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Abstract: Reverse transcriptase hTERT is essential to telomerase function in stem cells, as well
as in 85–90% of human cancers. Its high expression in stem cells or cancer cells has made telom-
erase/hTERT an attractive therapeutic target for anti-aging and anti-tumor applications. In this
study, we screened a natural product library containing 800 compounds using an endogenous hTERT
reporter. Eight candidates have been identified, in which sanguinarine chloride (SC) and brazilin
(Braz) were selected due to their leading inhibition. SC could induce an acute and strong suppressive
effect on the expression of hTERT and telomerase activity in multiple cancer cells, whereas Braz
selectively inhibited telomerase in certain types of cancer cells. Remarkably, SC long-term treatment
could cause telomere attrition and cell growth retardation, which lead to senescence features in cancer
cells, such as the accumulation of senescence-associated β-galactosidase (SA-β-gal)-positive cells, the
upregulation of p16/p21/p53 pathways and telomere dysfunction-induced foci (TIFs). Additionally,
SC exhibited excellent capabilities of anti-tumorigenesis, both in vitro and in vivo. In the mechanism,
the compound down-regulated several active transcription factors including p65, a subunit of NF-κB
complex, and reintroducing p65 could alleviate its suppression of the hTERT/telomerase. Moreover,
SC could directly bind hTERT and inhibit telomerase activity in vitro. In conclusion, we identified that
SC not only down-regulates the hTERT gene’s expression, but also directly affects telomerase/hTERT.
The dual function makes this compound an attractive drug candidate for anti-tumor therapy.

Keywords: telomerase/hTERT; anti-cancer; sanguinarine chloride; cellular senescence

1. Introduction

Telomeres are continuously shortened during the process of DNA replication as DNA
polymerase cannot synthesize chromosomal end sequences [1]. Mammalian telomeric
DNA consists of TTAGGG hexanucleotide tandem DNA repeats forming loop structures,
with the interactions of specialized telosome/shelterin proteins [2,3]. In order to maintain
the genomic stability and protect cells from senescence, shortened telomeres could be
elongated by two mechanisms: in a telomerase-dependent manner in most pluripotent
stem cells and cancer cells, or the alternative lengthening of telomeres (ALT) in 10–15%
cancer cells [4].

Human telomerase ribonucleoprotein contains the catalytic reverse transcriptase hTERT
and RNA template hTERC associated with the accessory H/ACA proteins [5]. hTERT is
highly conserved among species. Human TERT is composed of four main domains [6]. The
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N-terminal extension (TEN) domain is connected with the 5′-terminal of the telomerase
RNA-binding domain (TRBD) by a short linker sequence. The central reverse transcriptase
(RT) domain and the C-terminal extension (CTE) domain make up a right-hand structure
containing palm-, finger- and thumb-like subdomains. Together, the sequential TRBD-RT-
CTE domains form a ring-like structure for telomere repeat addition [6].

Telomerase activity is strictly modulated at multiple levels, including the expres-
sion of telomerase subunits, the process of holoenzyme assembly and its recruitment to
telomeres [7]. Compared with the ubiquitously expressed hTERC in cells, the restrictively
expressed protein hTERT is the major limiting factor of telomerase activity regulation [8].
Suppressing telomerase activity by decreasing hTERT protein blocks telomere extension.
Very short telomeres could trigger telomere dysfunction and induce a DNA damage re-
sponse and cell senescence. Except for its involvement in telomeres elongation, hTERT
turned out to participate in many non-telomeric biological events; for instance, the expres-
sional regulation of aging-related genes or oncogenes [9]. Interestingly, c-myc can bind to
the E-box motif in the hTERT promoter region to activate its transcription [10], while hTERT
is also able to stabilize c-myc protein and modulates its binding to target promoters [11].
NF-κB p65 has been reported to modulate telomerase expression [12], and also mediate
the nuclear translocation of the hTERT protein from cytoplasm via TNF-α in the cancer
cell line [13].

In most cancer cells, stem/progenitor cells and certain somatic cells in special physio-
logical states, such as activated T cells, hTERT is expressed to activate telomerase, making
it attractive as a therapeutic target for cancer [14,15]. Imetelstat, also known as GRN163L,
is chemically modified oligonucleotide, which can silence the telomerase assembly pro-
cess [16]. BIBR1532 has been identified as a selective telomerase inhibitor that tightly
binds to the FVYL motif near TRBD and can result in an impediment to the interaction of
hTERT TRBD with the CR4/5 stem loop of telomerase RNA [17]. Yet, like most quinoline
derivatives, BIBR1532 exhibits a certain degree of cytotoxicity, and causes apoptosis and
senescence in high doses over 25 µM [18].

Cell senescence is a state of growth arrest caused by several factors, such as telomere
loss and DNA damage [19]. Cancer cells show features such as senescence after exposure to
certain chemotherapeutic compounds [20]. Therefore, the telomerase inhibitor, as a factor
of accelerated cell senescence, is a double-edged sword on its applications, and is accepted
in anti-cancer strategies via triggering senescence.

Successful clinical outcomes require prolonged treatment, which may lead to severe
toxicity in patients. In comparison with synthetic chemicals, natural products are more
acceptable and environmentally friendly. In this work, we used CRISPR/Cas9 to establish
a cell-based platform aiming to screen out certain natural compounds that modulate the
expression of endogenous hTERT, and found some compounds with potential applications,
of which sanguinarine chloride (SC), a benzophenanthridine alkaloid extracted from the
root of Sanguinaria canadensis, is very attractive.

SC exhibits clear-cut antitumor properties, with evidence of apoptotic cell death induc-
tion and anti-proliferation through generating reactive oxygen species [21], suppressing
the NF-κB pathway [22], inhibiting cyclin-dependent kinases and cyclins [23] and block-
ing VEGF function in angiogenesis [24]. Besides this, sanguinarine is commonly used in
toothpaste and oral health products because of its antibacterial and anti-inflammatory
effects [25]. However, since 1999, a sanguinarine-added mouthwash product Viadent®

was reported to be associated with age-related leukoplakia, indicating its pre-neoplastic
adverse effects [26,27]. Notably, how sanguinarine induces leukoplakia remains unclear
so far, and the underlying mechanism of the anti-tumor effect of sanguinarine remains
elusive; thus, figuring out its biological target and detailed molecular mechanism is crucial
for pharmacological usage.
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2. Materials and Methods
2.1. Chemicals

Sanguinarine chloride hydrate (SC) was purchased from Aladdin (S101540; Shanghai,
China) and Brazilin (Braz) was purchased from Sigma-Aldrich (SML2132; St. Louis, MO,
USA). All the chemicals were dissolved in DMSO and stored at −20 ◦C.

2.2. Cell Culture and Transfection

The HEK293T cell line and cancer cell lines, including HTC75, HeLa, DLD1, MDA-
MB-231, Hs578t and A549, were routinely cultured in Dulbecco’s Modified Eagle’s Medium
(DMEM; Corning; New York, NY, USA) supplemented with 10% Fetal bovine serum (FBS;
Excell Bio; Jiangsu, China). Human skin fibroblasts (HFs) and human umbilical vein
smooth muscle cells (HUVSMCs) were cultured in Dulbecco’s Modified Eagle Medium/F-
12 Nutrition Mixture (DMEM/F12; Gibco; New York, NY, USA) containing 10% FBS
(Hyclone; Logan, UT, USA). Peripheral blood mononuclear cells (PBMCs) were cultured
in RPMI 1640 medium (Gibco; New York, NY, USA) with 10% FBS (Hyclone; Logan, UT,
USA). Lipofectamine2000 reagents (Invitrogen; Carlsbad, CA, USA) were used for cell
transfections of recombinant plasmids.

2.3. Flow Cytometry Screening

A total of 800 compounds of a natural product library (Natural Products Collection;
Microsource; Gaylordsville, CT, USA) was applied and screened in a hTERT-P2A-GFP
reporter cell line. Cells were treated by compound in 96wells for 48 h and were then har-
vested in PBS buffer. GFP and dsRed2 expressions were analyzed by using flow cytometry
(Beckman CytoFLEX S; Brea, CA, USA). The mean fluorescence intensity (MFI) of collected
cells was taken as the screening index indicating the expression of the target gene.

2.4. Quantitative Telomeric Repeat Amplification Protocol (Q-TRAP) and IP-TRAP

Q-TRAP assays were performed as described [28]. Briefly, 105 cells were lysed on ice
for 30 min in 100 µL NP40 lysis buffer (10 mM Tris-HCl pH 8.0; 1 mM MgCl2; 1 mM EDTA;
0.25 mM sodium deoxycholate; 150 mM NaCl; 1% NP-40; 10% glycerol; 1% fresh protease
inhibitor cocktail) and then centrifuged at 13,200 rpm for 10 min at 4 ◦C. The supernatant
was mixed with 100 ng/µL TS primer (5′-AATCCGTCGAGCAGAGTT-3′), 100 ng/µL ACX
primer (5′-GCGCGGCTTACCCTTACCCTTACCCTAACC-3′), and 1mM EGTA in 2 × Real-
Star Green Power Mixture (with ROX) (GeneStar; Beijing, China), and then incubated at
30 ◦C for 30 min for telomeric repeat extension and PCR amplification (40 cycles, 95 ◦C
for 15 s and 60 ◦C for 60 s) using the Step One PlusTM Real-Time PCR system (Applied
Biosystems; Foster, CA, USA). As for IP-TRAP, the cell lysis was immunoprecipitated by
anti-FLAG M2 beads (Sigma-Aldrich; St. Louis, MO, USA) at 4 ◦C for 3 h and eluted by
3 × FLAG peptides. The eluates were mixed with the compound and subjected to the
TRAP assay.

2.5. Terminal Restriction Fragment (TRF)

The average telomere length was measured as described [29]. Briefly, genomic DNA
was digested by Hinf I and Rsa I overnight at 37 ◦C, separated by agarose gel, then
denatured and hybridized with a radio labeled telomeric probe (TTAGGG)4. The dried
gel was exposed to a phosphor screen and then scanned with Amersham Typhoon IP
Phosphorimager (GE Healthcare; Torrington, CT, USA). The average telomere length was
calculated using ImageJ (National Institutes of Health developed; Bethesda, MD, USA) and
GraphPad Prism software (San Diego, CA, USA).

2.6. SA-β-Gal Staining

The assay was performed by using a Senescence β-Galactosidase Staining Kit (Bey-
otime; Shanghai, China). Briefly, cells were seeded in 12-well plates and fixed with 4%
formaldehyde for 15 min at room temperature. The fixed cells were then washed with PBS
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3 times and incubated with fresh SA-β-gal staining reagent mix containing 1.0 mg/mL
X-galactosidase at 37 ◦C for 24 h to microscopically observe the staining.

2.7. GST Pull Down and Telomerase Activity Reconstitution In Vitro

The GST pull down assay for GST-hTERT purification was carried out as described
previously [30]. Briefly, IPTG was added at 16 ◦C for 20 h to stimulate the hTERT fusion
protein expression. The fusion protein was incubated with GST beads at 4 ◦C for 4 h and
washed three times. The eluates were stored at −80 ◦C for further experiments.

The reconstitution of telomerase activity in vitro was performed as described [28].
Purified GST-tagged hTERT products (GST-opTERT) were incubated with in vitro tran-
scribed hTERC in telomerase reconstruction buffer (25 mM Tris-HCl pH7.4; 2.6 mM KCl;
1 mM MgCl2; 136 mM NaCl; 1 mM EGTA; 10% glycerol; 1 mM DTT; 1×proteinase inhibitor
cocktail; 0.5 U/µL of RNase inhibitor) at 37 ◦C for 30 min. Compounds in serially diluted
concentrations were added into the reconstructive products, followed by the TRAP assay.

2.8. Thioflavin T (ThT) Biochemical Assay

The experiments were conducted in 96-well microplates. In total, 1 µg genome of
DNA sample was mixed with ThT at a final concentration of 2 µM in the buffer (20 mM
Tris-HCl pH 7.0, 40 mM KCl) at room temperature. The fluorescence emission was collected
at 491 nm in a multi-mode microplate reader (BioTek; Winooski, VT, USA).

2.9. Microscale Thermophoresis (MST) Assay

Human telomeric oligonucleotides (Telo24, 5′-Cy5-(TTAGGG)4-3′) were annealed in
the K+ buffer (10 mM K2HPO4/KH2PO4 pH 7.0, 100 mM KCl) by heating to 95 ◦C for
6 min, then cooled down to room temperature and store at 4 ◦C. The annealed telomeric G-
quadruplex samples (1 µM) were incubated with compound SC at concentrations ranging
from 0.15625 µM to 320 µM in the K+ buffer for 30 min, followed by the MST assays. The
MST assay was conducted using the Monolith NT.115 device (NanoTemper Technologies;
Munich, Germany) according to the manufacturer’s instructions. Data were analyzed using
MO. Affinity Analysis software (NanoTemper Technologies; Munich, Germany).

2.10. Fluorescence Polarization Assay

SC at a high concentration over 10 µM exhibits autofluorescence. The equilibrium
binding of the compound with hTERT TRBD protein was monitored by fluorescence
polarization assay. All fluorescence polarization compound–protein binding assays were
performed in 100 µL PBS buffer containing 10 µM SC and purified His tagged hTRBD in a
serially diluted concentration from 2.5 µM to 40 µM in 96-well black polypropylene plates.
Fluorescence polarization (FP) measurements were performed at room temperature using
a VictorTM X5 2030 Multiple Reader (PerkinElmer; Waltham, MA, USA). BSA was used as a
negative control.

2.11. Soft-Agar Colony Formation Assay

The MDA-MB-231 cell suspension was mixed in 0.3% soft agar in DMEM containing
10% FBS and the compound, then layered on 0.6% solid agar in DMEM containing 10% FBS
and the compound. In total, 1000 cells were seeded per well in a 6-well plate. After 14 days
of culturing, colonies were observed under a microscope and the total numbers of colonies
from ten random fields of view were counted for the statistical analysis.

2.12. In Vivo Cell Derived Xenograft (CDX)

MDA-MB-231 cells suspended in cold PBS buffer were inoculated subcutaneously into
6–8-week-old nude mice in situ. After the xenograft model was established, the mice were
injected intravenously with the compound at a dosage of 1.1 µg/kg (the concentration of
the compound in blood was 1 µM if the blood volume was estimated as 7% of the body
weight). The compound was administrated every three days. The volume of tumor and
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the body weight were recorded before each injection. The tumor volume was calculated as
LW2/2, where L represents the long diameter and W represents the short diameter.

2.13. Statistical Analysis

Data are shown as mean ± SD. Experiments were carried out in three technical
replicates. Student’s t-test and one-way ANOVA test were used for statistical significance
analyses with the software GraphPad Prism version 6.0 (San Diego, CA, USA). The fitting
curves were depicted using Original version 9.0. A p value less than 0.05 is statistically
significant (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

3. Results
3.1. Natural Compound Screening in hTERT Promoter-Driven GFP Reporter Cell Line and
Identification of Potential Inhibitor Candidates

In order to screen out hTERT regulatory molecules, we established a platform of
hTERT reporter HEK293T cells using CRISPR/Cas9 to knock in the P2A-GFP fusion gene
before the stop codon of the hTERT gene (Figure 1A). hTERT and GFP were transcribed
together from the same promoter, and translated fusion proteins were self-cleaved by a
small linker peptide, P2A. The red fluorescent protein dsRed2 was stably transfected into
the reporter cell line as an internal control of the fluorescence-based FACs screening. Since
the abundance of the hTERT protein was much lower than that of most of the other proteins
in the cell, here, we took advantage of a monoclonal-derived cell line with a relatively
low intensity of GFP and a high intensity of dsRed2 for the screening (Figure 1A and
Figure S1A). The initial screening focused on the commercial natural compound library
containing 800 small molecules (Supplementary Figure S1B); 69 compounds exhibiting the
mean fluorescence intensity (MFI) of GFP, normalized by dsRed2 with at least 40% decline
compared to the control (DMSO), were enriched for the second screening (Supplementary
Figure S1B). These 69 natural products were conducted to three independent repetitive
screens and 8 candidate compounds were repeatably obtained with a significant decrease
in the MFI of GFP/dsRed2 (Figure 1B, Supplementary Table S1). These eight candidates
were further verified, and SC and Braz were selected due to their outstanding inhibitory
effects (Figure 1C and Figure S1C, Supplementary Table S1). Braz has been patented as a
kind of natural telomerase inhibitor [31].

Based on the flow cytometry data, treating reporter cells with SC (1 µM) or Braz
(10 µM) for 48 h decreased the MFI of GFP, but did not influence dsRed2 expression
(Figure 1D and Figure S1D, Supplementary Table S1). The hTERT expression level and
relative telomerase activity (RTA) were examined in reporter cells under treatment with SC
or Braz. Indeed, both SC and Braz inhibited hTERT mRNA level and telomerase activity,
which confirms our screening result (Figure 1E,F and Figure S1E,F).

3.2. Inhibitory Effects of SC on Telomerase Activity in HTC75 Cancer Cells

The characteristic of its higher expression in most cancer cells makes telomerase/hTERT
a valuable predictive biomarker and drug target in malignant cells. To evaluate their inhi-
bition of RTA in cancer cells, we treated HTC75 cells with the two candidate compounds
respectively for 48 h, and then performed the Q-TRAP assay. HTC75 is a telomerase-
positive fibrosarcoma cell line that can maintain a constant telomere length during in vitro
passaging, and is commonly used in the telomere field [32]. The results suggested that SC
suppresses the telomerase activity in a dose-dependent manner (Figure 2A). The CCK-8 cell
proliferation assay showed the effect of SC at different dosages on the viability of HTC75
cell. The fitting curve indicated the median viable concentration was 2.18 µM (Figure 2B).
To explore cancer cell proliferative inhibition induced by the compound, we carried out
an analysis of cell cycle and apoptosis. SC-treated cells showed a subtle cell cycle arrest in
the G2/M phase compared with control cells (Figure 2C,D). Cells incubated with 2 µM SC
exhibited an acute increase in apoptotic cells (Figure 2E). The result was consistent with
previously reported studies, wherein SC induced apoptosis through generating reactive
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oxygen species [33,34]. Furthermore, we wondered if SC effectively works in different
types of cancer cells; the RTA of five other kinds of solid tumor cell lines were examined
after 48 h treatment. SC exhibited a consistent suppressive effect on telomerase modulation
in all tested cell lines, although with different degrees of inhibitory effects (Figure 2F).
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Figure 1. Screening of natural hTERT inhibitors and their verification in the endogenous hTERT-
P2A-GFP knock-in HEK293Treporter cell line. (A) Schematics of the endogenous hTERT-P2A-GFP
HEK293T reporter cell line construction and the screening strategy of a natural product pool for
telomerase modulators. Two rounds of screening were carried out and compounds with GFP/RFP
ratio ≤ 0.6 were selected as candidates. (B) Results from the second round of compound screening,
with two candidates highlighted as potential inhibitors. The orange triangle indicates SC while the
green rectangle indicates Braz. (C,D) Mean fluorescence intensity (MFI) quantification of endogenous
hTERT-GFP (C) and internal reference dsRed2 (D) after 1 µM SC treatment for 48 h. (E) hTERT mRNA
level by quantitative real-time PCR of reporter cell line upon the treatment of SC (1 µM) for 24 h.
DMSO served as the control group. (F) Real-time quantitative telomeric repeat amplification protocol
(Q-TRAP) assay in reporter cells treated with SC (1 µM). DMSO served as the control group. The
screening was performed three independent times. Real-time PCR and Q-TRAP assays are from
triplicate samples (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).

Compared with SC, Braz could also induce cell cycle arrest in the G2/M phase
(Supplementary Figure S2A), whereas no exacerbation of apoptosis events was observed
at the concentrations that inhibit telomerase activities in HTC75 cells (Supplementary
Figure S2B). In terms of the potential use as a natural telomerase inhibitor, Braz could
only inhibit telomerase in certain types of cancer cells, which indicates its restricted ap-
plicability in multiple kinds of tumors, compared to the broad-spectrum anti-telomerase
property of the compound SC (Supplementary Figure S2C). Furthermore, we assessed the
cytotoxicity of Braz in different cancer cells. The compound showed proliferative inhibition
effects in HeLa, DLD1 and HTC75 cells, which also inhibit RTA in these three cell lines
(Supplementary Figure S2D).
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Figure 2. Effects of SC treatment on different cancer cells. (A) The inhibitory effect of SC on telomerase
activity in HTC75 cells was evaluated. The relative telomerase activity (RTA) level suggested a dose-
dependent suppressive effect. (B) The CCK-8 assay showed the cell viability curve of SC in HTC75
cells. The median toxic concentration (TC50) was 2.18 µM. (C) Cell cycle analysis through PI staining
and the following flow cytometry for HTC75 cell treated with SC. (D) Quantification of cell cycle
populations measured in (C). (E) Quantification of apoptotic cells (Annexin-V FITC positive cells).
(F) The 1 µM SC treatment for 48 h hindered RTA in multiple cancer cells, normalized by RTA of
the DMSO group. All the analyses were performed on triplicate samples (* p < 0.05, ** p < 0.01,
**** p < 0.0001).

3.3. Effects of SC on Cancer Cell Senescence and Telomere Length through Prolonged Treatment

To identify the optimal anti-telomerase dosage of SC, we evaluated RTA in HTC75
tumor cells treated with SC at different concentrations for 48 h. The Q-TRAP results
showed the IC50 (half maximal inhibitory concentration) of SC to telomerase was 1.21 µM
(Figure 3A). Cell cycle arrest and apoptosis events may indirectly down-regulate the telom-
erase. These indirect negative cellular events should be avoided whenever possible when
the telomerase inhibitor is applied in anti-tumor therapy. Based on these considerations
and the data mentioned above, 1 µM SC could substantially inhibit telomerase activity
with no obvious apoptosis induction in cancer cells. Therefore, we chose this concentration
for further experiments.

Upon continuous treatment with the specified dose of compound SC, the HTC75 cells
retained unchanged morphological characteristics compared to the DMSO-treated control
cells in a short period; however, prolonged SC-treated cells became shrunken and irregular
(Figure 3B). A curve of cumulative population doubling was plotted to assess cancer cell growth.
The proliferation of SC-treated cells was much slower than the DMSO-treated cells (Figure 3C).
The persistent inhibition of hTERT protein level caused by prolonged compound treatment
(Figure 3D) may cause the accumulation of telomere attrition. Telomere length was measured
by the terminal restriction fragment (TRF) assay. The average telomere length of HTC75 cells
treated with SC for a long time was obviously shortened, compared to the DMSO-treated
HTC75 cells (Figure 3E,F). The shortened telomeres can manifest a DNA damage response and
drive the cells into senescence. SA-β-gal staining showed more senescent cells in the SC-treated
group (Figure 3G). The senescent markers p16/p21/p53 were all up-regulated at the protein
levels (Figure 3H). Prolonged SC treatment also induced more telomere dysfunction-induced
foci (TIFs) in HTC75 cells (Figure 3I).
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Figure 3. Continuous treatment with SC led to cell senescence in cancer cells. (A) Fitting curve
of inhibitory effect of SC on RTA in HTC75 cells. IC50 = 1.21 µM. (B) Morphology of HTC75 cells
treated with 1 µM SC versus DMSO between day 3 and day 45. (C) The cell growth curve of the
HTC75 cells continuously treated with 1 µM SC, comparing to DMSO-treated groups. (D) Western
blotting analysis to confirm the inhibitory effect of SC on hTERT protein level. GAPDH served as an
internal reference. (E) HTC75 cells continuously treated with 1 µM SC were analyzed by terminal
restriction fragment (TRF) assay. (F) Quantitative average telomere length from (E). (G) SA-β-gal
staining assay to identify cell senescence in HTC75 cells continuously treated with 1 µM SC. (H) The
senescence markers p16/p21/p53 were up-regulated in cancer cells after chronic treatment of the
compound. (I) Telomere dysfunction-induced foci (TIFs) were analyzed using anti-53BP1 antibody
(red) and PNA-conjugated telomere C strand probe (green) when HTC75 cells were treated with the
compound for 40 days. Cells with TIFs ≥3 were counted for the significance test. The experiments
were performed in 3 independent cell lines and the results are shown as mean ± SD, n = 3 (* p < 0.05,
** p < 0.01, **** p < 0.0001).
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As a moderate telomerase inhibitor in cancer cells, Braz suppressed HTC75 cell growth
as well as RTA in a long-period treatment (Supplementary Figure S3A,B). However, the
average telomere length of Braz-treated cells remained unchanged compared to that of the
control cells (Supplementary Figure S3C).

3.4. SC Inhibits Telomerase Depending on p65 Expression

We have confirmed that SC could reduce the mRNA level of hTERT gene; the dual
luciferase reporter assay of hTERT promoter (−1200 bp) suggested the suppressive effect of
SC on transcriptional activity (Figure 4A). In addition, we also treated the cancer cells with
the transcription blocking reagent Actinomycin D and SC to assess the mRNA stability of
hTERT, and found that SC does not affect hTERT mRNA stability (Supplementary Figure
S4A). So far, we have speculated that SC suppresses hTERT expression by modulating
hTERT promoter activity, but not mRNA stability.
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Figure 4. SC inhibited telomerase activity depending on p65 expression in cancer cells. (A) The dual
luciferase reporter assay suggested the compound has suppressive effects on hTERT transcriptional
activities. (B) The relative mRNA levels of partial common transcription factors, which have been
reported to regulate hTERT transcription. (C) The protein levels of pan-p65 and pi-p65 in cancer
cells after 1 µM SC treatment for 48 h. DMSO served as a control. (D) Western blot was carried
out to detect the protein level of overexpressed p65 in sanguinarine chloride-treated cells. (E) The
mRNA level of hTERT was rescued in the SC-treated group by overexpressing p65. (F) Telomerase
activity assay in p65 re-introduced HTC75 cells with SC treatment for 48 h. All the analyses were
from triplicate samples (* p < 0.05, ** p < 0.01, ns means no significance).

The hTERT promoter contains many transcription factor-binding sites, including GC-
motifs and E-boxes, which can directly modulate telomerase transcription in response
to physiological processes, including tumorigenesis. The transcriptional regulation of
telomerase is complicated in different cancer cells due to diversified mutations and multi-
layered networks [35]. For cells chronically exposed to the compound SC, we detected the
mRNA levels of 10 previously reported classic transcription factors and found a significant
decrease in p65, c-MYC, and MXD1 levels. Among the positively correlated transcription
factor genes, p65 was observed to be down-regulated by SC to the most significant extent
(Figure 4B and Figure S4B). Moreover, Western blotting confirmed a decreased level of the
p65 protein in the cells treated with the compound (Figure 4C).

To investigate the mechanism by which SC inhibits hTERT/telomerase, we transiently
transfected p65 and c-myc plasmids respectively into cancer cells treated with the com-
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pound (Figure 4D and Figure S4C). The reintroduction of p65, rather than c-myc, alleviated
the inhibitory effect of SC on telomerase at both the hTERT mRNA level (Figure 4E and
Figure S4D) and the RTA level (Figure 4F and Figure S4E). These results indicate that SC
inhibits hTERT/telomerase in a p65-dependent manner.

3.5. SC Directly Modulates Telomerase In Vitro

The rapid attrition of telomere length in SC-treated cells suggests that SC might also
directly inhibit telomerase activity, besides decreasing hTERT expression. Previously, it was
found that the addition of sanguinarine at 10 µM has strong affinity for human telomere
repeats and c-MYC promoter sequence, enabling the forming of a G-quadruplex structure
in vitro [36]. Isoquinoline alkaloids, represented by sanguinarine, were found to selectively
recognize the telomeric G-quadruplexes in vitro and inhibit telomerase in MCF-7 cells [37].
In brief, the G-quadruplex is a common target for telomerase or other reverse transcriptases.
Moreover, c-myc is an essential transcription factor in cell growth, acting via regulating the
expression of related genes, including hTERT. The promoter region of c-MYC also contains
abundant G-quadruplex motifs [38]. Our work suggested that SC retards HTC75 cell
growth and represses the expression of hTERT and c-MYC (Figures 3D and 4B). In contrast
to the reported 10 µM concentration of sanguinarine that recognizes the G-quadruplex
in vitro, the effective dosage of SC as a telomerase inhibitor in our system was lowered
to 1 µM in various cells. Notably, cells were unable to survive at a dosage/concentration
of over 4 µM. Nevertheless, we wondered whether telomerase could be inhibited in our
system by SC via G-quadruplex binding or not.

Thus, we performed IP-TRAP and telomerase reconstitution assays. Firstly, we want
to evaluate the inhibitory effects of the compound in vitro. The schematic experimental
processes of IP-TRAP are depicted in Figure 5A. The immunoprecipitated telomerase com-
plex from hTERT-overexpressed cells was incubated with serial dilutions of the compound
for the telomere extension reaction. SC displayed a dose-dependent inhibitory effect on the
activity of immunoprecipitated telomerase holoenzyme. The IC50 to immunoprecipitated
telomerase in vitro was 1.40 µM (Figure 5A), which is close to the IC50 value when in cell
culture (1.21 µM in Figure 3A). This IC50 was much lower than the concentration necessary
for SC to bind the G-quadruplex.

We next purified the GST-tagged hTERT protein and in vitro transcribed hTERC, and
then incubated them in a water bath. Subsequently, the addition of the compound signifi-
cantly impeded the reconstituted telomerase activity in a concentration-dependent manner.
Surprisingly, the suppressive effect of the compound on the reconstituted telomerase activ-
ity in vitro was exhibited at the nanomole level (Figure 5B). In conclusion, we identified
that sanguinarine chloride directly inhibits telomerase at a concentration much lower than
the 10 µM reported in vitro.

To investigate whether the cellular telomerase inhibition by the compound depends on
telomeric G-quadruplex formation, we carried out a series of biochemical assays. Based on a
previous work [36], we synthesized a human telomeric oligonucleotide (Telo24) labeled with
Cy5 fluorophores. A Microscale Thermophoresis (MST) assay showed the dose-dependent
binding of the compound SC to the telomeric G-quadruplex DNA. Unexpectedly, the EC50
(half maximal effective concentration) to telomeric G-quadruplexes was 100 times more
than the IC50 to telomerase in cancer cells (120 µM in Figure 5C vs. 1.21 µM in Figure 3A).
Thioflavin T (ThT) is a fluorescent dye used to sense G-quadruplex structures, especially
in human telomeric DNA [39]. The fluorescence signal of ThT showed no difference
after treatment with 1 or 2 µM of the compound or DMSO, while Pyridostatin, a G-
quadruplex DNA-stabilizing agent, significantly enhanced the cellular ThT signal intensity
(Figure 5D). BG4 is an antibody specific to the G-quadruplex structure. Immunofluorescence
was used to visualize and quantify the cellular co-localization of G-quadruplex motifs
and telomeres (indicated by an antibody against the telomeric repeat binding factor 2).
Following treatment with 1 µM SC, the cell were comparable to in the DMSO control, both
in the BG4 foci and in the colocalized foci of BG4 and TRF2 (Figure 5E). Furthermore,
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SC at high concentrations (more than 10 µM) could emit an autofluorescence signal, thus
fluorescence polarization assays were carried out. The binding curve implied that SC could
directly interact with TRBD of the hTERT protein in vitro (Figure 5F).

Cells 2022, 11, x FOR PEER REVIEW 12 of 19 
 

 

 

Figure 5. SC directly suppressed telomeric repeat extension in vitro without inducing a 

G-quadruplex motif. (A) Schematic representation of immunoprecipitation-based TRAP experi-

ment. FLAG-hTERT-overexpressing HEK293T cells were subjected to immunoprecipitation. The 

elutes mixed with SC were used to perform the TRAP assay in vitro. The inhibition of natural te-

lomerase activity by SC was presented in a dose-dependent manner, and the fitting curve showed 

that its IC50 to natural telomerase in vitro was 1.4 μM. (B) Purified GST-opTERT was incubated 

with in vitro-transcribed hTERC for 30 min, then mixed with SC to perform the TRAP assay. SC 

directly suppressed the activity of reconstituted telomerase at the nanomole level in vitro. (C) MST 

analysis of the interaction of the telomeric G-quadruplex with SC. The EC50 was 120 μM. (D) De-

tection of 2 μM Thioflavin T (ThT) fluorescence intensity at 491 nm for the whole genomic DNA in 

a K+ Tris-HCl buffer. Pyridostatin (PDS) was the positive compound used to induce G-quadruplex 

structure. (E) Representative immunofluorescence images of the G-quadruplex (recognized by 

BG4 antibody, red) and TRF2 (green) foci in HTC75 cells treated with SC or DMSO for 48 h. Quan-

tification of the number of G-quadruplex foci (recognized by BG4 antibody) per nucleus in com-

pound-treated HTC75 cells (right upper) and quantification of the number of colocalized 

G-quadruplex foci (recognized by BG4 antibody) and TRF2 in the nucleus (right bottom). In total, 

100 nuclei were counted and statistically analyzed. (F) A fluorescence polarization binding assay 

with His-tagged hTRBD and SC was performed, and the EC50 was 24.84 μM; the BSA protein 

served as a negative control. All the analyses were performed on triplicate samples (* p < 0.05, **** 

p < 0.0001, ns means no significance). 

Taken together, the results showed that exposing cells to 1 μM SC does not change 

the formation of the G-quadruplex, and indicated that the compound at the concentra-

tion of 1 μM suppresses the telomerase activity in cancer cells by directly binding to the 

hTERT protein. 

  

Figure 5. SC directly suppressed telomeric repeat extension in vitro without inducing a G-quadruplex
motif. (A) Schematic representation of immunoprecipitation-based TRAP experiment. FLAG-hTERT-
overexpressing HEK293T cells were subjected to immunoprecipitation. The elutes mixed with SC
were used to perform the TRAP assay in vitro. The inhibition of natural telomerase activity by SC
was presented in a dose-dependent manner, and the fitting curve showed that its IC50 to natural
telomerase in vitro was 1.4 µM. (B) Purified GST-opTERT was incubated with in vitro-transcribed
hTERC for 30 min, then mixed with SC to perform the TRAP assay. SC directly suppressed the activity
of reconstituted telomerase at the nanomole level in vitro. (C) MST analysis of the interaction of the
telomeric G-quadruplex with SC. The EC50 was 120 µM. (D) Detection of 2 µM Thioflavin T (ThT)
fluorescence intensity at 491 nm for the whole genomic DNA in a K+ Tris-HCl buffer. Pyridostatin
(PDS) was the positive compound used to induce G-quadruplex structure. (E) Representative
immunofluorescence images of the G-quadruplex (recognized by BG4 antibody, red) and TRF2 (green)
foci in HTC75 cells treated with SC or DMSO for 48 h. Quantification of the number of G-quadruplex
foci (recognized by BG4 antibody) per nucleus in compound-treated HTC75 cells (right upper) and
quantification of the number of colocalized G-quadruplex foci (recognized by BG4 antibody) and
TRF2 in the nucleus (right bottom). In total, 100 nuclei were counted and statistically analyzed. (F) A
fluorescence polarization binding assay with His-tagged hTRBD and SC was performed, and the
EC50 was 24.84 µM; the BSA protein served as a negative control. All the analyses were performed
on triplicate samples (* p < 0.05, **** p < 0.0001, ns means no significance).

Taken together, the results showed that exposing cells to 1 µM SC does not change
the formation of the G-quadruplex, and indicated that the compound at the concentra-
tion of 1 µM suppresses the telomerase activity in cancer cells by directly binding to the
hTERT protein.
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3.6. Assessment of Safety and Antitumor Efficacy of SC

As a matter of fact, sanguinarine has shown potential antitumor value in animal
models [40,41]. In our system, we also needed to evaluate its safety performance and
antitumor efficacy in vitro and in vivo. Firstly, we detected the cell viability of three SC-
treated human primary cells with no telomerase expression. The growth of human skin
fibroblasts (HFs) and HUVSMCs was analyzed via the CCK-8 assay kit, and the viability
of PBMCs was traced based on CFSE labeling. All the results pointed to the safe and
non-poisonous characteristics of SC in relation to primary somatic cells at a low dosage
(Figure 6A,B). The cell cycle and apoptosis assays performed in the HFs suggested no
increased apoptosis or cell cycle arrest was induced (Figure 6C,D). In the tested cells,
1 or 2 µM of SC had no proliferative inhibition effect.
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Figure 6. Application of SC to the inhibition of tumor formation. (A) the CCK-8 assay showed no
proliferative inhibitory effect of SC in human primary skin fibroblast cells (left) and HUVSMC (right)
at the concentration that was effective in inhibiting telomerase activity in cancer cells (data shown
in Figure 3, IC50 to telomerase = 1.21 µM). (B) Human PBMCs were measured by CFSE labeling
and then treated with 2 µM SC for 72 h. The similar characteristics of the histograms indicate that
SC does not affect the proliferation of PBMCs. (C) Cell cycle PI staining assay was performed in
fibroblast with 2 µM of compound. (D) Apoptosis analysis for human fibroblasts following SC
treatment. (E) Representative photographs of the colonies from the soft agar colony formation assay
in MDA-MB-231 cells treated with SC or DMSO (control). The red arrows indicate the formed cell
colonies. The statistical number of colonies formed in ten randomly visual fields was quantified.
(F,H) MDA-MB-231 cells were used to establish an orthotopic xenograft model in nude mice. Here,
1 µM blood concentration of SC or DMSO (vehicle) was injected into the tail vein. The total blood
volume of a mouse was estimated as 7% of the body weight. A representative picture of the developed
tumors of each group (F); tumor volume was measured every 3 days (G), and the body weights of
xenograft nude mice was measured before every injection (H). All cellular assays were performed on
triplicate samples, and the animal experiment was carried out in 4–7 mice (n = 4 in control group;
n = 7 in SC treatment group; four sets of data were used in the volume and body weight assays,
** p < 0.01, **** p < 0.0001, ns means no significance).
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MDA-MB-231 is a triple-negative breast cancer cell line commonly used to represent
one kind of advanced breast cancer. Triple-negative breast cancer is considered to be the
most dangerous because of its aggressive behavior, the lack of an effective therapy, and the
high mortality in clinic. Since we found that SC works effectively in breast cancer cell lines
(Figure 2F), we next wondered about the anti-tumor effect of SC. MDA-MB-231 cells were
seeded into soft agar medium with drug treatment. After 14 days of culture, in the presence
of 1 or 2 µM SC, a dramatic reduction in MDA-MB-231 cell-derived colonies was observed
in comparison with the control (Figure 6E). Moreover, MDA-MB-231 cells were transplanted
into nude mice in situ to evaluate the compound’s capability of suppressing tumorigenesis.
The compound (final concentration ~1 µM in blood) was injected intravenously into the
xenograft model every 3 days throughout the experimental period, and the same proportion
of DMSO was used as the control. The volumes of tumors and the mouse body weight were
monitored before each injection. The tumors in SC-treated mice reduced 40% versus those
in control mice after 24 days of administration (Figure 6F,G), whereas the body weights
remained at a constant level (Figure 6H). Taken together, we see that 1 µM SC exhibited
strong antitumor efficacy both in vitro and in vivo.

4. Discussion

Natural products and traditional Chinese medicine have been reported to exhibit vari-
ous anti-cancer capabilities. The discovery of natural compounds that inhibit telomerase
can lead to advancements in tumor therapy. Here, we utilized a telomerase reporter cell
line indicating the expression level of endogenous hTERT, which can sensitively reflect
telomerase modulation under physiological conditions. After stably expressing dsRed2
as an internal control, this reporter can indicate the relative expression of hTERT based
on the ratio of MFI. The screening approach is simple, rapid, and low-cost. Given the
advantages of the reporter, we carried out a high-throughput screening of the natural prod-
uct library. We succeeded in finding a few small molecules that can modulate telomerase
positively (data not shown) or negatively, which are promising for use in anti-aging or
anti-cancer applications.

Among the eight identified candidate inhibitors, we found that Braz has been patented
as a natural telomerase inhibitor previously [31], while few related experimental studies
about its suppressive effect on telomerase have been published. Here, we identified that
Braz could inhibit RTA by down-regulating the hTERT gene and retarded the cell growth via
G2/M phase arrest in cancer cells. However, only certain types of cancer cells sensitively
responded to Braz. Q-TRAP data and CCK8 assay demonstrated reduced telomerase
activities and cell proliferation in HTC75, HeLa and DLD1 cells upon treatment with
the compound, while MDA-MB-231, Hs578t and A549 cells have no response to 8 µM
Braz (Supplementary Figure S2C). The effective inhibition of telomerase caused by Braz
may be associated with the cytotoxicity of this compound, implying that the telomerase
repression by Braz is likely operated via an indirect or complex mechanism. Furthermore,
telomerase activity was inhibited in cancer cells following a long-term treatment with Braz,
whereas telomere shortening was not observed (Supplementary Figure S3C). Isolated from
Caesalpinia sappan L. [42], Braz displayed antitumor abilities by inducing apoptosis and
cell cycle arrest [43]. How Braz suppresses telomerase and its anti-carcinogenesis role
in vivo remain to be further studied in the future.

SC was another telomerase inhibitor candidate with leading inhibition that we identi-
fied from the library. SC exhibited a broad effective range in cancer cell types and an acute
inhibitory effect on telomerase and cancer cell growth. This compound down-regulated
hTERT expression, which may be mediated by directly changing the hTERT transcriptional
activity because of the decreased expression of several hTERT regulatory transcription
factors, including the c-myc family, p65 et al. The oncogene c-MYC is a common and
essential factor in the modulation of hTERT/telomerase. P65 is a subunit of the NF-κB
complex and can target the remote region of the hTERT promoter (near−600 bp) to regulate
its transcription [44]. Moreover, p65 could interact with hTERT to facilitate it transporting
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into the nucleus [13]. Reintroducing c-myc or p65 into the compound-treated cells indicated
that the telomerase inhibition could only be rescued by p65, suggesting SC suppresses
telomerase depending on p65 expression but not c-myc.

In addition, overexpressing FLAG-hTERT in the hTERT promoter reporter cell line
caused an increase in GFP fluorescence intensity (Supplementary Figure S5A). This result
implied that TERT transcription may enable positive feedback via its encoded protein, i.e.,
hTERT may act as a transcription coactivator to regulate its expression; consistently, c-myc
could target the hTERT promoter region to activate its transcription, and hTERT could also
regulate and stabilize c-MYC at the transcriptional level [11].

Apart from that, we also found that low dosages of SC could directly suppress telom-
erase activity both in vitro and in vivo, while not affecting telomeric G-quadruplex forma-
tion. Moreover, this inhibition in vitro was achieved at the nanomole level, much lower
than the EC50 to the telomeric G-quadruplex in K+ solution and the IC50 to telomerase at
the cellular level. Thus, SC may also directly bind to and suppress hTERT/telomerase. We
performed a fluorescence polarization binding assay with TRBD and SC. The preliminary
result showed a dose-dependent interaction in vitro (Figure 5F). Furthermore, we also
found that this compound specifically decreases exogenous hTERT protein levels compared
to the control, possibly by modulating its stability (Supplementary Figure S5B).

Sanguinarine has been used against different tumor or chronic diseases via different
mechanisms [45]. Specifically, in breast cancer and cervical cancer, sanguinarine generates
reactive oxygen species to induce apoptosis, and suppresses the NF-κB pathway to prevent
metastasis [22,46,47]. In prostate cancer, the compound arrests the cell cycle by inhibiting
cycle kinases and cyclins [23]. In myeloid cells, it targets the stability and phosphoryla-
tion of the IκB protein, and in certain cancers, this compound inhibits VEGF function in
angiogenesis [24,48–50]. hTERT has also been reported to participate in the modulation
of angiogenesis. Considering the complicated function of sanguinarine, researchers have
designed different therapeutic approaches depending on specific cancers. For instance, low
concentrations of sanguinarine could synergistically enhance the therapeutic efficacy of the
chemotherapeutic agent doxorubicin in drug-resistant leukemia cells [21,51–53].

Different from other anti-tumorigenesis studies of sanguinarine, which were carried
out by inducing apoptosis and cell cycle arrest at high concentrations [54], the adminis-
tration dosage of SC was much lower in our system. Cancer cells, chronically exposed to
the compound at a lower concentration for a long time, can show remarkably shortened
telomeres, consequently inducing cancer cell senescence.

In conclusion, SC displayed an inhibitory effect on hTERT expression and telomerase
activity that slowed down cell growth. Long-term treatment with SC induced changes of
cell morphology and triggered senescence events, including an increase in SA-β-gal activ-
ity, the up-regulation of the expression of p16/p21/p53 pathways, progressive telomere
dysfunctions (TIFs), and telomere shortening. Together, all these events triggered by SC led
to senescence in cancer cells, thus blocking their progression. SC inhibits telomerase by
dual functions, and its antitumor effect is potent and safe.

Previously, the sanguinarine-added mouthwash product Viadent® has been reported
to be associated with age-related leukoplakia, indicating its pre-neoplastic adverse effects.
Oral leukoplakia is a classic symptom in dyskeratosis congenita patients [55]. Our findings
show that long-term SC treatment will decrease telomere length, suggesting human adult
stem cells may also be affected by long-term treatment with sanguinarine. This may explain
the mechanism of the adverse effects of the Viadent® mouthwash product. More precise
works judging the appropriate dosage, duration and drug delivery system will improve its
application in pharmacological contexts.

5. Conclusions

Robust telomerase activity is a common feature shared by 90% cancers. Our study
identified SC at the precise dosage as an effective telomerase inhibitor, with anticancer
applications. Historically, telomerase inhibitors have shown unsatisfactory performances
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in clinic, although they have exhibited strong suppressive effects at the cell or animal level.
Therefore, as a natural telomerase inhibitor with dual functions (regulation on the mRNA
and protein levels) and little proliferative inhibition effects on somatic cells, SC is potent
and safe, providing a potential therapeutic approach for human malignancies. Our study
proposes a prolonged treatment approach using SC to induce cancer cell senescence. Anti-
tumor drugs such as SC may be synergistically used with senolytics that kill senescent cells
to improve the efficacy. Additionally, the precise dosage and duration of SC application in
cancer therapeutics need to be considered in future research.
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