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Abstract. Colorectal cancer (CRC) is a well-recognized 
complication of ulcerative colitis (UC), and patients with UC 
have a higher incidence of CRC, compared with the general 
population. However, the properties of CRC induced by UC have 
not been clarified using an interaction network to analyze and 
compare gene sets. In the present study, six microarray datasets 
of CRC and UC were extracted from the Array Express data-
base, and gene signatures were identified using the genome‑wide 
relative significance (GWRS) method. Functional analysis 
was performed based on the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) database. Prediction of the genes and 
microRNA were performed using a hypergeometric method. A 
protein‑protein interaction (PPI) network was constructed using 
the Search Tool for the Retrieval of Interacting Genes/proteins, 
and clusters were obtained through the Molecular Complex 
Detection algorithm. Topological centrality and a novel 
analyzing method, based on the rank value of GWGS, were used 
to characterize the biological importance of the clusters. A total 
of 217 differentially expressed (DE) genes of CRC were identi-
fied, 341 DE genes were identified in UC, and 62 common genes 
existed in the two. Several KEGG pathways were the same in 
CRC and UC. Collagenase, progesterone, heparin, urokinase, 
nadh and adenosine drugs demonstrated potential for use in 
treatment of CRC and UC. In the PPI network of CRC, 210 nodes 
and 752 edges were observed, wheras 314 nodes and 882 edges 
were identified in UC. Cluster 3 in UC had the highest GWGS, 
while the topological centrality of Cluster 3 in UC had the 
lowest degree and betweenness. PPI network analysis provided 
an effective way to estimate and understand the likelihood of 
the potential connections between proteins/genes. The results 
obtained following the use of GWGS to analyze differences 
between clusters did not agree with the topological degree and 
betweenness centrality, which indicated that gene fold change 

based GWGS was controversial with degree here in CRC and 
UC.

Introduction

There is convincing evidence from previous studies that patients 
with ulcerative colitis (UC) have a higher incidence of colorectal 
cancer (CRC), compared with the general population (1). The 
increased incidence occurs predominantly in patients with 
long-standing extensive colitis (2). Although CRC induced by 
UC only accounts for 1% of all cases of CRC in the general 
population, it is a serious sequel of the disease and accounts for 
one sixth of the mortality rate in patients with UC in Asia (3).

Multiple existing genome association approaches have 
been suggested to account for the mechanism of CRC (4,5), 
particularly its induction by UC, by identifying the indepen-
dent effects of individual genes (6). Suzuki et al identified a 
group of genes, which were preferentially hypermethylated 
in CRC, including SFRP1 (7). In a genome-scale analysis, 
16% of colorectal carcinomas were found to be hypermutated 
and, excluding the hypermutated types of cancer, colon and 
rectal types of cancer had considerably similar patterns of 
genomic alteration (8). However, investigations focussing on 
the effects of individual gene has omitted genes, which are 
not only encoded as individual genes or proteins, but also as 
subnetworks of interacting proteins within a larger human 
protein‑protein interaction (PPI) network in the human 
genome (9). As a result, several mechanisms of human disease, 
including CRC remain to be elucidated.

The availability of large protein networks provides 
one method to, at least partially, address the challenges 
mentioned above. Since large protein networks are available 
for humans (10), a number of approaches have been demon-
strated for extracting relevant functional pathways, based on 
the relevant databases (11). Following the measurement of 
sufficient protein interaction data, a large number of distinct 
functional pathways can be identified, which enable novel 
opportunities for elucidating the pathways involved in major 
diseases and pathologies (10,12). Investigations account for 
properties in interaction networks, and it has been reported 
that clustering with overlapping neighborhood expansion can 
be used as a method for detecting potentially overlapping 
protein complexes from a PPI network (13).

Network enrichment and topological analysis identifies the 
target gene set within its interaction environment and identifies 
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possible gene cofactors and topologically associated pathways 
and processes (14). Several groups have suggested a more 
effective method of combining gene expression measurements 
in groups of genes that fall within certain pathways. Several 
approaches have been suggested to score known pathways or 
sub‑networks on the coherency of expression changes among 
their member genes. For example, Chuang et al identified the 
markers of metastasis within gene expression profiles (15), 
which involved the identification of gene alterations and 
prediction of the likelihood of metastasis in unknown 
samples using a protein‑network‑based approach. Pržulj et al 
performed a systematic graph theory-based analysis of this 
PPI network to construct computational models for describing 
and predicting the properties of life-threatening mutations and 
proteins involved in genetic interactions, functional groups, 
protein complexes and signaling pathways (16). However, few 
investigations combining gene expression and network prop-
erties for measurements of groups of genes that fall within 
pathways and sub‑networks have been performed.

The aim of the present study was to determine the forma-
tion mechanism of CRC induced by UC, using a combination of 
methods for the measurement of gene expression (genome-wide 
global significance; GWGS) and centralities. The analysis 
pipeline included analysis of differentially expressed (DE) 
genes, Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment, construction of PPI networks, module detection, 
measurements of topological factors, determination of GWGS 
values, and predictions of drug genes and miRNA target genes. 

Materials and methods

Identification of gene expression datasets. A total of six data-
sets, in cluding E‑GEOD‑6731 (17), E‑GEOD‑36807, 
E‑GEOD‑38713 (18), E‑GEOD‑41258 (19), E‑GEOD‑4183 (20), 
and E-MTAB-57 (21), were extracted from the Array Express 
database (http://www.ebi.ac.uk/arrayexpress/). For UC, the 
E‑GEOD‑6731 dataset consisted of four normal controls 
and nine patients; the E‑GEOD‑36807 dataset consisted of 
seven normal controls and 15 patients; the E‑GEOD‑38713 
dataset consisted of 13 normal controls and 30 patients; the 
E-GEOD-41258 CRC dataset consisted of 100 normal controls 
and 290 patients; the E‑GEOD‑4183 data consisted of 18 
normal controls and 35 patients; and the E‑MTAB‑57 dataset 
consisted of 22 normal controls and 25 patients.

Integrated analysis of DE genes. The fold-change (FC) based 
on the model was used in the present study, as our compu-
tational evaluation aimed to identify the changes of gene 
expression. For each gene in the list of unique genes, a rank 
number was assigned, in descending order between 1 and m, 
according to their corresponding degree of differential expres-
sion. The present study then measured the GWRS of i-th gene 
in the j-th dataset, using the following equation (1,22):

The number of datasets was denoted by n, the number of 
unique genes across n datasets was denoted by m; where rij, 
i=1-m, j=1-n, indicate the rank number of the i-th gene in the 
j-th study. The range of GWRS values (sij) was between 0 and 
-2log (1/m).

The GWGS of a gene was estimated based on its corre-
sponding GWRS across the n datasets using the following 
equation (2):

ωj represents the relative weight of the j-th dataset. The value 
of the weight was assigned based on the data quality of the j-th 
datasets, the value of ωj is used to reflect the differential impor-
tance of biopsy, vs. cell line samples which may be taken into 
account. The present study assigned equal weights to all data. 
In addition, the P-values for all genes were recorded following 
analysis using the Linear Models for Microarray Data (Limma) 
3.20.8 package, subsequent to robust multiarray average 
(RMA) (23) and preprocessing (24). The genes with |log2FC|>2 
and P<0.01 were selected as DE genes for further investigation. 
The DE genes were selected if the gene was identified as a DE 
gene in at least two datasets in each group (UC or CRC).

Pathway enrichment analysis. The Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database is a knowledge 
base for the systematic analysis of gene functions, linking 
genomic information with higher order functional informa-
tion. In the present study, KEGG pathway enrichment analysis 
was performed for the identified DE genes using the online 
tool Database for Annotation, Visualization and Integrated 
Discovery (DAVID) Bioinformatics Resources 6.7 (http://
david.abcc.ncifcrf.gov/) (25). KEGG pathways with P<0.01 
were selected, based on the expression analysis systematic 
explored (EASE) assessment, implemented in DAVID. The 
principle of EASE was as follows (3):

n is the number of background genes; a' is the gene number 
of one gene set in the gene lists; a' + b is the number of genes 
in the gene list, which include at least one gene set; a' + c is 
the gene number of one gene list in the background genes; a is 
replaced with a' = a-1. 

Predictions of drug genes and miRNA targets. The present 
study performed drug gene and miRNA target prediction 
using a Web‑based gene set analysis toolkit (WebGestalt; 
http://bioinfo.vanderbilt.edu/webgestalt/analysis.php) (26). If 
there are n genes in the CRC gene set of interest (A), m genes 
in the UC reference gene set (B), and there are k genes in CRC 
and j genes in UC in a given category (C). Based on the refer-
ence gene set, the expected value of k is ke = (n / m) * j. If k 
exceeds the above expected value, category C is considered 
to be enriched, with a ratio of enrichment (r) determined by 
r = k / ke. If B represents the population from which the genes 
in A are obtained, WebGestalt uses the hypergeometric assess-
ment to evaluate the significance of enrichment for category C 
in gene set A (27), as in following equation (4): 

The P-values require adjustment for multiple assess-
ments, which was performed using the Benjamini-Hochberg 
method (28). Genes with quantities >5 and P<0.01 were 
considered significant.
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Analysis and construction of the PPI network. For protein 
interaction data, the present study utilized a human PPI 
dataset from the Search Tool for the Retrieval of Interacting 
Genes/proteins (STRING) 9.1 (http://string.embl.de/) resource. 
In addition, the PPI network was constructed using Cytoscape 
3.1.0 (29), a free software package for visualizing, modeling 
and analyzing the integration of bimolecular interaction 
networks with high‑throughput expression data and other 
molecular states.

Molecular complex detection (MCODE) algorithm. The 
MCODE algorithm (http://baderlab.org/Software/MCODE) 
was used for subnet analysis of the PPI network. The 
MCODE algorithm predominantly includes three stages: 
Vertex weighting, complex prediction and optionally 
post-processing. At the vertex weighting stage, all vertices, 
based on their local network density, were weighted using 
the highest k-core of the vertex neighborhood. At the stage 
of complex prediction, the vertex‑weighted graph was taken 
as input, a complex with the highest-weighted vertex was 
seeded, and moved outward from the seed vertex recursively. 
It owned vertices in the complex whose weight was above 
a specific threshold, a certain percentage away from the 
weight of the seed vertex. Complexes with a core<2 (graph 
of minimum degree 2) were filtered, the ‘fluff’ option and 
‘haircut’ option were also run. The ‘fluff’ option was used to 
increase the size of the complex, according to a given ‘fluff’ 
parameter between 0.0 and 1.0. The ‘haircut’ option removed 
vertices, which were connected to the core complex alone, 
resulting in complexes obtained that were 2-core When both 
options were performed, ‘fluff’ runs followed by haircut, the 
available network properties were as follows: The degree of 
a node (gene or protein) was the average number of edges 
(interactions) incident to this node. The degree quantified 
the local topology of each gene, by combing the number of 
its adjacent genes (30). This produced a simple count of the 
number of interactions of a given node.

The node betweenness, B(v), of a node, v, was calculated 
from the number of shortest paths (σst) between nodes s and t 
going through v (5): 

Table I. Genes common to colorectal cancer and ulcerative 
colitis.

Number Gene

  1 AQP8
  2 CXCL5
  3 MMP3
  4 CHI3L1
  5 KIAA1199
  6 TMEM158
  7 CXCL3
  8 MMP1
  9 CXCL1
10 ABCA8
11 SPP1
12 PSAT1
13 SLC26A2
14 SLC7A11
15 SLC4A4
16 PHLDA1
17 OLFM4
18 MMP7
19 GUCA2B
20 CWH43
21 LCN2
22 REG1A
23 BGN
24 NFE2L3
25 SULF1
26 PRKACB
27 CHP2
28 PTN
29 TRIM29
30 COL1A1
31 CDH3
32 NR5A2
33 HPGD
34 SLCO4A1
35 NXPE4
36 COL1A2
37 PLAU
38 HMGCS2
39 CFB
40 SERPINB5
41 SPINK4
42 CD55
43 MT1M
44 MMP12
45 SGK2
46 SLC17A4
47 PCK1
48 SORD
49 PADI2
50 TNFRSF12A
51 REG1B

Table I. Continued.

Number Gene

52 ANK3
53 REG3A
54 EPHX2
55 ABCB1
56 OSBPL1A
57 LOXL2
58 WNT5A
59 ENTPD5
60 COL5A2
61 MMP9
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GWGS values were based on log2FC, which represented 
their corresponding degree of differential expression, with 
genes of a higher degree of differential expression ranked 
higher.

Results

Identification of DE genes. The value of GWGS was used 
for integrated analyses of the independent microarray inves-
tigations. A gene witha high GWGS value was considered to 
be globally significant across multiple independent investi-
gations. GWGS can be obtained based on the fold-change, 
t‑test and significance analysis microarrays (SAM) (31). In 
the present study, the fold-change-based algorithm was more 
suitable for measurement of the significance of differential 
expression, since the present study aimed to examine the 
association between gene expression and network properties. 
By using the intersection of the microarray datasets, 217 DE 
genes for were obtained for CRC and 341 DE genes were 
obtained for UC. In addition, DE genes present in CRC and 
UC were identified as common genes, and 62 common genes 
were identified (Table I).

KEGG analysis. The KEGG pathway database is a collec-
tion of manually drawn pathway maps for metabolism, 
genetic information processing, environmental information 
processing, including signal transduction, and various other 
cellular processes and human diseases (32). Pathway enrich-
ment analysis of CRC revealed nine enriched terms (Table II), 
the most significant term was focal adhesion (P=6.82E‑004), 
which contained several genes, including CAV1, CCND1 and 
PAK2. In UC, five enriched terms (Table III) were obtained, 
the most important of which was ECM-receptor interaction 
(P=1.09E-005), which consisted of genes, including LAMA1, 

VWF and COL4A2. Focal adhesion and the chemokine 
signaling pathway were presented in CRC and UC.

Drug gene interaction predictions. In the prediction of 
drug-gene interactions of CRC, the genes were found to be 
associated with 25 drugs, including collagenase (P=3.88E‑21), 
estradiol (P=6.81E‑10) and progesterone (P=1.98E-09; 
Table IV). A total of 21 drugs were found to be associated with 
genes in UC, including collagenase (P=1.02E-20), heparin 
(P=1.45E‑14) and urokinase (P=1.46E‑08; Table V). The colla-
genase, progesterone, heparin, urokinase, nadh and adenosine 
drugs were identified in both UC and CRC.

miRNA target gene prediction. In the prediction of miRNAs 
in CRC, 27 terms were identified (Table VI), and the most 
significant three terms were TACTTGA (MIR‑26A and 
MIR‑26B), AATGTGA (MIR‑23Aand MIR‑23B) and 
CAGTATT (MIR-200B, MIR-200C and MIR-429). In UC, 
miRNA prediction revealed 43 terms of miRNA target genes 
(Table VII), the most significant three terms were TACTTGA 
(MIR‑26A and MIR‑26B), TGGTGCT (MIR‑29A, MIR‑29B 
and MIR-29C) and TGCCTTA (MIR-124A).

PPI network construction and analysis. In the present study, 
PPI networks were constructed for the DE genes in CRC 
and UC. In the network, nodes represent DE genes and 
edges between the nodes represent interaction of genes in 
the network. In the CRC network, there were 210 nodes and 
752 edges, which included 217 DE genes (Fig. 1). Among the 
nodes, MT2A was identified with the highest degree  at 42, 
followed by COL1A1  at 37 and COL1A2 at 37. In the UC 
network, there were 314 nodes, 882 edges and 341 DE genes 
(Fig. 2). CD44 was identified with the highest degree, at 52, 
followed by IL1B at 50 and MMP9 at 49.

Table II. Kyoto Encyclopedia of Genes and Genome analysis of differentially expressed genes in colorectal cancer.

Term Genes P-value

hsa04510:Focal adhesion CAV1, CCND1, PAK2, VEGFA, COL1A2, COL1A1, 6.82E‑04
 FLNC, COL5A2, THBS2, MYLK, SPP1, MYL9
hsa05219:Bladder cancer CCND1, IL8, MMP9, VEGFA, MYC, MMP1 7.49E-04
hsa03320:PPAR signaling SORBS1, HMGCS2, SCD, FABP4, 1.20E‑03
pathway FABP1, MMP1, PCK1
hsa04270:Vascular smooth KCNMA1, EDNRA, ACTG2, PPP1R12B,  3.25E‑03
muscle contraction MYH11, PRKACB, MYLK, MYL9
hsa00910:Nitrogen metabolism CA12, CA4, CA2, CA1 7.13E‑03
hsa00150:Androgen and UGT2B17, HSD17B2, HSD11B2, UGT2B15 2.62E‑02
estrogen metabolism
hsa04060:Cytokine‑cytokine CXCL1, INHBA, IL8, CXCL5, CCL20, TNFRSF12A, 3.85E‑02
receptor interaction CXCL3, CXCL2, VEGFA, CXCL12
hsa04062:Chemokine CXCL1, IL8, CXCL5, CCL20, CXCL3, CXCL2,  4.44E‑02
signaling pathway PRKACB, CXCL12
hsa00140:Steroid UGT2B17, HSD17B2, HSD11B2, UGT2B15 4.58E-02
hormone biosynthesis
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Clusters. When the Node Score Cut-off=0.2, the Degree 
Cut-off=4, the k-core=4 and the maximum depth was set at 
100, for CRC, three clusters were obtained (Fig. 3). Cluster 
1 had the highest score (5.8) and number of edges (29 edges), 
the nodes of the three clusters were identical. A total of six 

common genes were present in UC and CRC in Cluster 1: 
COL1A2, MMP3, PLAU, CXCL5, CXCL3 and CXCL1. In 
Cluster 2, MMP7, BGN, MMP1, SPP1 and COL1A1 were 
common to UC and CRC. There were four common genes in 
Cluster 3: SORD, MT1 M, MMP9 and LCN2.

For UC, three clusters were obtained (Fig. 4). Cluster 1 
had the highest score (5.867), numbers of nodes (16 nodes) 
and number of edges (44 edges). There were five common 
genes present in UC and CRC in Cluster 1 (COLIAI, SPP1, 

Table III. Kyoto Encyclopedia of Genes and Genome analysis of differentially expressed genes in ulcerative colitis.

Term Genes P-value

hsa04512:ECM-receptor LAMA1, VWF, COL4A2, COL4A1,  1.09E-05
interaction CD44, TNC, COL3A1, COL1A2, COL1A1,
 COL5A2, COL5A1, SPP1
hsa04610:Complement VWF, CD55, THBD, CFB, C4BPB, 4.28E‑04
and coagulation cascades C4BPA, CFI, PLAU, PLAUR
hsa04510:Focal adhesion COL4A2, VAV3, COL4A1, TNC, COL3A1, 2.42E‑03
 COL5A2, COL5A1, VWF, LAMA1,
 COL1A2, ZYX, COL1A1, PIK3R3, SPP1
hsa04062:Chemokine CCL11, CXCL1, VAV3, CXCL5, CXCL3, 1.04E‑02
signaling pathway CXCL9, CXCL6, PRKACB, PIK3R3, 
 CXCL11, STAT1, CXCL10
hsa04670:Leukocyte CLDN8, ICAM1, VAV3, NCF2, MMP9, 3.66E‑02
transendothelial migration PECAM1, CLDN1, PIK3R3

Table IV. Results of drug genes prediction in colorectal cancer.

Drug C-value P-value

Collagenase 104 3.88E‑21
Estradiol 122 6.81E‑10
Progesterone 136 1.98E‑09
Cisplatin 135 3.04E‑08
Fluorouracil   68 5.37E‑08
Acetazolamide   26 1.82E‑07
Heparin 188 5.15E-07
Estrone   64 8.66E‑07
Gentamicin   71 1.61E‑06
Ciprofloxacin 111 1.57E‑06
Sodium bicarbonate   42 2.20E‑06
Urokinase   80 3.25E‑06
Indomethacin   45 3.12E‑06
Dexamethasone   89 6.05E‑06
Daunorubicin   93 7.81E‑06
Netilmicin   97 9.95E‑06
Cefacetrile 100 1.19E-05
Cefotaxime 100 1.19E-05
Doxorubicin 103 1.40E‑05
Tamoxifen   74 3.66E‑05
Etoposide 125 4.21E-05
Hyaluronan   94 1.00E-04
Nadh 243 1.50E‑03
Adenosine 477 3.00E‑03
Glutathione 341 2.92E‑02

Table V. Results of drug genes prediction in ulcerative colitis.

Drug C-value P-value

Collagenase 104 1.02E-20
Heparin 188 1.45E-14
Urokinase   80 1.46E‑08
Alteplase   86 2.79E‑08
Adenine 159 6.18E‑08
Amiloride   61 5.28E‑07
Nadh 243 4.15E‑06
Immune globulin 624 1.13E‑05
Cyclosporine   56 8.01E‑05
Dinoprostone   61 8.97E‑05
Rosuvastatin 134 9.74E‑05
Adenosine monophosphate 102 2.48E-04
Glycine 191 7.99E-04
Progesterone 136 8.01E‑04
Bupropion 108 1.72E‑03
Adenosine triphosphate 299 2.70E‑03
Tretinoin 126 3.34E‑03
Nitric oxide 131 3.91E‑03
Adenosine 477 4.85E‑03
Vitamin a 145 5.93E‑03
Phosphoric acid 159 8.71E‑03
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COL1A2, BGN and MMP9), four in Cluster 2 (CXCL5, MMP1, 
MMP7 and PLAU) and four in Cluster 3 (LCN2, OLFMA, 
PTN and REG1B).

Analysis of network properties. The degree and betweenness 
centralities for the clusters in CRC and UC were calculated. As 
shown in Fig. 5, the topological centrality-based degree among 
the clusters revealed that Cluster 2 of UC had the highest degree 
at 29), while Cluster 3 of UC had the lowest degree at 13. As 
shown in Fig. 6, the betweenness of Cluster 3 also had the lowest 
betweenness (0.02). GWGS is closely associated with log2FC 
and indicates the corresponding degree of the DE genes, with 
DE genes of a higher degree exhibiting higher ranking values. 
As shown in Fig. 7, no significant difference was observed in 
the rank values between CRC and UC. On comparison of the 
clusters in CRC, Cluster 1 had the highest rank value (5.02), 
while cluster 3 of UC had the highest rank value (5.91).

Discussion

In the present study, DE genes with GWGS values in CRC 
and UC were identified through integrated analysis of multiple 
high throughput data. Based on the DE genes, PPI networks 
were constructed using the STRING database, and MCODE 
algorithm was implemented for sub‑network detection. The 
significance of sub‑networks was identified based on the 
network properties and GWGS values. In addition, functional 
enrichment analysis, including KEGG enrichment analysis, 
drug-gene interaction prediction, and miRNA prediction, were 
performed.

A total of 217 DE genes of CRC, 341 DE genes of UC and 
62 common genes were identified. The KEGG pathway anal-
ysis revealed nine terms of CRC and five terms of UC, with the 
focal adhesion and chemokine signaling pathway presented in 
both. As for the prediction of drug-gene interactions, collage-

Table VI. Results of miRNA prediction in colorectal cancer.

miRNA C-value P-value

hsa_TACTTGA, MIR‑26A, MIR‑26B 297 3.64E‑07
hsa_AATGTGA, MIR‑23A, MIR‑23B 417 1.53E‑06
hsa_CAGTATT, MIR‑200B, MIR‑200C, MIR‑429 465 4.67E‑06
hsa_TATTATA, MIR‑374 284 0.99E‑05
hsa_TGAATGT, MIR-181A, MIR-181B, MIR-181C, MIR-181D 479 2.01E-04
hsa_CTTGTAT, MIR‑381 201 6.11E‑04
hsa_TTTTGAG, MIR‑373 222 9.23E‑04
hsa_ATGAAGG, MIR‑205 156 1.21E‑03
hsa_TGGTGCT, MIR‑29A, MIR‑29B, MIR‑29C 515 1.24E‑03
hsa_AAGCCAT, MIR‑135A, MIR‑135B 332 1.49E‑03
hsa_TGCCTTA, MIR‑124A 542 1.82E‑03
hsa_ACTGTGA, MIR‑27A, MIR‑27B 465 2.50E‑03
hsa_TGTTTAC, MIR‑30A‑5P, MIR‑30C, MIR‑30D,  572 5.52E‑03
  MIR‑30B, MIR‑30E‑5P
hsa_ATTCTTT, MIR‑186 270 2.52E‑03
hsa_CTACCTC, LET‑7A, LET‑7B, LET‑7C,  384 3.41E‑03
  LET-7D, LET-7E, LET-7F, MIR-98, LET-7G, LET-7I
hsa_TTTGCAC, MIR‑19A, MIR‑19B 511 4.52E‑03
hsa_CACCAGC, MIR‑138 223 5.54E‑03
hsa_TAATAAT, MIR‑126 220 5.20E‑03
hsa_AAGCACT, MIR‑520F 236 6.90E‑03
hsa_TTTGTAG, MIR‑520D 335 7.11E‑03
hsa_GTTTGTT, MIR‑495 252 9.05E‑03
hsa_GTGCCTT, MIR‑506 714 1.02E‑02
hsa_TGCTGCT, MIR‑15A, MIR‑16, MIR‑15B,  593 1.05E‑02
  MIR-195, MIR-424, MIR-497
hsa_ACCAAAG, MIR‑9 493 1.26E‑02
hsa_CTTTGTA, MIR‑524 431 2.21E‑02
hsa_TGCTTTG, MIR‑330 331 2.61E‑02
hsa_AGCACTT, MIR‑93, MIR‑302A, MIR‑302B,  336 2.76E‑02
  MIR‑302C, MIR‑302D, MIR‑372, MIR‑373, MIR‑520E,
  MIR‑520A, MIR‑526B, MIR‑520B, MIR‑520C, MIR‑520D

MIR/miRNA, microRNA.



MOLECULAR MEDICINE REPORTS  12:  4947-4958,  2015 4953

nase was important in the drug associated genes of CRC and 
UC. The most significant miRNA prediction term in CRC and 
UC was the same, TACTTGA (MIR‑26A and MIR‑26B). The 

entire PPI network was constructed and subnetwork analyzed, 
the clusters contained common genes and exhibited similarities 
between CRC and UC. No significant difference was observed 

Table VII. Results of miRNA prediction in ulcerative colitis.

miRNA C-value P-value

hsa_TACTTGA, MIR‑26A, MIR‑26B 297 1.25E‑07
hsa_TGGTGCT, MIR‑29A, MIR‑29B, MIR‑29C 515 8.93E‑07
hsa_TGCCTTA, MIR‑124A 542 1.78E‑06
hsa_CAGTATT, MIR‑200B, MIR‑200C, MIR‑429 465 5.17E‑06
hsa_CATTTCA, MIR‑203 284 1.79E‑05
hsa_GTGCCAA, MIR‑96 301 3.05E‑05
hsa_ACCAAAG, MIR‑9 493 2.03E‑04
hsa_ACTGTGA, MIR‑27A, MIR‑27B 465 4.06E‑04
hsa_AATGTGA, MIR‑23A, MIR‑23B 417 5.11E‑04
hsa_TTTGCAC, MIR-19A, MIR-19B 511 8.05E-04
hsa_CTACCTC,  LET‑7A, LET‑7B, LET‑7C, LET‑7D, 384 1.00E‑03
  LET-7E, LET-7F, MIR-98, LET-7G, LET-7I
hsa_TTGGAGA, MIR‑515‑5P, MIR‑519E 145 1.10E‑03
hsa_CACCAGC, MIR‑138 223 2.00E‑03
hsa_AAGCCAT, MIR‑135A, MIR‑135B 332 1.44E‑03
hsa_TGAATGT, MIR‑181A, MIR‑181B,  MIR‑181C, MIR‑181D 479 1.61E‑03
hsa_TAATAAT, MIR‑126 220 1.90E‑03
hsa_AAGCAAT, MIR‑137 217 1.74E‑03
hsa_TATTATA, MIR‑374 284 1.99E‑03
hsa_CTATGCA, MIR‑153 214 1.63E‑03
hsa_AACTGGA, MIR‑145 231 2.51E‑03
hsa_ATACCTC, MIR‑202 178 3.01E‑03
hsa_CAGTGTT, MIR‑141, MIR‑200A 308 3.20E‑03
hsa_GTGCAAT, MIR‑25, MIR‑32, MIR‑92, MIR‑363, MIR‑367 308 3.22E‑03
hsa_AAGCACA, MIR‑218 395 4.32E‑03
hsa_AAAGACA, MIR‑511 199 5.11E‑03
hsa_TGTTTAC, MIR‑30A‑5P, MIR‑30C,  MIR‑30D, MIR‑30B, MIR‑30E‑5P 572 6.02E‑03
hsa_TGTATGA, MIR‑485‑3P 148 6.49E‑03
hsa_CAGCAGG, MIR‑370 153 7.41E‑03
hsa_ATGAAGG, MIR‑205 156 8.03E‑03
hsa_ACATTCC, MIR‑1, MIR‑206 293 8.92E‑03
hsa_CTGAGCC, MIR‑24 229 9.81E‑03
hsa_TAGCTTT, MIR‑9 234 1.09E‑02
hsa_AAGCACT, MIR‑520F 236 1.13E‑02
hsa_TTGCCAA, MIR‑182 324 1.48E‑02
hsa_GCAAAAA, MIR‑129 183 1.52E‑02
hsa_ATACTGT, MIR‑144 198 2.06E‑02
hsa_ATTCTTT, MIR‑186 270 2.05E‑02
hsa_CTTGTAT, MIR‑381 201 2.16E‑02
hsa_CTTTGTA, MIR‑524 431 2.18E‑02
hsa_TTTGCAG, MIR-518A-2 208 2.48E-02
hsa_ATATGCA, MIR-448 208 2.48E-02
hsa_TGCACTG, MIR‑148A, MIR‑152, MIR‑148B 299 3.16E‑02
hsa_ATGTACA, MIR‑493 312 3.77E‑02

MIR/miRNA, microRNA.
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Figure 2. Protein‑protein interaction network of ulcerative colitis DE genes. A total of 314 nodes (purple ovals), 882 edges (lines between nodes) and 341 DE 
genes were identified, where nodes represent gene signatures and edges between nodes represent interaction between genes in the network. Among the nodes, 
CD44 exhibited the highest degree (52), followed by IL1B (50) and MMP9 (49). Node sizes correspond to the absolute values of the fold change of the DE genes. 
Edges were derived from he Search Tool for the Retrieval of Interacting Genes/proteins database. DE, differentially expressed.

Figure 1. Protein‑protein interaction network of colorectal cancer DE genes. A total of 210 node (purple ovals) and 752 edges (lines between) were identified, 
which included 217 DE genes. Among the nodes, MT2A exhibited the highest degree (42), followed by COL1A1 (37) and COL1A2 (37). Node sizes correspond 
to the absolute values of the fold change of the DE gene. Edges were derived from the Search Tool for the Retrieval of Interacting Genes/proteins database. 
DE, differentially expressed.
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Figure 4. Clusters of the protein‑protein interaction network in UC. (A) Cluster 1, (B) cluster 2 and (C) cluster 3. Cluster 1 had the highest degree (5.867), and 
numbers of nodes (16) and edges (44). There were five common genes to UC and colorectal cancer in cluster 1 (COLIAI, SPP1, COL1A2, BGN and MMP9), 
four in cluster 2 (CXCL5, MMP1, MMP7 and PLAU) and four in cluster 3 (LCN2, OLFMA, PTN and REG1B). Node sizes correspond to the absolute values of 
the fold change of the differentially expressed genes. Edges were derived from the Search Tool for the Retrieval of Interacting Genes/proteins database. UC, 
ulcerative colitis.

Figure 3. Clusters of the protein‑protein interaction network of CRC. (A) Cluster 1, (B) Cluster 2 and (C) Cluster 3. Clusters were identified according to the 
following cut off-values: Node Score=0.2, degree=4, k-core=4, Maximum depth=100. Cluster 1 had the highest degree (5.8) and number of edges (29), the 
nodes of the three clusters were same. Common genes to CRC and ulcerative colitis in Cluster 1 were COL1A2, MMP3, PLAU, CXCL5, CXCL3 and CXCL1. 
In Cluster 2, common genes were MMP7, BGN, MMP1, SPP1, and COL1A1. There were four common genes in Cluster 3 (SORD, MT1 M, MMP9 and LCN2). 
Node sizes correspond to the absolute values of the fold change of the differentially expressed genes. Edges were derived from the Search Tool for the Retrieval 
of Interacting Genes/proteins database; CRC, colorectal cancer.
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  A   B

  C
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between the GWGS values of the clusters in UC and CRC. In 
UC, cluster 3 had the highest GWGS value, while the topological 
centrality of this cluster had the lowest degree and betweenness.

Patients with UC have an increased risk of developing CRC, 
compared with the general population (33), and the increased 
risk was almost entirely confined to patients with long‑standing 
extensive colitis (3). Important risk factors include primary 
sclerosing cholangitis (34) and a family history of CRC (35), 
whereas the role of other factors, including the effect of the age 
at onset of UC remains to be elucidated. It has been reported 
that hypermethylation of the promoter region of CDH1 in CRC 
is associated with a reduction in UC (36). In the present study, 
62 common genes were found between CRC and UC. The most 
significant two genes were AQP8 and CXCL5. AQP8 is a water 
channel protein, and aquaporins are a family of small integral 
membrane proteins associated with major intrinsic protein, 
and is closely associated with miRNA in patients with UC 
patients (37). Thus, it is possible that certain genes expressed 
in patients with UC are also expressed in patients with CRC, 
and the inhibition of certain genes in UC may decrease risk 
of CRC.

The focal adhesion and chemokine signaling pathway 
were found to be present in CRC and UC. It has been previ-
ously revealed that the predominant type of pathway in 
UC-associated neoplasia is associated with genes and, that 
genomic instability frequently occurs prior to the develop-
ment of histologically‑defined dysplasia (38). Using genes 
to construct a predictive model to distinguish patients with 
and without UC-induced CRC is a useful method to identify 
the disease (38). Therefore, controlling the pathway of UC 
to prevent the formation of UC-associated neoplasia may 
decrease the incidence of CRC.

The present study demonstrated that collagenase, proges-
terone, heparin, urokinase, nadh and adenosine drugs may be 
used to treat CRC and UC. Due to this possible mechanism 
for inflammation‑induced cancer, patients taking anti‑inflam-
matory mesalamine drugs may exhibit reduced rates of 
colorectal neoplasia (39). These results were concordant with 
the hypothesis that certain drugs may offer potential for use 
in the treatment of CRC and UC. For example, collagenases, 
are proteolytic enzymes, which are present within cells in an 
inactive form and are secreted at sites of inflammation by 
mononuclear cells and metastatic tumors (40), thus, colla-
genase not only indicates the potential for preventing UC 
from inflammation interference, but also a potential effect on 
tumors, which lead to cancer.

Previous studies have demonstrated that miRNAs are 
the central regulators of various physiological processes, 
and that the disruption of miRNA is associated with human 
diseases (41,42). Therefore, in the present study, miRNA 
prediction experiments were performed. The most significant 
miRNA in CRC was the same as that in UC. Therefore, the 
disruption of miRNA in UC may lead alter miRNA in CRC. 
The link between miRNA function and cancer pathogenesis 
was further supported by investigations examining miRNA 
in clinical samples, with altered miRNA being reported in 
CRC (43). The present study hypothesized that the altered 
miRNA in CRC was from UC.

The examination of networks as a tool has attracted 
significant attention in analyzing several biological and 
communication systems. Protein interaction network 
analysis provides an effective method of estimating and 
understanding the likelihood of potential, yet undetermined, 

Figure 7. Rank values of the clusters. (A) Cluster 1 of CRC; (B) cluster 2 
of CRC; (C) cluster 3 of CRC; (D) cluster 1 of UC; (E) cluster 2 of UC; 
(F) cluster 3 of UC. No significant differences were observed between the 
rank values of the clusters in CRC and UC. CRC, colorectal cancer; UC, 
ulcerative colitis.

Figure 5. Centralities analysis based on the degree of the clusters. 
(A) Cluster 1 of CRC; (B) cluster 2 of CRC; (C) cluster 3 of CRC; (D) cluster 
1 of UC; (E) cluster 2 of UC; (F) cluster 3 of UC. No significant differences 
were observed between the degrees of the clusters in CRC. Cluster 2 of UC 
had the highest degree (29), while Cluster 3 of UC had the lowest degree (13). 
CRC, colorectal cancer; UC, ulcerative colitis.

Figure 6. Centralities analysis based on the betweenness of clusters. 
(A) Cluster 1 of CRC; (B) cluster 2 of CRC; (C) cluster 3 of CRC; (D) cluster 
1 of UC; (E) cluster 2 of UC; (F) cluster 3 of UC. Cluster 2 of UC had the 
highest betweenness, while cluster 3 of UC possessed the lowest between-
ness. CRC, colorectal cancer; UC, ulcerative colitis.
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connections between proteins/genes (44). In PPI networks, 
the data of large-scale protein interactions has accumu-
lated with the development of high throughput assessment 
technology, however, a certain number of interactions have 
not been assessed, which may be important. This type of 
difficulty had been resolved to a certain extent by the use 
of clustering methods, which had previously been found to 
be useful in identifying protein/gene interactions within the 
same cellular process (45). In the present study, the MCODE 
algorithm was applied to examine gene-gene connectivity 
in a more informative way, which revealed three clusters in 
CRC and UC with highly connected nodes. Several common 
genes were contained in the clusters, which indicated that the 
clusters of CRC and UC had certain similarities. Srihari and 
Ragan performed a straightforward, systematic identification 
and comparison of modules across pancreatic normal and 
cancer tissue conditions by integrating PPI, gene-expression 
and mutation data (46), which provided functional insight 
into the identified sub‑network and thus may be suitable for 
analysis of CRC.

In several PPI networks, significance is correlated with the 
topological placement of the proteins/genes in the network, 
while connectivity provides an indication of the importance 
of a gene (47). In the present study, the highest ranking gene 
in degree and betweenness centralities was PLAU in both 
UC and CRC. This gene encodes a serine protease, which 
is involved in degradation of the extracellular matrix and 
possibly tumor cell migration and proliferation (48). A 
specific polymorphism in this gene may be associated with 
late-onset (49). However, the GWGS value of Cluster 2 in 
UC was not in accordance with the degree of betweenness. 
GWGS was a novel method to detect the relevance of genes 
between clusters, based on the rank value of gene expres-
sion. In previous studies, the topological centrality, based on 
degree, was not consistent with that based on betweenness, 
even altered rules of the same clusters in degree, betweenness, 
closeness and other properties (such as cluster coefficient and 
stress) were different (50,51). Differences among these prop-
erties may be explained by the fact that each property has its 
own target (52); for example GWGS focuses on combining 
gene expression with the protein network, while the degree 
concerns the association between genes. Investigation of 
the worth of rank values in gene signatures and biological 
analysis is required in the future.

In conclusion, the present study demonstrated the presence 
of 62 common genes in CRC and UC DE genes and KEGG 
analysis obtained the same gene terms, therefore, controlling 
these terms in UC may decrease the risk and rate of CRC 
formation. Through drug genes prediction, drugs were iden-
tified, which may treat UC and CRC simultaneously to cure 
patients with UC and possibly prevented patients from devel-
oping CRC. According to PPI network analysis, a significant 
PPI network and subnet was produced, with common genes 
included in clusters. No significant differences were observed 
in the GWGS values of the clusters in UC and CRC. Cluster 3 
in UC had the highest GWGS value, whereas the topological 
centrality of Cluster 3 in UC had the lowest degree and 
betweenness. These findings may provide potential biomarkers 
and reveal information regarding the pathological mechanism 
of CRC induced by UC.
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