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ABSTRACT: Erythropoietin-producing hepatocellular receptor A2 (EphA2) is
overexpressed in cancer cells and causes abnormal cell proliferation. Therefore, it
has attracted attention as a target for diagnostic agents. In this study, the EphA2-
230-1 monoclonal antibody (EphA2-230-1) was labeled with [111In]In and
evaluated as an imaging tracer for single-photon emission computed tomography
(SPECT) of EphA2. EphA2-230-1 was conjugated with 2-(4-isothiocyanatoben-
zyl)-diethylenetriaminepentaacetic acid (p-SCN-BnDTPA) and then labeled with
[111In]In. [111In]In-BnDTPA-EphA2-230-1 was evaluated in cell-binding, bio-
distribution, and SPECT/computed tomography (CT) studies. The cellular
uptake ratio of [111In]In-BnDTPA-EphA2-230-1 was 14.0 ± 2.1%/mg protein at 4 h in the cell-binding study. In the biodistribution
study, a high uptake of [111In]In-BnDTPA-EphA2-230-1 was observed in tumor tissue (14.6 ± 3.2% injected dose/g at 72 h). The
superior accumulation of [111In]In-BnDTPA-EphA2-230-1 in tumors was also confirmed using SPECT/CT. Therefore, [111In]In-
BnDTPA-EphA2-230-1 has potential as a SPECT imaging tracer for EphA2.

1. INTRODUCTION
Erythropoietin-producing hepatocellular (Eph) receptors are
known as the largest tyrosine kinase receptor family, and 14
subtypes have been confirmed in the human genome. These 14
subtypes are classified into nine EphA and five EphB
subclasses.1,2 Eph receptors and their ephrin ligands are
bound to cell membranes, and their binding causes
dimerization and subsequent activation.3,4 Additionally, Eph
receptors are involved in cell proliferation and survival, and by
controlling their activation, Eph receptors can inhibit the
proliferation and migration of cancer cells. However, some Eph
receptors are overexpressed in cancer cells and activate without
binding to ephrin, causing abnormal cell proliferation.5,6

Among them, erythropoietin-producing hepatocellular recep-
tor A2 (EphA2) is particularly overexpressed in cancer cells,
including breast and prostate cancer and malignant gliomas.7−9

The relationship between tumor malignancy and EphA2 has
also been described.10,11 For example, the expression level of
EphA2 has been reported to increase with malignancy in breast
cancer patients. Moreover, EphA2 expression and the survival
rate of breast cancer patients are correlated,12 indicating that
EphA2 can be used as a therapeutic target; therefore, small
molecule compounds, peptides, and antibodies have been
developed to target EphA2.13−15 Although three clinical trials
have been conducted for therapeutic agents, none of the small
molecule compounds have been approved for treatment.9 In
contrast, research on antibodies targeting EphA2 has
progressed since 2007.16 Several antibodies have been

studied,17−20 including DS-8895a, which has been evaluated
in clinical trials.21 Through pharmacokinetics, DS-8895a
labeled with [111In]In has been found to have poor clearance
from blood, with a low tumor-to-blood ratio of 0.94 at 7
days.19 A low tumor-to-blood ratio may result in unclear tumor
images. Therefore, the aim of this study was to develop a novel
antibody imaging tracer targeting EphA2 to improve the
tumor-to-blood ratio. Our novel monoclonal antibody that
targets EphA2 was evaluated in vitro through a cell-binding
study and in vivo through biodistribution and single-photon
emission computed tomography/computed tomography
(SPECT/CT) studies.

2. RESULTS AND DISCUSSION
2.1. DTPA Conjugates with the Antibody. We used the

EphA2-230-1 monoclonal antibody (EphA2-230-1) as the
antibody that specifically binds to EphA2.22 This antibody was
constructed using a previously reported method.23 Moreover,
diethylenetriamine pentaacetic acid (DTPA), which is
necessary for complex formation with [111In]In, by random
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modification to a lysine residue was introduced into EphA2-
230-1. [111In]In is a radionuclide that is also used in clinical
practice for SPECT imaging. Additionally, DTPA is a chelating
agent with the highest binding affinity for In. The molecular
weight of the EphA2-230-1 antibody reacted with 2-(4-
isothiocyanatobenzyl)-diethylenetriaminepentaacetic acid (p-
SCN-BnDTPA) (BnDTPA-EphA2-230-1) was measured using
matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF-MS) (Bruker, Billerica, MA,
USA) and found to be 154670.7 m/z (Figure S1). The
molecular weight of the EphA2-230-1 antibody was 147351.5
m/z; for that reason, an average of 13.4 DTPAs was introduced
per EphA2-230-1.
2.2. Binding Affinity for EphA2. The binding of EphA2-

230-1, BnDTPA-EphA2-230-1, and natIn-labeled BnDTPA-
EphA2-230-1 (natIn-BnDTPA-EphA2-230-1) to EphA2 was
examined using flow cytometry. These antibodies were bound
to EphA2-positive U87MG cells24 in a dose-dependent
manner. As shown in Figure 1, the reactivity of BnDTPA-

and natIn-BnDTPA-EphA2-230-1 was slightly weaker than
that of intact EphA2-230-1 (equilibrium dissociation constant:
EphA2-230-1 = 128.9 nM, BnDTPA-EphA2-230-1 = 401.8
nM, natIn-BnDTPA-EphA2-230-1 = 529.5 nM), indicating
that conjugated DTPA might interfere with the binding site of
EphA2-230-1. Nevertheless, BnDTPA- and natIn-BnDTPA-
EphA2-230-1 retained sufficient binding to EphA2. In the
future, it is necessary to control the number and position of
BnDTPA molecules introduced into the antibody. Further-
more, combinations of different ligands and nuclides should be
considered.

2.2.1. Radiolabeling. BnDTPA-EphA2-230-1 was labeled
with [111In]In (Figure 2). As a result, [111In]In-BnDTPA-
EphA2-230-1 was obtained at an 83.6% (5.1 MBq/100 μg)
radiochemical yield and high radiochemical purity (98.5%;
Figure S2).

2.3. Cell-Binding Study. The uptake of [111In]In-
BnDTPA-EphA2-230-1 in U87MG cells is shown in Figure
3. The cellular uptake of [111In]In-BnDTPA-EphA2-230-1

increased in a time-dependent manner (cellular uptake ratio
[CUR], 14.0 ± 2.1%/mg protein at 4 h). In contrast, the CUR
of [111In]In-BnDTPA-EphA2-230-1 significantly decreased by
the addition of the EphA2-230-1 antibody (90.9% reduction at
4 h). The intracellular uptake ratio was 10.3 ± 0.6%/mg
protein at 24 h, which corresponds to 54.8% of the total
cellular uptake at 24 h. As a result, [111In]In-BnDTPA-EphA2-
230-1 was shown to be taken up into U87MG cells in a time-
dependent manner. On the other hand, [111In]In-BnDTPA-
EphA2-230-1 was barely taken up into the cells in the blocking
group at 4 h. This cold-target inhibition assay demonstrates
that the cellular uptake of [111In]In-BnDTPA-EphA2-230-1 is
mediated by EphA2 but not by nonspecific endocytosis in
U87MG cells.
2.4. Biodistribution. Figure 4 summarizes the biodis-

tribution results of [111In]In-BnDTPA-EphA2-230-1 in
U87MG tumors after intravenous injection of [111In]In-
BnDTPA-EphA2-230-1 (37 kBq/1.2 μg/100 μL saline). The
time-course uptake of [111In]In-BnDTPA-EphA2-230-1 in the

Figure 1. EphA2-230-1, BnDTPA-EphA2-230-1, and natIn-BnDTPA-
EphA2-230-1 were found to bind at similar levels to EphA2 in
U87MG cells.

Figure 2. Scheme of the labeling of [111In]In-BnDTPA-EphA2-230-1.

Figure 3. Results of cell-binding assay. [111In]In-BnDTPA-EphA2-
230-1 (3.7 kBq/0.4 μg) was incubated with U87MG cells at 37 °C for
various time periods. In the internalization group, the U87MG cells
were washed with acid buffer (0.2 M CH3COOH, 0.5 M NaCl). In
the blocking group, [111In]In-BnDTPA-EphA2-230-1 and nonlabeled
EphA2-230-1 (6.25 μg) were incubated with U87MG cells.

Figure 4. Biodistribution results in U87MG tumor-bearing mice.
Biodistribution of [111In]In-BnDTPA-EphA2-230-1 in U87MG
tumor-bearing mice 24, 48, and 72 h after injection in normal tissues
and tumor. Data are represented as the mean ± standard deviation
(SD); n = 4.
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tissues of U87MG tumor-bearing mice is presented as the
percent of the injected dose per gram of tissue (% ID/g)
shown in Figure 4. The uptake of [111In]In-BnDTPA-EphA2-
230-1 by the experimental tumors reached 14.6 ± 3.2% ID/g
72 h post-injection. In addition, uptake was observed in the
liver (9.0 ± 1.3% ID/g at 72 h) and spleen (3.5 ± 0.5% ID/g
at 72 h). Overall, high uptake of [111In]In-BnDTPA-EphA2-
230-1 in the tumor was confirmed and continued to increase
for 72 h. This indicates that tumors can be more clearly imaged
by SPECT imaging using [111In]In-BnDTPA-EphA2-230-1. In
contrast, [111In]In-BnDTPA-EphA2-230-1 showed nonspecific
uptake in the liver, blood, and spleen. Uptake in these organs
has also been found with imaging tracers using antibod-
ies,19,25,26 but uptake in the liver was particularly high. The
uptake of [111In]In-BnDTPA-EphA2-230-1 was increased in
the liver, since EphA2 is expressed in the liver.27 Table 1 shows

the tumor-to-muscle and tumor-to-blood ratios for each time
point. Both ratios increased over time and more than doubled
72 h after injection (tumor-to-blood = 1.7-fold at 72 h, tumor-
to-muscle = 19.2-fold at 72 h; Table 1). Finally, [111In]In-
BnDTPA-EphA2-230-1 exhibited a tumor-to-blood ratio
superior to that previously reported 111In-CHX-A”-DTPA-
DS-8895a at an earlier time point ([111In]In-BnDTPA-EphA2-
230-1 = 1.7 at 72 h, 111In-CHX-A″-DTPA-DS-8895a = 0.94 at
7 d).19

2.5. Blocking Biodistribution. We performed a blocking
biodistribution study. For biodistribution under EphA2
blocking conditions, 10 mg/kg of EphA2-230-1 in 100 μL of
saline was injected intravenously 24 h before the intravenous
injection of [111In]In-BnDTPA-EphA2-230-1 (37 kBq/1.2 μg/
100 μL saline). The uptake of [111In]In-BnDTPA-EphA2-230-
1 in tumors was reduced in the blocking group compared to
the control group (control: 14.6 ± 3.2% ID/g, blocking: 6.3 ±
2.5% ID/g at 72 h; Figure S3). Figure 5 shows the tumor-to-
muscle and tumor-to-blood ratios at 72 h in the control and
blocking groups. Both ratios were significantly reduced in the
blocking group compared to the control group (tumor-to-

blood, control: 1.7 ± 0.6, blocking: 0.6 ± 0.1 at 72 h, 64.7%
reduction; tumor-to-muscle, control: 19.2 ± 4.6, blocking: 6.8
± 1.2 at 72 h, 64.6% reduction).
2.6. SPECT/CT. SPECT/CT imaging was conducted in

U87MG tumor-bearing mice 72 h after intravenous admin-
istration of 7.2 MBq/114 μg of [111In]In-BnDTPA-EphA2-
230-1 in 120 μL of saline. A 5 min CT scan on an X-CUBE
scanner (MOLECUBES, Ghent, Belgium) was initially
performed for attenuation correction followed by a 60 min
SPECT scan on a γ-CUBE scanner (MOLECUBES). SPECT/
CT imaging was conducted in U87MG tumor-bearing mice 72
h after intravenous administration of [111In]In-BnDTPA-
EphA2-230-1. As shown in Figure 6A,B, the implanted

U87MG tumors in the right limbs were clearly visualized
(Figure S4). However, in SPECT images, the liver and tumor
could be clearly visualized. This is a reasonable result when the
organ weights are taken into account based on the results of
the biodistribution study (Figure S5).

3. CONCLUSIONS
This study evaluated the affinity and pharmacokinetics of a
novel monoclonal antibody, [111In]In-BnDTPA-EphA2-230-1,
targeting EphA2. [111In]In-BnDTPA-EphA2-230-1 specifically
bound to EphA2s expressed in tumors. Biodistribution analysis
showed that [111In]In-BnDTPA-EphA2-230-1 exhibited high
tumor accumulation. In addition, the tumor-to-blood ratio was
superior to that previously reported for 111In-CHX-A”-DTPA-
DS-8895a. Finally, a U87MG tumor implanted in the right
limb of a mouse was clearly visualized via SPECT imaging.
Consequently, [111In]In-BnDTPA-EphA2-230-1 can be con-
sidered as a potential imaging tracer for EphA2.

Table 1. Tumor-to-Blood and Tumor-to-Muscle Ratios

time after injection (h)

ratio 24 48 72

tumor-to-blood 0.6 ± 0.1 1.1 ± 0.1 1.7 ± 0.6
tumor-to-muscle 7.6 ± 1.3 11.0 ± 1.1 19.2 ± 4.6

Figure 5. Tumor-to-blood ratio (A) and tumor-to-muscle ratio (B) in
control and blocking groups. Data are represented as the mean ± SD;
n = 4. *:p < 0.05, **:p < 0.01 by Student’s t test.

Figure 6. SPECT imaging of U87MG tumor-bearing mouse.
Representative [111In]In-BnDTPA-EphA2-230-1 SPECT/CT imaging
in U87MG tumor-bearing mouse 72 h after injection. Dorsal view (A)
and caudal view (B). The tumor is indicated by the arrows.
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4. EXPERIMENTAL PROCEDURES
4.1. General. Mouse monoclonal antibody against human

EphA2 termed EphA2-230-1 was provided by co-author
Kazunori Kato. Additionally, p-SCN-Bn-DTPA was purchased
from Macrocyclics, Inc. (Plano, TX, USA), and 2-(N-
morpholino)ethanesulfonic acid (MES) was purchased from
Sigma-Aldrich (St. Louis, MO, USA). [111In]InCl3 was
purchased from Nihon Medi-Physics Co. Ltd. (Tokyo,
Japan). Most chemicals were purchased from Tokyo Chemical
Industry Co., Ltd. (TCI) (Tokyo, Japan), Nacalai Tesque Inc.
(Kyoto, Japan), and Fujifilm Wako Pure Chemical Corpo-
ration (Osaka, Japan) and used without further purification.
4.2. DTPA Conjugates with the Antibody. EphA2-230-

1 (200 μg) was diluted in 0.1 M NaHCO3 (pH 9.5, 30 μL),
then added to a 20-fold molar excess of p-SCN-Bn-DTPA
diluted in 0.1 M NaHCO3 (pH 9.5, 30 μL), and mixed at room
temperature for 24 h. The reaction mixture was then purified
by gel filtration chromatography using PD-10 (GE healthcare,
Little Chalfont, UK), and the appropriate fractions were
collected and concentrated using a centrifugal filter (Amicon
Ultra 0.5 mL, Ultracel-100 K, Merck, Darmstadt, Germany).
We observed the reaction progress using MALDI-TOF-MS.
3,5-Dimethoxy-4-hydrocinnamic acid (TCI) was saturated
with 0.1% trifluoroacetic acid solution/acetonitrile (1:1). The
antibody was dissolved in this aqueous solution and measured.
4.3. Flow Cytometry Measurement of Binding

Affinity for EphA2. The reactivity of EphA2-230-1,
BnDTPA-EphA2-230-1, and natIn-BnDTPA-EphA2-230-1 to
EphA2 on the cancer cell surface was determined using flow
cytometry. Approximately 1 × 105 U87MG cells were
incubated with various concentrations (1.6−100 μg/mL) of
antibody in 20 μL of phosphate-buffered saline (PBS; pH 7.4)
with 2% fetal bovine serum (FBS; staining buffer) for 60 min
on ice. The cells were then washed and stained with the
phycoerythrin-conjugated goat anti-mouse IgG secondary
antibody (Invitrogen, Waltham, MA, USA) for 30 min on
ice. The cell suspension was washed three times with PBS and
then analyzed using a FACSCalibur flow cytometer (BD
Immunocytometry Systems, Franklin Lakes, NJ, USA).
Equilibrium dissociation constants were calculated using
GraphPad Prism 6 (GraphPad Software, San Diwgo, CA,
USA).
4.4. Radiolabeling. BnDTPA-EphA2-230-1 (100 μg) was

diluted in 0.1 M MES buffer (pH 5.5, 200 μL) and then added
to [111In]InCl3 (6.1 MBq) and mixed at room temperature for
1 h. After the reaction, the reaction mixture was concentrated
and purified using a centrifugal filter (Amicon Ultra 0.5 mL,
Ultracel-100 K). Purified [111In]In-BnDTPA-EphA2-230-1 was
analyzed using radio-thin-layer chromatography (TLC; 25
Aluminium TLC silicagel 60 F254, Merck) with saturated
ethylenediaminetetraacetic acid solution. Autoradiography was
carried out using a Typhoon FLA 9500 BGR (GE healthcare).
4.5. Cell Culture. The U87MG glioma cell line was

obtained from the European Collection of Authenticated Cell
Cultures (London, UK). The cells were grown in Eagle’s
minimal essential medium (Fujifilm Wako Pure Chemical
Corporation) supplemented with 10% FBS (Sigma-Aldrich), 2
mM L-glutamine (Nacalai Tesque Inc.), 1 mM pyruvic acid
(Nacalai Tesque Inc.), nonessential amino acid (Nacalai
Tesque Inc.), and penicillin−streptomycin (Nacalai Tesque
Inc.). The cells were cultured under 5% CO2 and 95% ambient
air at 37 °C.

4.6. Cell-Binding Study. 4.6.1. Uptake of [111In]In-
BnDTPA-EphA2-230-1. The U87MG cells (approximately 5
× 104/well) were seeded in a 24-well cell culture plate
(Corning, Corning, NY, USA) containing a growth medium
and incubated at 37 °C under 5% CO2 until 80% confluence
was achieved. The medium was aspirated and replaced with 1.5
mL of the FBS-free medium. After 10 min, the cells were
treated with [111In]In-BnDTPA-EphA2-230-1 (3.7 kBq/0.4
μg). After 1, 2, 4, and 24 h of additional incubation, the
radioactive medium was aspirated, and the plate was washed
twice with 0.5 mL of cold PBS. After washing, the cellular
fraction was lysed with 0.1 M NaOH, and the protein
concentration was calculated using a BCA Protein Assay Kit
(Thermo Fisher Scientific, Waltham, MA, USA). Radioactivity
counts containing the radioactive medium and PBS were
designated as Cout, and radioactivity counts of the lysis
solution and PBS were defined as Cin. The radioactivity of
each fraction was measured using a γ-counter (1480 Automatic
Gamma Counter, Perkin Elmer, Waltham, MA, USA). CUR
was calculated using the formula Cin/(Cin + Cout).

4.6.2. Internalization of [111In]In-BnDTPA-EphA2-230-1.
The procedure of cell culture was the same as that described
above. The medium was aspirated and replaced with 1.5 mL of
the FBS-free medium. After 10 min, the cells were treated with
[111In]In-BnDTPA-EphA2-230-1 (3.7 kBq/0.4 μg). After 1, 2,
4, and 24 h of additional incubation, the radioactive medium
was aspirated, and the plate was washed twice with 0.5 mL of
cold PBS. After washing, the cells were washed three times
with acid buffer (0.2 M CH3COOH, 0.5 M NaCl). Finally, the
cellular fraction was lysed with 0.1 M NaOH, and the protein
concentration was calculated using a BCA Protein Assay Kit.
The radioactivity was defined, measured, and calculated as
described in the previous sections.

4.6.3. Blocking of [111In]In-BnDTPA-EphA2-230-1. The
procedure of cell culture was the same as that described
above. The medium was aspirated and replaced with 1.0 mL of
FBS-free medium followed by 0.5 mL of FBS-free medium
with unlabeled EphA2-230-1 (6.25 μg) to determine non-
specific binding. After 10 min, the cells were cotreated with
[111In]In-BnDTPA-EphA2-230-1 (3.7 kBq/0.4 μg) and
EphA2-230-1 (6.25 μg). After 1, 2, and 4 h of additional
incubation, the radioactive medium was aspirated, and the
plate was washed twice with 0.5 mL of cold PBS. After
washing, the cellular fraction was lysed with 0.1 M NaOH, and
the protein concentration was calculated using a BCA Protein
Assay Kit. The radioactivity was defined, measured, and
calculated as described in the previous sections.
4.7. Animal Model. The animal studies were approved by

the Bioscience Research Center at Kyoto Pharmaceutical
University and performed according to the Guidelines for
Animal Experimentation. Five-week-old male BALB/c Slc-nu/
nu mice were obtained from Japan SLC (Shizuoka, Japan). For
each mouse, 2 × 106 U87MG glioblastoma cells in 100 μL PBS
were inoculated subcutaneously into the right thigh. The
tumor reached an approximate volume of 100 mm3 after 28−
35 days. The mice were then used for biodistribution analysis
and SPECT/CT imaging.
4.8. Biodistribution. Biodistribution analysis was con-

ducted in U87MG tumor-bearing mice. [111In]In-BnDTPA-
EphA2-230-1 (37 kBq/1.2 μg/100 μL saline) was adminis-
tered to the mice intravenously through the tail vein. At 24, 48,
and 72 h after administration, the mice were euthanized by
exsanguination. The blood, brain, heart, lung, liver, pancreas,
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spleen, kidneys, stomach, intestines (small and large), skeletal
muscles, bones, and tumors were removed for analysis. The
tissue samples were weighed, and radioactivity was determined.
Tissue radioactivity levels were expressed as % ID/g.
4.9. Blocking Biodistribution. Blocking biodistribution

analysis was conducted in U87MG tumor-bearing mice.
[111In]In-BnDTPA-EphA2-230-1 (37 kBq/1.2 μg/100 μL
saline) was administered to the mice intravenously through
the tail vein. For biodistribution under EphA2 blocking
conditions, 10 mg/kg of EphA2-230-1 in 100 μL saline was
injected intravenously 24 h before the radiotracer injection. At
72 h after tracer administration, the mice were euthanized by
exsanguination. The blood, brain, heart, lung, liver, pancreas,
spleen, kidneys, stomach, intestines (small and large), skeletal
muscle, bone, and tumor were removed for analysis. The tissue
samples were weighed, and radioactivity was determined. The
tissue radioactivity levels were expressed as described in the
previous section.
4.10. SPECT/CT. For the bolus injection study, tumor-

bearing mice were intravenously injected with 7.2 MBq/114 μg
[111In]In-BnDTPA-EphA2-230-1 in 120 μL of saline. SPECT/
CT images were obtained using X-CUBE and γ-CUBE
scanners. The mice were anesthetized using isoflurane/O2
(5% for induction, 2.5% for maintenance), and their body
temperature was kept constant with an integrated heating
circuit. At 72 h after administration, CT imaging was
performed for 5 min, and SPECT imaging was performed for
60 min after CT imaging. The SPECT images were acquired
using a helical-orbit scan with linear-stage motion and step-
and-shoot camera motion. A multi-lofthole collimator
(GPmouse, 48 loftholes) was mounted in a heptagonal
SPECT system, and the following parameters were used:
[111In]In energy window (26 keV ± 10%, 171 keV ± 10%, and
245 keV ± 10%), 237 projections, 18° angle increment with a
1 mm bed step, and 60 min acquisition time. SPECT
projection data were reconstructed using a 3D maximum
likelihood-expectation maximization algorithm (3 iterations) at
an isotropic voxel size of 250 μm. CT images were
subsequently acquired using a helical scan with the following
acquisition parameters: X-ray source setting of 50 kVp/100
μA, 480 projections, 1.4 spiral pitch, and 1 min acquisition
time. CT projections were reconstructed using an ISRA
algorithm that yielded a 0.2 mm × 0.2 mm × 0.2 mm voxel size
and 200 × 220 × 469 image volume. Image analysis was
performed using the VivoQuant software (version 4.0 patch1,
inviCRO, LLC, Boston, MA, USA).
4.11. Statistics. Student’s t test was performed for blocking

distribution using XLSTAT (Addinsoft, New York, NY, USA).
The data points represent the mean of at least triplicate
measurements with error bars corresponding to the SD.
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