cluster level p , .05 FDR (false discovery rate)
corrected.
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22. Van der Veen, F. M., Röder, C. H., Mies, G. W., van der Lugt, A. & Smits, M.
Remedial action and feedback processing in a time-estimation task: Evidence for a
role of the rostral cingulate zone in behavioral adjustments without learning.
NeuroImage 54, 447–454 (2011).

23. Amiez, C., Sallet, J., Procyk, E. & Petrides, M. Modulation of feedback related
activity in the rostral anterior cingulate cortex during trial and error exploration.
NeuroImage 63, 1078–1090 (2012).

24. Donkers, F. C. L., Nieuwenhuis, S. & van Boxtel, G. J. M. Mediofrontal negativities
in the absence of responding. Cog Brain Resarch 25, 777–787 (2005).

25. Ferdinand, N. K., Mecklinger, A., Kray, J. & Gehring, W. J. The processing of
unexpected positive response outcomes in the mediofrontal cortex. J Neurosci 32,
12087–12092 (2012).

26. Ferdinand, N. K. & Kray, J. Age-related changes in processing positive and
negative feedback: Is there a positivity effect for older adults? Biol Psychol 94,
235–241 (2013).

27. Oliveira, F. T., McDonald, J. J. & Goodman, D. Performance monitoring in the
anterior cingulate is not all error not all error related: expectancy deviation and the
representation of action-outcome associations. J Cogn Neurosci 19, 1994–2004
(2007).

28. Alexander, W. H. & Brown, J. W. Computational models of performance
monitoring and cognitive control. Top Cogn Sci 2, 658–677 (2010).

29. Alexander, W. H. & Brown, J. W. Medial prefrontal cortex as an action-outcome
predictor. Nat Neurosci 14, 2338–1344 (2011).

30. Braver, T. S., Barch, D. M., Gray, J. R., Molfese, D. L. & Snyder, A. Anterior
cingulate cortex and response conflict: Effects of frequency, inhibition and errors.
Cereb Cortex 11, 825–836 (2001).

31. Wessel, J., Danielmeier, C., Morton, J. B. & Ullsperger, M. Surprise and Error:
Common neuronal architecture for the processing of errors and novelty.
J Neurosci 32, 7528–7537 (2012).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5986 | DOI: 10.1038/srep05986 7



32. Aarts, E., Roelofs, A. & van Turennout, M. Anticipatory activity in anterior
cingulate cortex can be independent of conflict and error likelihood. J Neurosci 28,
4671–4678 (2008).

33. Monchi, O., Petrides, M., Petre, V., Worsley, K. & Dagher, A. Wisconsin card
sorting revisited: Distinct neural circuits participating in different stages of the
task identified by event-related functional magnetic resonance imaging.
J Neurosci 21, 7733–7741 (2001).

34. Jessup, R. K., Busemeyer, J. R. & Brown, J. W. Error effects in anterior cingulate
cortex reverse when error likelihood is high. J Neurosci 30, 3467–3472 (2010).

35. Mushtaq, F., Stoet, G., Bland, A. R. & Schaefer, A. Relative changes from prior
reward contingencies can constrain brain correlates of outcome monitoring.
PLOS One 8(6), e66350 (2013).

36. San Martin, R. Event-related potential studies of outcome processing and
feedback-guided learning. Front Hum Neurosci 6, 304 (2012).

37. Metereau, E. & Dreher, J. Cerebral correlates of salient prediction error for
different rewards and punishments. Cereb Cortex 23, 477–487 (2013).

38. Ito, S., Stuphorn, V., Brown, J. W. & Schall, J. D. Performance monitoring by the
anterior cingulated cortex during saccade countermanding. Science 302, 120–122
(2003).

39. Sallet, J. et al. Expectations, gains, and losses in the anterior cingulate cortex. Cogn
Affect Behav Neurosci 7, 327–336 (2007).

40. Holroyd, C. B. & Yeung, N. Motivation of extended behaviors by anterior
cingulate cortex. Trends Cogn Sci 16, 122–128 (2012).

41. Critchley, H. D. Neural mechanisms of autonomic, affective, and cognitive
integration. J Comp Neurol 493,154–166 (2005).

42. Aron, A. R. et al. Human midbrain sensitivity to cognitive feedback and
uncertainty during classification learning. J Neurophysiol 92, 1144–1152 (2004).

43. Delgado, M. R., Miller, M. M., Inati, S. & Phelps, E. A. An fMRI study of reward-
related probability learning. NeuroImage 24, 862–873 (2005).

44. Knutson, B., Adams, C. M., Fong, G. W. & Hommer, D. Anticipation of increasing
monetary reward selectively recruits nucleus accumbens. J Neurosci 21, RC159
(2001).

45. Knutson, B., Westdorp, W., Kaiser, E. & Hommer, D. FMRI visualitation of brain
activity during a monetary incentive delay task. NeuroImage 12, 20–27 (2000).

46. O’Doherty, J. P., Deichmann, R., Critchley, H. D. & Dolan, R. J. Neural responses
during anticipation of a primary taste reward. Neuron 33, 815–826 (2002).

47. Berns, G. S., McClure, S. M., Pagnoni, G. & Montague, P. R. Predictability
modulates human brain response to reward. J Neurosci 21, 2793–2798 (2001).

48. McClure, S. M., Berns, G. S. & Montague, P. R. Temporal prediction errors in a
passive learning task activate human striatum. Neuron 38, 339–346 (2003).

49. Pagnoni, G., Zink, C. F., Montague, P. R. & Berns, G. S. Activity in human ventral
striatum locked to errors of reward prediction. Nat Neurosci 5, 97–98 (2002).

50. Haruno, M. & Kawato, M. Different neural correlates of reward expectation and
reward expectation error in the putamen and caudate nucleus during stimulus-
action-reward association learning. J Neurophysiol 95, 948–959 (2006).

51. Kahnt, T. et al. Dorsal striatal-midbrain connectivity in humans predicts how
reinforcements are used to guide decisions. J Cogn Neurosci 21, 1332–1345 (2009).

52. Poldrack, R. A. et al. Interactive memory systems in the human brain. Nature 414,
546–550 (2001).

53. Koch, K. et al. The neural correlates of reward-related trial-and-error learning: An
fMRI study with a probabilistic learning task. Learn Mem 15, 728–732 (2011).

54. Becker, M. P. I., Nitsch, A. M., Miltner, W. H. R. & Straube, T. A single-trial
estimation of the feedback-related negativity and its relation to BOLD responses
in a time-estimation task. J Neurosci 34, 3005–3012 (2014).

55. Zink, C. F., Pagnoni, G., Martin-Skurski, M. E., Chappelow, J. C. & Berns, G. S.
Human striatal responses to monetary reward depend on saliency. Neuron 42,
509–517 (2004).

56. Pouthas, V. et al. Neural Network Involved in Time Perception: An fMRI Study
Comparing Long and Short Interval Estimation. Hum Brain Mapp 25, 433–441
(2005).

57. Hagberg, G. E., Zito, G., Patria, F. & Sanes, J. N. Improved detection of event-
related functional MRI signals using probability functions. NeuroImage 14,
1193–1205 (2001).

58. Birn, R. M., Cox, R. W. & Bandettini, P. A. Detection versus estimation in event-
related fMRI: choosing the optimal stimulus timing. NeuroImage 15, 252–264
(2002).

59. Talairach, J. & Tournoux, P. Co-planar stereotaxic atlas of the human brain: 3-
dimensional proportional system: an approach to cerebral imaging. Stuttgart:
Thieme (1988).

60. Friston, K. J. et al. Event-related fMRI: characterizing differential responses.
NeuroImage 7, 30–40 (1998).

Acknowledgments
This work was supported by the German Research Foundation (Grant FE 1247/2-1) and
Saarland University start-up financing to NF. We thank Julia Schuler for help with data
collection.

Author contributions
N.F. and B.O. designed the experiment, analysed the data, and wrote the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Ferdinand, N.K. & Opitz, B. Different aspects of performance
feedback engage different brain areas: Disentangling valence and expectancy in feedback
processing. Sci. Rep. 4, 5986; DOI:10.1038/srep05986 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International License. The images or other third party material in
this article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative
Commons license, users will need to obtain permission from the license holder
in order to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5986 | DOI: 10.1038/srep05986 8

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Title
	Figure 1 
	Figure 2 Increase in brain activity for unexpected (positive and negative) feedback as compared to expected (intermediate) feedback.
	Table I Brain areas that exhibit a significant larger BOLD signal for unexpected than for expected feedback and for positive than for negative feedback. Talairach coordinates, t- and p-values are given for the peak activity
	Figure 3 Correlation between the percent signal change in the ACC for positive and negative feedback and the mean frequency of positive and negative feedback.
	Figure 4 Increase in brain activity for positive as compared to negative feedback.
	References

