
Saudi Journal of Biological Sciences 29 (2022) 3519–3527
Contents lists available at ScienceDirect

Saudi Journal of Biological Sciences

journal homepage: www.sciencedirect .com
Bioinformatics role of the WGCNA analysis and co-expression network
identifies of prognostic marker in lung cancer
https://doi.org/10.1016/j.sjbs.2022.02.016
1319-562X/� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author at: No. 22 Xinong Road, College of Animal Science and
Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.

E-mail address: zanlinsen@163.com (L. Zan).
1 These authors contributed equally to this work.

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Liang Chengcheng a,1, Sayed Haidar Abbas Raza a,1, Yu Shengchen a, Zuhair M. Mohammedsaleh c,
Abdullah F. Shater c, Fayez M. Saleh d, Muna O. Alamoudi e, Bandar H. Aloufi e, Ahmed Mohajja Alshammari e,
Nicola M. Schreurs f, Linsen Zan a,b,⇑
aCollege of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
bNational Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, PR China
cDepartment of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
dDepartment of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
eBiology Department, Faculty of Science, Hail University, Hail 81411, Saudi Arabia
fAnimal Science, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
a r t i c l e i n f o

Article history:
Received 16 December 2021
Revised 25 January 2022
Accepted 13 February 2022
Available online 23 February 2022

Keywords:
Bioinformatics
Lung Cancer
Gene Expression Omnibus
Weighted Correlation Network Analysis
(WGCNA)
Gene Expression Profiling Interactive
Analysis (GEPIA)
a b s t r a c t

Lung cancer is the most talked about cancer in the world. It is also one of the cancers that currently has a
high mortality rate. The aim of our research is to find more effective therapeutic targets and prognostic
markers for human lung cancer. First, we download gene expression data from the GEO database. We per-
formed weighted co-expression network analysis on the selected genes, we then constructed scale-free
networks and topological overlap matrices, and performed correlation modular analysis with the cancer
group. We screened the 200 genes with the highest correlation in the cyan module for functional enrich-
ment analysis and protein interaction network construction, found that most of them focused on cell
division, tumor necrosis factor-mediated signaling pathways, cellular redox homeostasis, reactive oxygen
species biosynthesis, and other processes, and were related to the cell cycle, apoptosis, HIF-1 signaling
pathway, p53 signaling pathway, NF-jB signaling pathway, and several cancer disease pathways are
involved. Finally, we used the GEPIA website data to perform survival analysis on some of the genes with
GS > 0.6 in the cyan module. CBX3, AHCY, MRPL12, TPGB, TUBG1, KIF11, LRRC59, MRPL17, TMEM106B,
ZWINT, TRIP13, and HMMR was identified as an important prognostic factor for lung cancer patients.
In summary, we identified 12 mRNAs associated with lung cancer prognosis. Our study contributes to
a deeper understanding of the molecular mechanisms of lung cancer and provides new insights into drug
use and prognosis.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Cancer is defined as an abnormal growth of cells. Cancer origi-
nates in any organ or body structure and consists of tiny cells that
have lost the ability to stop growing. The incidence of cancer has
been rising steadily over the past decade, probably due to our reg-
ular exposure to various carcinogens, or cancer-causing agents, and
changes in our lifestyles. Cancer is one of the most dreaded dis-
eases of the 20th century and is spreading further in the 21th cen-
tury as the incidence continues and increases. This is a very
worrying situation, with one in four people at risk of developing
cancer (Roy and Saikia, 2016, Torre et al., 2016). Cancer profiles
are inseparable from their internal metabolism, whether the can-
cer profile leads to altered internal metabolism or the reverse.
Alterations in signal transduction pathways may explain the meta-
bolic reprogramming of cells (Kroemer and Pouyssegur, 2008).
Cancers with lethal potential, or their precursors, should be
detected early for treatment that reduces mortality and morbidity
(Srivastava et al., 2019).
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With increasing urbanization and environmental pollution, the
causative factors of lung cancer have become increasingly com-
plex. Research directions have focused on the epidemiological
characteristics of lung cancer and its associated risk factors (Mao
et al., 2016). Proteomics can detect relatively different protein
abundances in normal and cancer patients, and analysis can iden-
tify predictive and prognostic markers of drug resistance in lung
cancer. In turn, newmolecular therapeutic targets can be identified
(Cheung and Juan, 2017, Oberndorfer and Müllauer, 2018).
Research on molecular markers of lung cancer is underway in Eur-
ope, which will potentially be an important screening tool
(Veronesi, 2015).

WGCNA, or Weighted Correlation Network Analysis, is a mea-
sure of the co-expression relationship between genes using their
expression correlation coefficients. Expression patterns between
genes clustered into a module are similar. They can be involved
in the same biological processes or signaling pathways (Liu et al.,
2017, Kakati et al., 2019). In addition, these modules can also be
associated with clinical features. When screening for differences,
most studies focused on the differential genes and ignored the high
correlation between genes. Currently, WGCNA has been applied in
several research fields and is very effective for screening new ther-
apeutic targets (Chen et al., 2017, Yuan et al., 2018, Yao et al.,
2019).

In this study data were collected from the GEO dataset on the
expression profile of lung cancer. Fifty-four of these samples (27
normal paraneoplastic normal tissues, 27 tumor cancerous tissues)
were selected for data compilation. And the average FPKM < 0.5
expression was filtered. We then performed WGCNA analysis of
the resulting genes and then constructed a protein interaction net-
work on the highly correlated genes of lung cancer samples and
survival analysis by combining the clinical data from GEPIA data-
base, and screened a total of 12 genes related to survival rate.
The screened genes could be used as prognostic markers of lung
cancer for further study.
2. Methods

2.1. Data acquisition and pre-processing

To screen for prognostic markers in lung cancer patients, this
study used datasets from the GEO database, and GEO data contain
expression profiling data and DNA methylation data.
Fig. 1. Scatter plot of fit index, average connectivity and power values. Left: Soft Thres
connectivity and power. Right: Soft Threshold (power) is the weight, and the vertical axis
is used as the b value, b = 14 in this analysis.
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2.2. Construction of Weighted Correlation Network Analysis

The value of mean FPKMwas filtered for values greater than 0.5.
We also perform cluster analysis on all samples and fit index anal-
ysis to convert the similarity matrix to adjacency matrix, and then
we calculate the optimal power (soft threshold) value to ensure
that the correlation between connectivity and power is above
0.9. The best power value was determined to be 14. Based on this,
we constructed a scale-free network and a topology overlap matrix
(TOM). Corresponding TOM dissimilarity (diss TOM) was also per-
formed, which resulted in the generation of a gene (tree graph)
hierarchical clustering tree based on function hclust by hierarchi-
cal clustering for module detection. To avoid generating too many
modules, the relevant parameters were a minimum Module
Size = 30 and deep Split = 2. MEDissThres = 0.25, the similarity is
0.75. When the similarity is > 0.75, the modules are merged to gen-
erate new merge module after that.

2.3. Relationship between grouping information and modules

The correlations between the constructed modules and the
tumor and normal groups were analyzed, and a heat map plotted
including 35 modules. Finally, we performed correlation analysis
based on the gene significance of the module membership with
the tumor group and plotted the scatter plot. The cyan module
was found to have (Cor = 0.71, p-value = 1.4e-133). We further per-
form subsequent functional enrichment and analysis of this
module.

2.4. Gene ontology and pathway enrichment analysis

The cyanmodule (Cor = 0.67, p-value = 3e-08) was screened and
200 hub genes were obtained by GS > 0.5 screening. Gene Ontology
(GO) enrichment analysis of the hub genes was performed using
the David version 6.8 (https://david.ncifcrf.gov/) database (Huang
da et al., 2009). The kobas version 3.0 (http://kobas.cbi.pku.edu.
cn/kobas3/?t=1) was selected for transformation of hub genes
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis (Wu et al., 2006, Xie et al., 2011). The GO con-
sists of three components: biological process (BP), molecular func-
tion (MF), and cellular component (CC). All displayed GO or KEGG
terms or genes have a p < 0.05. Finally, we visualized some of the
terms using the GO plot package (https://cran.r-project.org/
hold (power) is the weight, and the vertical axis indicates the correlation between
is the average connectivity. The power when the correlation is required to reach 0.9
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web/packages/GOplot/) in the R language software (Walter et al.,
2015).

2.5. Construction of PPI network

A protein interaction network map was constructed for the hub
genes in the cyan module with GS > 0.5 (the higher the GS, the
greater the correlation between the gene and the trait), which were
displayed using the online website string (https://string-db.org/
cgi/) (Szklarczyk et al., 2015, Szklarczyk et al., 2017). The screening
condition was that with the highest confidence = 0.900. Further
visualization was obtained using Cytoscape version 3.6.0
(https://cytoscape.org/) software (Shannon et al., 2003, Doncheva
et al., 2019).

2.6. Survival analysis

Survival analysis was performed on some of the genes with
GS > 0.6 in the cyan module, using the Gene Expression Profiling
Interactive Analysis (GEPIA) website (Tang et al., 2017) (http://
Fig. 2. Sample clustering plot and sample trait heat map. The image is a clustering plot af
the traits Tumor and Normal, where red indicates the Tumor group. White indicates the
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gepia2.cancer-pku.cn/# (index) of the Lung cancer disease clinical
data for survival analysis of GS correlation>0.6 in the cyan module.
The clinical sample consisted of 239 low expression groups and
239 high expression groups (S.Table 1).
3. Results

3.1. Pre-processing of the data sets

We downloaded dataset GSE7670 and selected 54 of the sam-
ples (27 normal paracancerous normal tissues and 27 tumor
cancerous tissues). The platform file used the GPL96 [HG-U133A]
Affymetrix Human Genome U133A Array, and we performed id
conversion of the matrix files according to the platform file. The
matrix files were sorted and processed for missing values, and fil-
tered for expression with an average FPKM < 0.5. We then per-
formed WGCNA analysis of the resulting genes.

Fig. 1 shows the scale-free fit indices at various soft-threshold
(power) values. There are plots showing the average connectivity
ter clustering the samples, and below is a heat map of the samples corresponding to
Normal group.

https://cran.r-project.org/web/packages/GOplot/
https://cytoscape.org/
http://gepia2.cancer-pku.cn/%23
http://gepia2.cancer-pku.cn/%23


Fig. 3. Module clustering tree diagram. Scale-free networks and topological overlap matrices (TOMs) were constructed. The corresponding TOM phase dissimilarity (diss
TOM) was also performed, resulting in the generation of a gene (tree diagram) hierarchical clustering tree based on the function hclust by hierarchical clustering for module
detection. In order to avoid generating too many modules, the relevant parameters min Module Size is 30 and deep Split = 2. MEDissThres is set to 0.25, the similarity is 0.75.
When the similarity is > 0.75, the modules are merged together to generate new merge the module after that.

Fig. 4. Module and trait-related heat map. The horizontal coordinates are traits, divided into tumor and normal groups. The vertical coordinates are the clustering obtained
for each module. We chose the most correlated (Cor = 0.67, p-value = 3e-08) module cyan for the follow-up study.
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at various soft-thresholds (power). The best power value was
determined as b = 14. We then performed sample cluster analysis
(Fig. 2). After grouping the adjacency matrices were transformed to
generate TOM matrices, and hierarchical clustering was used to
generate a function hclust hierarchical clustering-based tree for
module detection. Dynamic tree clipping method was used for
module identification. And modules with similarity greater than
0.75 are merged. The final module clustering tree diagram was
obtained (Fig. 3). We perform correlation analysis between the var-
ious modules and trait groupings generated by clustering. A heat
map of the module and trait data is plotted (Fig. 4). It is total of
35 modules were generated for all samples. The correlation coeffi-
cients and p-values between each module and each trait are listed
in the heat map. Finally, we selected the Cyan module for subse-
quent analysis. Because this module had the largest correlation
coefficient with the tumor group (Cor = 0.67, p-value = 3e-08). This
study also looked at the correlation between MM (module mem-
bership) in the cyan module and GS (gene significance) in the trait
tumor (Fig. 5). The correlation was found to be 0.71, p-value = 1.4e-
133. It means that the genes in the cyan module had a high positive
correlation with the tumor cancer group. We then performed func-
tional studies on the genes in the cyan module.
Fig. 5. Scatter plot of correlation analysis of Cyan modules and tumor group. We can see
To find the hub genes associated with the tumor trait, we first calculate the internal conn
the module, while the module indicates to which module the gene belongs. The higher t
module is correlated with the trait tumor.
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3.2. Enrichment analysis of GO, KEGG and PPI network

A total of 120 GO terms were found. Of these, 62 were biological
processes (BP), 38 were cellular components (CC), and 20 were
molecular functions (MF). Most of them were focused on cell divi-
sion, tumor necrosis factor-mediated signaling pathway, negative
regulation of cell redox homeostasis, negative regulation of reac-
tive oxygen species biosynthesis, positive regulation of Wnt signal-
ing pathway and other processes related to cancer cell division,
maintenance of cell redox homeostasis and reactive oxygen species
biosynthesis. KEGG pathway enrichment analysis enriched a total
of 110 pathways, mainly including cell cycle, cellular apoptosis,
HIF-1 signaling pathway, peroxisome, insulin resistance, PI3K-Akt
signaling pathway, p53 signaling pathway, NF-jB signaling path-
way, and multiple cancer disease pathways. We selected some of
the results of GO and KEGG analyses and plotted them visually
using the R package GO plot (Fig. 6). Finally, we performed protein
interaction network analysis based on the genes with GS > 0.5 in
the cyan module (Fig. 7). A total of 96 nodes and 311 edges were
obtained. The size of the circles in the graph indicates the size of
the correlation with GS tumor. The larger the circles, the stronger
the correlation.
that the correlation coefficient between Cyan module and tumor group reaches 0.71.
ectivity of the gene and the module, which measures the position of the gene within
he correlation between the module MM and the current GS, the more positively the



Fig. 6. Chord diagram of GO and KEGG enrichment analysis of the Hub gene. GO enrichment analysis includes biological process (BP), molecular function (MF) and cellular
component (CC) terms) and KEGG pathway enrichment analysis. Selected sections are presented.
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3.3. Survival analysis

A total of 12 lung cancer prognostic markers were screened:
Chromobox 3 (CBX3), adenosylhomocysteinase (AHCY), Kinesin
Family Member 11 (KIF11) by survival analysis based on the GEPIA
public database, Mitochondrial Ribosomal Protein L12 (MRPL12),
Leucine Rich Repeat Containing 59 (LRRC59), Hyaluronan Mediated
Motility Receptor (HMMR), Mitochondrial Ribosomal Protein L17
(MRPL17), Transmembrane Protein 106B (TMEM106B), Tro-
phoblast Glycoprotein (TPBG), Tubulin Gamma 1 (TUBG1), ZW10
Interacting Kinetochore Protein (ZWINT), Thyroid Hormone Recep-
tor Interactor 13 (TRIP13). The survival analysis curve is shown in
Fig. 8. When the expression of 12 genes is high, the survival rate of
3524
lung cancer patients is small; therefore, these genes may be asso-
ciated with a poor prognosis.

4. Discussion

WGCNA analysis is more widely used in cancer research. Exam-
ples include studies related to colon cancer (Zhai et al., 2017), liver
cancer(Yin et al., 2018) and osteosarcoma metastasis(Tian et al.,
2018) This analysis allows for the classification of co-expressed
genes by weighted gene co-expression. Listed as a module, each
module and related traits are finally correlated, thus selecting
module genes that are highly correlated with the trait for further
analysis.



Fig. 7. PPI protein interaction network diagram for the Hub gene. The protein interaction network map was constructed for the hub gene with GS > 0.5 in the cyan module,
and the screening condition was highest confidence = 0.900. The size of nodes indicates the correlation between GS and tumor trait, and the larger the nodes, the stronger the
correlation.
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The incidence of lung cancer now leads the world and has gone
from being a rare disease to a global public health problem. The
causes of the disease have also become more complex than before.
Most of these are due to smoking, environmental pollution prob-
lems, and industrialization. (Mao et al., 2016, Nasim et al., 2019).
But with advances in the life sciences. New molecular targets for
lung disease continue to be discovered, prompting the develop-
ment of new therapies. For NSCLC, future use of targeted therapies
or immunotherapy may be more effective (Hirsch et al., 2017).

Gene CBX3 mainly plays a role in neural differentiation and the
growth of hepatocellular carcinoma cells, and has minimal studies
for its association with lung cancer (Huang et al., 2017, Zhong et al.,
2019). AHCY is associated with stem cell proliferation (Aranda
et al., 2019), and studies on lung cancer are currently unreported.
MRPL12 is mainly associated with mitochondrial energy supply
3525
(Ma et al., 2020)and the gene LRRC59 is reported to be associated
with poor prognosis in lung cancer and is involved in the cell pro-
liferation process (Li et al., 2020). The gene TPGBG is associated
with Wnt signaling and can promote pancreatic ductal adenocarci-
noma cell metastasis (He et al., 2015). The TUBG1 gene has been
associated with the risk of breast cancer (Blanco et al., 2015). The
gene we screened is not common in lung cancer studies. However,
it has a high positive correlation with lung cancer traits. Therefore,
it is of great research significance.

This is consistent with the characteristics of the sample and
bodes well for the desirability of our research method. The results
are reliable.

In this study, we used bioinformatics WGCNA analysis for mod-
ular analysis of lung cancer samples, and we identified 12 mRNAs
that can be used as prognostic markers for lung cancer analysis.



Fig. 8. Survival analysis curves for selected Hub genes. GS correlation in the cyan module was greater than 0.6 for survival analysis, and the clinical sample consisted of 239
low expression groups and 239 high expression groups, method selection overall survival, using median’s group cutoff, log rank p < 0.05.
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They included 5 unknown (CBX3, AHCY, MRPL12, TPBG, TUBG1)
and 7 known (KIF11, LRRC59, MRPL17, TMEM106B, ZWINT,
TRIP13, HMMR) markers.

5. Conclusion

Overall, we screened 12 mRNAs associated with prognosis in
lung cancer that could serve as prognostic biomarkers for lung can-
cer research. The screening study performed contributes to further
understanding of the molecular mechanisms of lung carcinogene-
sis and provides new insights into drug use and prognosis.
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