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Abstract: This work investigated the potential of a novel formulation of eye drops containing a non-
steroidal anti-inflammatory drug—choline salicylate (CS)—and hyaluronic acid (HA). Thus, these
drops may exert both anti-inflammatory and regenerative activity. The experiment was conducted
through the careful characterization of physicochemical properties, stability, and quality of eye drops.
Moreover, microbiological analysis, as well as penetration and cytotoxic studies, were performed. The
UV, HPLC-UV, and HPLC-MS/MS methods were used to determine the purity and stability of CS.
The penetration rate of CS was assessed using a hydrophilic membrane and ex vivo porcine cornea
model. Additionally, the cytotoxic effects were evaluated using the SIRC cell line. The interaction
between HA and CS was tested using size-exclusion chromatography and IR spectrophotometry.
As a result, HA increased the viscosity of the drops, which prolonged their contact with the ocular
surface, thus ensuring more effective penetration of CS into the corneal structure. After long-term
storage, an interaction in the pharmaceutical phase between CS and HA was observed. However,
this interaction did not affect the viability of rabbit corneal cells. Our findings showed that eye drops
with CS and HA, stored at 2–8 ◦C in light-protected conditions, met the criteria of stability and safety.

Keywords: choline salicylate; hyaluronic acid; eye drops; SIRC cell line; alternative models

1. Introduction

Local drug administration is still the main route of ocular drug application to treat
many eye diseases; e.g., dry eye syndrome and conjunctivitis. The conventional treatment
given is a course of chosen eye drops. However, one notable disadvantage of this form of
the drug is the short retention period on the surface of the eye. After application, there is a
rapid removal of exogenous substances under the influence of defense mechanisms, such
as blinking or tearing. Achieving active pharmaceutical ingredient (API) concentrations at
the pharmacological level would require more frequent application, which increases the
risk of local and systemic side effects [1].

The use of polymers with a high molecular weight and viscosity, which can bind
significant amounts of water, is one of the most common technological strategies for ex-
tending the contact time with the surface of the cornea and conjunctiva, thus increasing
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the bioavailability of the preparation [2]. In addition, these compounds soothe, moisturize,
and protect the surface of the eye, reducing the symptoms of dry eye syndrome. For this
purpose, mainly cellulose derivatives such as hydroxypropylmethylcellulose (HPMC), hy-
droxyethylcellulose (HEC), and methylcellulose (MC) are used today, as well as polyvinyl
alcohol (PVA), carbomer, propylene glycol, and dextran. These polymers are well tolerated
at the concentrations found in commercial eye drops. However, preparations with a higher
viscosity may cause visual acuity disturbances after application and leave a dry film. Some
of these polymers have Newtonian properties; i.e., they do not shear under the influence
of blinking, causing them to become less spread out over the eye surface, and therefore
less effective. Therefore, polymers characterized by non-Newtonian and pseudoplastic
properties, such as hyaluronic acid (HA), are becoming increasingly popular [3].

Hyaluronan is a biopolymer with a linear structure. It belongs to the group of com-
pounds called glycosaminoglycans (GAGs) [4]. The polymer’s molecule is made of D-
glucuronic acid and N-acetylglucosamine (Figure 1), connected by alternating glycosidic
bonds β (1–4) and β (1–3) [5]. However, hyaluronan differs from the others GAGs. It
has a larger molecule (about 25,000 disaccharide units), and therefore a higher molecu-
lar weight of up to 10 MDa. Unlike other GAGs, hyaluronan is the backbone to which
other glycosaminoglycans and proteoglycans attach through binding proteins to form
huge aggregates.

Figure 1. Structural formulas of choline salicylate (CS) and hyaluronic acid (HA).

HA is an essential component of the extracellular matrix (ECM) [4,6]. It should be
emphasized that hyaluronic acid is a natural compound with the same chemical structure in
all vertebrates and bacteria [7]. It is a highly biocompatible compound that does not exhibit
cytotoxic effects and does not induce immunogenic reactions [4,7]. In living organisms, it
is in the form of sodium salt. Hyaluronic acid can bind large amounts of water, which is
possible through the covalent bonding structure and consequent negative charge that water
possesses. This compound increases the osmolality of solutions and has unique viscoelastic
properties [6]. Due to these properties, HA eye drops perfectly mimic the conditions on
the eye surface. Tear fluid has a characteristic rheological profile: it is sticky under static
conditions, but when blinking, its viscosity decreases. In HA solutions, the shear stress
causes the HA molecules to line up parallel to each other during blinking. The solution
temporarily loses its viscosity and easily spreads over the surface of the cornea. The HA
chains form a tangled mesh between blinks, making the solution more viscous [8]. It also
has mucoadhesive properties, thanks to which it can closely interact with the mucin layer,
covering the surface of the cornea and conjunctiva. This stabilizes the precorneal tear film
and maximizes the residence time of the solution on the eye surface, where HA can improve
the hydration and lubrication of the eye due to its hygroscopic and adhesive properties [9].
In addition, it has been shown that 0.3% HA solution stimulates the migration of corneal
epithelial cells and has anti-inflammatory and antioxidant properties, and therefore may
consequently play a role in wound healing processes [10].

HA is a natural component of the human eye: it has been found in the vitreous body,
lacrimal gland, corneal epithelium, and in tear and conjunctival fluid [11]. The vitreous
concentration of HA is approximately 190–320 µg/mL, of which 45–77% is high-molecular-
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weight HA (>1000 kDa). Hyaluronic acid is also a component of the tear film [12]. It has
become a widely used ophthalmic product due to its safety, and the defensive properties it
possesses in protecting the corneal endothelium. HA plays an important role in ophthalmic
surgery during anterior segment surgery [9]. Due to its viscoelastic, lubricating, cushioning,
moisturizing, and other rheological properties, HA promotes tissue healing by increasing
the proliferation and migration of corneal epithelial cells and readhesion of the retina.
After ophthalmic surgery, HA stabilizes the tear film, shortens the healing time, minimizes
the risk of adhesions, reduces the formation of free radicals, and normalizes intraocular
pressure. HA solutions are the most commonly used fluids to protect and lubricate the
delicate tissues of the eye, replenish lost vitreous fluid, and provide room for manipulation
during ophthalmic procedures. HA’s viscosity keeps tissues in place, thereby reducing the
risk of dislocation [9].

In addition, HA is the active ingredient in many eye drops, which are essential in the
treatment of conditions such as dry eye syndrome by moisturizing the surface of the eye
and improving vision quality. New hyaluronan derivatives with improved mechanical and
biological properties are currently being investigated to develop eye drops with extended
residence time in the eye. For example, promising preliminary results were obtained
with HA–cysteine ethyl ester and urea-crosslinked HA (HA-CL) [13]. Crosslinking is a
chemical strategy aimed at increasing the stiffness of the polymer network, extending
its durability at the application site, reducing its susceptibility to enzymatic degradation,
and thus reducing the frequency of application of the formulation [14]. Several studies
showed that a polyanionic polysaccharide such as HA might improve the spreading of
meibomian and tear lipid films on the eye surface [15,16]. Georgiev and colleagues showed
that HA interacted with meibomian lipids, enhancing the tear film stability [17]. It was
observed that in healthy volunteers, even a single application of HA increased the tear
film thickness (TFT) for up to 20 min [18]. In addition, Szegedi et al. found that a single
HA application via eye drops may increase TFT in patients with dry eye syndrome [19].
Moreover, in vivo studies confirmed the increase in the thickness of the tear film (from 60
to 75 nm) induced by 0.1% HA solution in patients with lipid deficiency as a consequence
of dry eye syndrome [20].

It has been observed that the biological functions of HA depend on the size of the
polymer particles. High-molecular-weight (HMW) HA has anti-inflammatory and im-
munosuppressive effects. It inhibits phagocytosis and protects tissues from damage and
apoptosis [10]. Medium-sized polymers have anti-inflammatory and angiogenic properties.
The smallest oligosaccharides (LMV) have an antiapoptotic effect [10]. They can induce
the production of IL-8, including in the bronchial epithelium, and therefore may play an
important role in lung infections [21]. All the described properties make HA well suited
for use in the form of artificial tears. Extensive research has been conducted to evaluate the
safety and efficacy of hyaluronic acid eye drop solutions, with all studies confirming the ef-
fectiveness in relief of the symptoms of dry eye syndrome, with HA drops correlating with
the concentration of HA and molecular weight (generally 0.1–0.4% solutions, 0.8–1.4 MDa
HA) [8].

Acetylsalicylic acid is a powerful drug with known anti-inflammatory activity [22] that
is also used, particularly as a combined therapy, in ocular surface inflammatory disease [23],
glaucoma treatment [24], and acute central serous chorioretinopathy [25]. Thus, there is
increased interest in the possibility of using choline salicylate, which is more advantageous
in terms of physicochemical properties than acetylsalicylic acid, as an active ingredient of
ocular anti-inflammatory drops [26]. As a nonacetylated derivative of salicylic acid, choline
salicylate is classified as a first-generation nonsteroidal anti-inflammatory drug. When
applied topically, it has a disinfecting effect and a weak bactericidal effect against some
microorganisms, which, together with the analysis of its physicochemical properties, allows
the composition of an ophthalmic drug to be developed in the form of 2% eye drops with
increased viscosity. The studies conducted on the penetration of CS through hydrophilic
membranes and the porcine cornea have confirmed the possibility of its penetration into the
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corneal structures, justifying the research on the development of an ophthalmic drug. Our
previous study showed that the combination of CS and HPMC in eye drops met the quality
criteria: pH, viscosity, and osmolarity, as well as in terms of microbiological purity [26]. HA
has several advantages, including mucoadhesive, moisturizing, lubricating, antioxidizing,
and anti-inflammatory properties [9,10], which are important for ophthalmological drugs.
Thus, it was decided to evaluate the possibility of combining two active ingredients, choline
salicylate and hyaluronic acid (Figure 1), in eye drops intended to treat corneal diseases.

Earlier studies on the use of CS eye drops [27], and the results of the stability of CS
and HPMC eye drops [26], justify the need for further research to improve formulation and
the technology of eye drops combining choline salicylate with hyaluronic acid. For this
purpose, the technology of preparing sterile eye drops containing CS (2%) and HA (0.4%)
as a viscosity-enhancing agent was developed. The microbiological purity, cytotoxicity,
penetration through an artificial hydrophilic membrane, and the porcine cornea were
investigated for this new formulation. Stability studies were performed under controlled
conditions (accelerated and long-term tests), under uncontrolled conditions (2–8 ◦C), and
during exposure to light (photodegradation). Bearing in mind the literature reports stating
that HA is an unstable molecule, at a temperature of 100 ◦C and in solution, HA chains are
degraded, which results in a reduction of the molecular weight and viscosity [28–31]. The
study of the influence of the sterilization parameters with saturated steam under pressure
(temperature and time) on the viscosity and cytotoxicity of 0.4% HA solutions was per-
formed. The research used a method based on HPLC-UV, HPLC-MS/MS chromatography
and UV, and IR spectrophotometry.

2. Results and Discussion
2.1. Choline Salicylate Permeation through Membranes

The penetration rate of CS from the eye drops and the CS solution in isotonic sodium
chloride solution was assessed using a hydrophilic membrane made of regenerated cellu-
lose (Visking®) and a porcine cornea. The CS content in the acceptor part of the Franz cell
(volume 8 mL, penetration area 1 cm2) was determined by the UV method [26]. The blank
test confirmed that the solutions of the acceptor part did not show UV absorption in the
region of interest (blank sample absorbance was <0.004).

To investigate the kinetics of CS permeation through membranes, the following kinetic
models were applied: the zero-order model (used for pharmaceutical dosage systems that
do not disintegrate and have a very slow drug release) [32]; the first-order model (used
to describe the absorption and release of water-soluble drugs from porous matrices); the
Higuchi model (used to describe the release of soluble and sparingly soluble drugs in
aqueous media, from various semisolid and/or solid matrices); and the Korsmeyer–Peppas
model, which is a generalized model of the Higuchi equation that allows one to explain
drug-delivery mechanisms in which erosion and/or dissolution of the matrix occurs [32]
(Table 1). The Korsmeyer–Peppas model is widely used to describe the drug release from
polymer systems [32]. The concentration of CS in the acceptor part of the Franz cell changed
as a function of time until a plateau was reached at 600 min from the experiment start
(Figure 2). The results of the kinetic evaluation (Table 1) confirmed that the penetration
of CS across the hydrophilic membrane for the tested drops showed the best fit to the
zero-order model.

By comparing our results with those previously published [26], we showed that the
process of CS penetration through a hydrophilic membrane from the isotonic environment
was faster (52.3 µg·min−1) [26] than from eye drops with hyaluronic acid (45.0 µg·min−1)
(Table 1). The addition of hyaluronic acid or HPMC slowed the CS penetration process
through the hydrophilic membrane, and in both cases, this effect was comparable [26].
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Table 1. Kinetic study for CS permeation from the eye drops (CS 20.2 mg/mL, HA 0.4%) through a hydrophilic membrane
made of regenerated cellulose (Visking®).

Kinetic Model Equation Kinetic Parameter -r

Zero-order (Q∞ −Qt) = Q∞ −Q0)− k ·t k = (4.50 ± 0.53)·10−2, mg·min−1 0.9949

First-order ln(Q∞ −Qt) = ln(Q∞ −Q0)− k ·t k = (5.22 ± 1.09)·10−3, min−1 0.9840

Higuchi Qt = kH ·t1/2 KH = (9.42 ± 1.98)·10−1, min−1/2 0.9837

Korsmeyer–Peppas Mt
M∞

= kr ·tn kr = (8.40 ± 0.43)·10−3, min−n,
n = 0.80

0.9869

Note: Q0, Qt, Q∞—CS content at time t0, t, and t∞, respectively, in mg; Mt/M∞—CS fraction at time t and t∞, respectively; t—time, in min;
k, KH, and kr—permeation rate constants.

Figure 2. The ability of CS to penetrate the hydrophilic membrane (regenerated cellulose) for eye
drops with CS (2%) and HA (0.4%). Plots of the relationship: the content of CS in the acceptor part of
the Franz cell as a function of time; Q = f(t) (#) and differential chart Q∞ − Qt = f(t) (•).

The simultaneous determination of CS in the acceptor and donor parts of the Franz
cell (1 mL) (Table 2) confirmed that the CS did not pass through the cornea, but penetrated
its structures. After 5 min and 3 h of exposure, there was an approximately 21.4% and
23.7% loss of CS content, respectively, from the donor part of the chamber filled with
isotonic CS solution [26]. In the case of exposure of the cornea to CS drops with HA, the
decrease was approximately 15.2% and 18.3% after 5 min and 3 h, respectively. Therefore,
the level of CS in the cornea was assessed using the methodology described earlier [26],
based on the determination of CS by the UV method after extraction from the cornea
with a water–methanol mixture (1:2, v/v). Thus, from the isotonic solution to the cornea,
approximately 6.6 ± 0.8% and 17.1 ± 1.1% of the CS penetrated after 5 min and 3 h
exposure, respectively [26]. On the other hand, for eye drops with hyaluronic acid, the
amount was approximately 7.8 ± 0.2% and 18.3 ± 0.2%, respectively (Table 2). Thus,
similarly to HPMC, hyaluronic acid increased the viscosity of the drops, prolonged their
contact with the eyeball, and contributed to more-effective penetration of CS into the
corneal structure, which allowed for approximately 7.8% of the administered dose.

It is widely known that the availability of API by ocular tissue is limited by several
mechanisms such as lachrymal drainage, systemic absorption, the small size of the ocular
cavity, and existing anatomical barriers (mainly the corneal epithelium) [33,34]. Thus,
the crucial parameter in ophthalmology is permeability to the anterior (composed of the
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aqueous humor, conjunctiva, cornea, iris, ciliary body, and lens) and posterior (composed
of the choroid, optic nerve, retina, sclera, choroid, and vitreous humor) segments of the
eye [33,35]. The literature data indicated that the most important paths by which the
drug can enter the eye are the corneal and conjunctival routes [33,35]. In general, the
conjunctiva is permeable to hydrophilic and large molecules, while most drugs used in
clinics are relatively small and lipophilic structures [33]. Moreover, for the drugs applied
topically, their bioavailability could be decreased mainly by lower cornea permeability and
the washing-out effect by lacrimal fluid [36]. This makes cornea permeability testing one
of the most important and widely studied aspects in research dedicated to ocular drug
delivery. It should be highlighted that the cornea is less permeable than other important
ocular tissue—the sclera [37], which is the limiting factor of drugs intended to reach the
retina in terms of drug delivery. The rapid flow of blood from the choroid in the sclera
layer may affect drug availability to the retina [37]. Thus, in the presented study, we only
focused on cornea permeability. This also resulted from the fact that the tested formulation
was dedicated to treating mainly corneal diseases.

Table 2. The amount of CS determined in the donor part of the Franz cell and in the porcine cornea
after 5 min and 3 h corneal exposure to eye drops (CS 20.4 mg/mL, HA 0.4%) (mean ± SD, n = 3).

Solution Time
Donor Chamber Porcine Cornea

mg % mg %

CS (20.4 mg/mL)
with HA (0.4%)

5 min 17.29 ± 0.25 84.8 ± 1.2 1.60 ± 0.04 7.8 ± 0.2

3 h 16.67 ± 0.01 81.7 ± 0.1 3.74 ± 0.05 18.3 ± 0.2

2.2. Stability of Eye Drops

As part of assessing the stability of the prepared drops, the impact of storage conditions
was tested: photodegradation, 40 ◦C/75% RH—accelerated test, 25 ◦C/60% RH—long-
term test, and 2–8 ◦C—storage in a refrigerator under uncontrolled conditions. Single-
dose minims (Eprus® sterile minims eye drops, 1 mL) were proposed as the immediate
packaging of the eye drops, the suitability of which was confirmed by a microbiological test.

The solutions of the CS eye drops with HA, when exposed to light (250 W/m2;
1.2 × 106 lux·h), changed color with a simultaneous loss of choline salicylate content at
a level of 6.3% (HPLC-UV). The presence of the photodegradation products of CS, such
as 2,3- and 2,5-dihydroxybenzoic acid, was observed in HPLC-MS/MS chromatograms
(Figure 3). CS eye drops should be protected from light exposure by placing unit packages
(minims) in collective packaging; e.g., a cardboard box.

For these studies, two different protocols were used to obtain the tested eye drops.
In the first method (Preparation 1), HA and CS solutions were mixed, transferred to
glass bottles (20 mL), sealed, and autoclaved at 121 ± 2 ◦C for 20 min. In the second
procedure (Preparation II), CS solution was filtered through a sterilization filter (0.22 µm)
into a sterile bottle and mixed with sterile HA solution. The bottle was closed with
a sterile stopper under sterile conditions. The eye drops (Preparations I and II) were
then aseptically transferred to the immediate packaging (Eprus®, 1 mL). Eye drops made
according to Preparation II were used only in the stability studies under the accelerated and
long-term test conditions, which resulted from observing the color changes of the drops
made according to Preparation I. All other tests (permeation through membranes and
porcine cornea, photostability, microbiological test, chromatographic purity, cytotoxicity,
and size-exclusion chromatography) refer to the drops made according to Preparation I.
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Figure 3. HPLC-MS/MS chromatograms of eye drops with CS (2%) and HA (0.4%) in immediate packaging (minims) after
3 months of storage at 40 ◦C/75% RH. The inset shows the HPLC-MS/MS chromatogram of eye drops in minims after
exposure to light (250 W/m2; 1.2 × 106 lux·h): 1—2,5-dihydroxybenzoic acid; 2—2,3-dihydroxybenzoic acid.

Glass bottles (20 mL) and minima (1 mL) were used as immediate packaging in the
eye drop stability studies. Changes in CS content (HPLC-UV method), pH, viscosity, and
osmotic pressure were observed. At the same time, a color change (browning) of the
solutions was observed after 1 month of storage in minims (Preparation II), as well as
after 6 months of storage in a bottle (Preparation I). Over time, this process intensified,
which prompted Preparation II. After 3 months of storage, the declared content of CS in the
minims increased to approximately 110% and 115%, respectively, for drops prepared using
Preparations I and II. This was due to the leakage of the packaging under the conditions of
the described test. This leak also affected the other parameters (Table 3). The drops stored
in bottles for 6 months retained the appropriate quality parameters, keeping the CS content
at the level of no more than 3.9% of the loss and complying with the initial value in terms
of pH and osmolarity (Table 3). The optimal pH of eye drops is equal to the pH of the tear
fluid, around 7.4. The Polish Pharmacopoeia (FP XII) allows pH values for eye drops from
3.5 to 8.5 and osmolarity of 280–320 mOsmol/L [38], but the European Pharmacopeia 10th
Edition does not precisely specify the permissible pH values. The lowering of viscosity
of the drops was observed during their storage at 40 ◦C. For Preparation I, the decrease
after 6 months of storage in bottles was 3.4%, and 22.1% after 3 months of storage in
minims. The viscosity of the drops prepared using Preparation II changed significantly
after 6 months of their storage at 40 ◦C; i.e., 30.4% for bottles and 35.4% for minims (Table 3).
When comparing the parameters of drops made using Preparations I and II, Preparation I
was considered as appropriate. The drops prepared using this method were used for the
cytotoxicity tests and interaction analysis.

A sterility test was used to evaluate the minims type packaging material. The studies
were performed using two techniques (direct culture, membrane filters) with two media
(TSB, TG). Under the study conditions, the developed eye drops showed no antimicrobial
activity, which confirmed the usefulness of the methods used to assess microbiological
purity. In sterility tests performed in the initial period and after 3 months of storage
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(40 ◦C/75% RH), no growth of microorganisms was observed either at the beginning.
Bacterial growth was observed only in one case (Table 4). Thus, despite the leakage
observed in the above-described test, the minims used (Eprus® sterile minims 1 mL eye
drops) met the sterility criteria. They do not guarantee tightness at elevated storage
temperatures. Their use should not be excluded when stored at lower temperatures (25 ◦C
or 2–8 ◦C).

Table 3. Stability of choline salicylate eye drops formulated using Preparations I and II stored under controlled conditions
(40 ◦C/75% RH) in bottles and minims—results of CS determinations by HPLC and measurement of pH, viscosity, and
osmolarity (mean ± SD, n = 3).

Package Time, Months Determined
Concentration, %

Percentage of
Declared Value, % pH Viscosity,

mPa·s
Osmolarity,

mOsm/L

Preparation I

Bottle 0 2.12 ± 0.09 100.0 ± 4.2 7.41 ± 0.05 9.56 ± 0.06 314 ± 2

1 2.09 ± 0.08 98.6 ± 3.8 7.41 ± 0.03 Nd 312 ± 1

2 2.07 ± 0.05 98.5 ± 2.4 7.41 ± 0.03 Nd 313 ± 1

3 2.10 ± 0.06 96.5 ± 2.8 7.40 ± 0.01 9.38 ± 0.04 311 ± 1

4 2.00 ± 0.04 96.1 ± 1.9 7.41 ± 0.07 Nd 312 ± 1

5 2.00 ± 0.08 96.5 ± 3.8 7.40 ± 0.01 Nd 311 ± 2

6 2.14 ± 0.11 98.5 ± 5.2 7.41 ± 0.08 9.24 ± 0.05 312 ± 2

Minims 0 2.12 ± 0.09 100.0 ± 4.2 7.41 ± 0.05 9.56 ± 0.06 314 ± 2

1 2.13 ± 0.04 100.5 ± 1.9 7.52 ± 0.02 Nd 313 ± 2

2 2.18 ± 0.05 102.8 ± 2.4 7.63 ± 0.05 Nd 313 ± 2

3 2.34 ± 0.09 110.4 ± 4.2 7.67 ± 0.03 7.45 ± 0.02 309 ± 2

Preparation II

Bottle 0 2.01 ± 0.04 100.0 ± 2.0 7.80 ± 0.05 9.93 ± 0.02 298 ± 1

6 2.01 ± 0.04 100.0 ± 2.0 7.61 ± 0.05 6.91 ± 0.06 320 ± 1

Minims 0 2.01 ± 0.04 100.0 ± 2.0 7.80 ± 0.05 9.93 ± 0.01 298 ± 1

3 2.04 ± 0.06 101.5 ± 3.0 7.65 ± 0.03 Nd 300 ± 2

6 2.32 ± 0.01 115.4 ± 0.5 7.50 ± 0.05 6.41 ± 0.05 298 ± 1

Note: Nd—no data.

Table 4. Microbiological purity test results for eye drops with CS (2%) and HA (0.4%) stored in immediate packaging
(minims) under controlled conditions (40 ◦C/75% RH).

Time, Months Sample Sample Volume, mL
Direct Inoculation Membrane Filtration

TSB TG TSB TG

0

1 Whole content—1 mL No growth No growth No growth No growth

2 Whole content—1 mL No growth No growth No growth No growth

3 Half content—0.5 mL No growth No growth No growth No growth

3

1 Whole content—1 mL Growth No growth No growth No growth

2 Whole content –1 mL No growth No growth No growth No growth

3 Half content—0.5 mL No growth No growth No growth No growth

Note: TSB—tryptic soy broth; TG—fluid thioglycolate medium.

Under long-term test conditions (25 ◦C/60% RH) and uncontrolled conditions in
a refrigerator (2–8 ◦C), the stability of drops prepared using Preparation I stored for
12 months both in the bottle and in the minims was confirmed (Table 5). In bottles, the
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observed changes in CS content did not exceed 2%, while in the minima, they amounted
to 3.5% at 25 ◦C and 4% in a refrigerator, respectively. Changes in the CS concentration
in the drops prepared using Preparation II after 6 months of storage at 25 ◦C reached a
value of 4.5%, and in minims after 6 months—3.5%. The osmolarity and pH of the tested
solutions under these conditions did not change significantly (Table 5). In addition, during
their storage at 25 ◦C, the droplet viscosity decreased. In drops prepared using Preparation
I, this decrease after 12 months of storage was 5.1% in bottles and 18.9% in the minims.

Table 5. Stability of choline salicylate eye drops formulated using Preparations I and II stored under controlled (25 ◦C/60%
RH) and uncontrolled conditions (2–8 ◦C) in bottles and minims—results of CS determinations by HPLC and measurement
of pH, viscosity, and osmolarity (mean ± SD, n = 3).

Package Time, Months Determined
Concentration, %

Percentage of
Declared Value, % pH Viscosity,

mPa·s
Osmolarity,

mOsm/L

Preparation I—controlled conditions (25 ◦C/60% RH)

Bottle 0 2.00 ± 0.07 100.0 ± 3.5 7.41 ± 0.05 9.56 ± 0.06 314 ± 2
3 2.01 ± 0.01 100.5 ± 0.5 7.39 ± 0.03 Nd 314 ± 1
6 1.96 ± 0.03 98.0 ± 1.5 7.21 ± 0.02 9.35 ± 0.03 308 ± 2
9 1.97 ± 0.01 98.5 ± 0.5 7.33 ± 0.05 Nd 310 ± 3

12 2.03 ± 0.01 101.5 ± 0.5 6.99 ± 0.05 9.07 ± 0.07 311 ± 1

Minims 0 2.00 ± 0.07 100.0 ± 3.5 7.41 ± 0.05 9.56 ± 0.06 314 ± 2
3 2.04 ± 0.01 102.0 ± 0.5 7.35 ± 0.04 Nd 310 ± 1
6 2.07 ± 0.01 102.5 ± 0.5 7.29 ± 0.02 8.52 ± 0.05 309 ± 1
9 2.02 ± 0.04 101.0 ± 2.0 7.18 ± 0.03 Nd 297 ± 3

12 2.07 ± 0.12 103.5 ± 6.0 7.20 ± 0.05 7.75 ± 0.08 311 ± 2

Preparation I—uncontrolled conditions (2–8 ◦C)

Minims 0 2.00 ± 0.07 100.0 ± 3.5 7.41 ± 0.05 9.56 ± 0.01 314 ± 2
3 2.07 ± 0.02 103.5 ± 1.0 7.44 ± 0.05 Nd 312 ± 1
6 2.08 ± 0.02 104.0 ± 1.0 7.33 ± 0.03 9.43 ± 0.04 305 ± 2
9 2.07 ± 0.02 103.5 ± 1.0 7.39 ± 0.04 Nd 311 ± 1

12 2.02 ± 0.01 101.0 ± 0.5 7.28 ± 0.02 9.36 ± 0.07 309 ± 2

Preparation II—controlled conditions (25 ◦C/60% RH)

Bottle 0 2.01 ± 0.04 100.0 ± 2.0 7.80 ± 0.05 9.93 ± 0.01 298 ± 1
6 2.10 ± 0.02 104.5 ± 1.0 7.40 ± 0.05 7.71 ± 0.01 291 ± 1

Minims 0 2.01 ± 0.04 100.0 ± 2.0 7.80 ± 0.05 9.93 ± 0.04 298 ± 1
3 2.02 ± 0.02 100.5 ± 1.0 7.65 ± 0.02 7.70 ± 0.03 295 ± 2
6 2.08 ± 0.02 103.5 ± 1.0 7.68 ± 0.03 6.98→ 0.06 290 ± 1

Note: Nd—no data.

The viscosity of the drops prepared using Preparation II changed significantly after
6 months of their storage at 25 ◦C; i.e., 22.4% for drops stored in bottles and 29.7% for
minims (Table 5). After analyzing the viscosity parameter for drops stored at 25 ◦C and
40 ◦C, we concluded that the drop in viscosity of the drops was less observed when stored
in bottles than in minims. (Tables 3 and 5). On the other hand, lowering the storage
temperature to 2–8 ◦C had a stabilizing effect on this parameter. The observed drop in the
viscosity of drops stored for 12 months in minims was only 2.1% (Table 5). Meanwhile,
the following color changes of the drops were observed: for Preparation I, after 9 months
of storage at 25 ◦C, and for Preparation II—after 3 months. The drops were stored in a
refrigerator (2–8 ◦C) and showed no discoloration.

2.3. Chromatographic Purity of Eye Drops

The pharmacopeial method of salicylic acid purity analysis was used to assess the
chemical purity of the eye drops [38]. Of the additional peaks (2.8–3.6 min—P1, and
5.8–6.4 min—P2) observed in the chromatograms of CS (2%) and HA (0.4%) (Figure 4), the
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P2 peak was identified in earlier studies as phenol—an impurity of the raw material [39]
that cannot exceed a level of 0.001% in drops.

Figure 4. HPLC-UV chromatograms of eye drops with CS (2%) and HA (0.4%) from a chromatographic purity test: (A) after
exposure to light (minims, 250 W/m2; 1.2 × 106 lux·h); (B) stored in bottles under controlled conditions (40 ◦C/75%
RH); (C) stored in minims under controlled conditions (40 ◦C/75% RH); (D) stored in bottles under controlled conditions
(25 ◦C/60% RH); (E) stored in minims under controlled conditions (25 ◦C/60% RH); (F) stored in minims under uncontrolled
conditions (2–8 ◦C).

The assessment of the parameter of the sum of impurities on the chromatograms of
freshly prepared drops and after 12 months of their storage under controlled (25 ◦C/60%
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RH) and uncontrolled (2–8 ◦C) conditions was 0.61% and 0.21–1.24%, respectively, both in
bottles and minims (Table 6). The result (sum of impurities: 1.24%) observed in the drop
chromatograms after 9 months of storage in minims at 25 ◦C was questionable. However,
after 6 months of storage, for the drops under the accelerated test conditions (40 ◦C/75%
RH) in bottles and minims, the sum of impurities was 2.33% and 2.88%, respectively
(Table 6). The observed effect of the increase in CS concentration (Table 3) and the sum of
additional peaks in the HPLC-UV chromatogram was a consequence of the leakage of the
minims under elevated temperature conditions (Table 6), as evidenced by the lack of peaks
of salicylic acid decomposition products in the HPLC-MS/MS chromatograms (Figure 3).

Table 6. Chromatographic (HPLC-UV) purity analysis of CS (2%) with HA (0.4%) eye drops stored in bottles and minims
under controlled and uncontrolled conditions, and after exposure to the light, showing the area (P) of the observed peaks
(P1, P2, P3) and the percentage relative to the area of the main peak corresponding to the level of impurities of 0.1%
(P0.1% = 16862).

Storage
Conditions

Package Time, Months

Observed Peaks Outside the CS Main Peak
Sum of

Impurities, %
P1

tR = 2.8–3.6 min
P2

tR = 5.8–6.4 min

P % P %

40 ◦C/75% RH

Bottle 0 35650 0.21 69001 0.41 0.61

6 31392 1.99 57993 0.34 2.33

Minims 0 35650 0.21 69001 0.41 0.62

3 486043 2.88 No 2.88

25 ◦C/60% RH

Bottle 0 35650 0.21 69001 0.41 0.61

6 61142 0.36 48304 0.29 0.65

9 35925 0.21 No 0.21

12 28989 0.17 37973 0.22 0.39

Minims 0 35650 0.21 69001 0.41 0.61

6 73551 0.44 51080 0.30 0.74

9 209457 1.24 No 1.24

12 13879 0.08 No 0.08

2–8 ◦C Minims 0 35650 0.21 69001 0.41 0.61

6 43503 0.26 52962 0.31 0.57

9 35936 0.21 50559 0.30 0.51

12 11324 0.07 60556 0.36 0.44

Light exposure (250 W/m2; 1.2 × 106 lux·h)

Package Sample P1
tR = 2.8–4.2 min

P2
tR = 5.8–6.4 min

Sum of
impurities, %

P % P %

Minimis protected 35590 0.21 33639 0.20 0.41

unprotected 336527 1.99 No 1.99

Note: tR—retention time; P—area; P1, P2—impurities; No—not observed.

In the chromatograms of the eye drops subjected to photodegradation in minims
(1.2 × 106 lux·h), the sum of the observed impurities increased from 0.41% to 1.99%
compared to the freshly prepared solution (Table 6). According to the HPLC-MS/MS
analysis, product P1 was observed in these conditions, being a mixture of 2,3- and 2,5-
dihydroxybenzoic acid (Figure 3).
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2.4. The Impact of Tested Eye Drops on SIRC Cell Line Viability

For many years, the SIRC cell line has served as an in vitro model to mimic corneal
epithelium in pharmacological and toxicological studies [27,40,41]. To date, several assays
have been validated and approved for assessing the ocular toxicity of ophthalmic drugs,
such as neutral red uptake (NRU), fluorescein leakage (FL), or MTT assay [42]. We used
the modified protocol for short-time incubation studies to determine the effect of tested
solutions on SIRC cell viability [27,41,43–45]. In this study, only the undiluted solutions
were used to mimic the situation immediately after application [44]. The 10 min exposure
time represented the actual residence time of the applied solution on an ocular surface,
and seemed to be the minimum period required for in vitro testing [44]. The cell viability
was measured using the MTT and neutral red uptake assay immediately after 10 min of
incubation and following a 24 h period (Figure 5). This recovery period could investigate
the eventual reversibility of the cytotoxicity or delayed cytotoxic effect [45]. Short-time
incubation confirmed that tested solutions A-1, A-2, B-(1–5), and C-(2–4) were well tolerated
by the cells (cell viability > 90%), while the solution C-1 (HA solution after sterilization
at 105 ± 2 ◦C, 30 min) exerted a statistically significant cytotoxic effect (88.54 ± 5.48% for
MTT performed immediately after exposure and 77.52 ± 8.14% of cell viability after 24 h)
(Figure 5).

Figure 5. The effect of tested eye drops on SIRC cell viability: (A) cell viability after incubation with eye drops containing
choline salicylate; (B) results for eye drops containing choline salicylate and hyaluronic acid after storage at different
conditions; (C) data for eye drops containing hyaluronic acid and sterilized at different conditions. Sterile 0.9% NaCl was
used as a control. Moreover, an additional control—cell culture medium (M) only—was also used. Cell viability was
measured by MTT assay immediately after incubation with tested solutions and 24 h after incubation. Moreover, the cell
viability was measured using the NRU assay (24 h after incubation with tested eye drops). Data are presented as a mean
value + SD from two independent experiments. Statistical significance (****) between groups was assessed by Dunnett’s
multiple comparison (p < 0.0001).

Results from the NRU assay showed that all tested eye drops did not affect cell
viability. Neutral red uptake used the ability of viable cells to incorporate and bind the dye
neutral red in the lysosome [46]. The MTT assay measured the activity of a mitochondrial
enzyme (succinate dehydrogenase), which converts MTT (a yellow substrate) into formazan
(insoluble in water, purple product). This reaction occurs only in cells that are metabolically
active (viable) [33]. These results suggest that solution C-1 may have affected mitochondria
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and the metabolic activity of SIRC cells. For the other solutions, the MTT and neutral red
assays produced comparable results. Therefore, the sterilization process at 121 ± 2 ◦C
(20 min) and the discoloration during eye drop storage did not affect their safety of use.

Microscopy revealed that the morphology of SIRC treated with tested solutions was
similar to that of the control cells (Figures S1–S4).

2.5. Analysis of the Stability of HA Solutions and CS with HA Interactions by
Size-Exclusion Chromatography

Due to the results of the chemical purity analysis discussed above and the discol-
oration of the CS and HA eye drops observed during storage, we decided to perform
a comparative analysis of the IR (FTIR) spectra of the physical mixture of CS and HA,
CS, and the residues after the evaporation of the eye drops. However, no changes were
observed in the IR spectrum, both in its entire range and in the so-called dactyloscopic area
(Figure 6). Therefore, this study did not answer the question concerning the nature of the
observed noncompliance.

Figure 6. FTIR spectrum of choline salicylate (CS), a physical mixture of hyaluronic acid and choline salicylate (HA + CS),
and residues after evaporation of eye drops with CS and HA (RDE) after 6 months of storage under accelerated test
conditions (40 ◦C/75% RH).

Thus, in further study, size-exclusion chromatography was also used. Two types of
detectors were used: UV (230 nm) and refractometric (RI). HA solutions were applied to
the column (Yarra™ SEC-4000) before and after sterilization. The HA peak was only seen
in the chromatograms recorded with RI detection. The influence of temperature and time
of this process on the parameters of the HA peak was observed (Figure 7, Table 7).
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Figure 7. SE C-RID chromatograms: (A) HA (0.4%) solution without sterilization and after 6 months of controlled storage;
(B) HA (0.4%) solution after sterilization at 105 ◦C (30 min) and after 6 months of controlled storage; (C) HA (0.4%) solution
after sterilization at 121 ◦C (20 min) and after 6 months of controlled storage; (D) HA (0.4%) solution after sterilization at
134 ◦C (11 min) and after 6 months of controlled storage (25 ◦C/60% RH and 40 ◦C/75% RH).

Table 7. Changes of parameters describing SEC-RID chromatograms (retention time, area, asymmetry factor) of HA (0.4%)
solutions after sterilization and during storage under the conditions of the accelerated and long-term tests. Changes to the
chromatograms of the unsterilized solution are given in brackets.

Sterilization
Conditions

Fresh Solution
Observed Changes During Storage

25 ◦C/60%RH—6 Months 40 ◦C/75%RH—6 Months

tR, min P Af tR, min P Af tR, min P Af

Without sterilization 6.010 560078 1.765 +0.028 +4.71% Nc +0.016 −4.16% +0.176

105 ◦C/30 min 5.998
(−0.012)

565425
(+0.95%)

1.848
(+0.083) +0.003 +7.56% +0.327 +0.081 −1.27% +0.024

121 ◦C/20 min 5.997
(−0.013)

558036
(−0.36%)

1.793
(+0.028) +0.071 +1.76% −0.079 +0.115 −4.19% −0.097

134
◦C/12 min

6.164
(+0.154)

546165
(−2.48%)

1.717
(−0.048) −0.069 +1.29% +0.034 −0.044 +1.33% +0.215

Note: tR—retention time; P—area; Af—asymmetry factor; Nc—no change.

Changes in the retention time, surface area, and asymmetry coefficient indicated the
polymer degradation process. Szabó et al. observed a change in the molecular weight of
HA during 20 min of sterilization at 100 ◦C from 1.4 MDa to 0.8 MDa, and suggested the
sterilization of HA solutions by filtration, while HA was in powder form using radiation
sterilization [31]. The analysis of the observed differences in the chromatograms showed
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that sterilization at 121 ◦C (20 min) slightly influenced the degradation of HA (0.36%
compared to a nonsterile solution); such a solution was stored under long-term (25 ◦C/60%
RH) and accelerated test conditions (40 ◦C/75% RH), and was sufficiently stable—the
asymmetric ratio of the HA peak varied from −0.079 to −0.097 (Figure 7C, Table 7). The
selected sterilization parameters (121 ± 2 ◦C, 20 min) could, therefore, be considered
optional. Bothner et al. observed a decrease in the viscosity of the high-molecular-weight
HA solutions after 10, 30, and 70 min of sterilization at 128 ◦C [28]. The viscosity tests of
the prepared 0.4% HA solutions before and after sterilization with saturated steam under
various conditions confirmed the decrease in viscosity depending on the temperature
and time of sterilization and the conditions and storage time (Table 8). HA solutions
sterilized at 121 ◦C (20 min) and stored for 6 months under the long-term test conditions
showed a decrease in viscosity by approximately 31.2% and by approximately 39.6% in the
accelerated test conditions. At the same time and under the same conditions, the viscosity
of nonsterile HA solutions decreased by approximately 22.4% (Table 8). Thus, both HA
solutions and eye drops (Table 5) should be stored under reduced temperature conditions
(2–8 ◦C) to potentially limit this process.

Table 8. Change in viscosity of 0.4% HA solutions in NaCl after sterilization and during storage under accelerated and
long-term test conditions (mean ± SD, n = 3).

Sterilization Conditions
Fresh Solution

Viscosity, mPa·s

Observed Changes During Storage

25 ◦C/60%RH—6 Months 40 ◦C/75%RH—6 Months

Viscosity, mPa·s Viscosity, mPa·s
Without sterilization 15.71 ± 0.01 12.19 ± 0.02 12.19 ± 0.02

105 ◦C/30 min 14.57 ± 0.01 11.36 ± 0.01 10.66 ± 0.01

121 ◦C/20 min 11.56 ± 0.01 7.95 ± 0.01 6.98 ± 0.02

134 ◦C/12 min 6.28 ± 0.01 5.56 ± 0.01 4.98 ± 0.01

At the same time, solutions of the reference substances were applied to the column:
2,3-, 2,5-dihydroxycarboxylic acid and pyrocatechin, colored as a result of storing CS (2%)
and HA (0.4%) eye drops, and the blank test; i.e., HA-free drops. In the chromatograms
of the colored eye drops (recorded with UV detection), apart from the salicylate peak
(tR approximately 13.5 min), an unidentified X peak with a retention time of 11.1 min
(Figure 8B) was observed, which was not consistent with the 2,3- acid retention times, 2,5-
dicarboxylic acid (13, 13.3 min), and pyrocatechin (14.7 min) (Figure 8A). For this reason,
to confirm that this was an effect of CS–HA interaction, a CS and HPMC eye drop solution
was applied to the column, for which no discoloration was observed during storage [26] or
after storage for at least 3 months under accelerated test conditions. The X peak was not
found in the chromatogram of this solution (Figure 8C).
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Figure 8. SEC-UV chromatograms: (A) standard solutions of CS photodegradation products; (B) eye drop solutions with
CS (2%) and HA (0.4%) stored under accelerated test conditions (40 ◦C/75% RH) and a blank test solution; (C) eye drop
solutions with CS (2%) and HPMC (0.5%) stored under accelerated test conditions (40 ◦C/75% RH).

3. Materials and Methods
3.1. Materials

The following substances and reagents were used in this research: choline salicylate
(CS, 98.4%, ICN Polfa Rzeszow SA, Rzeszow, Poland); hyaluronic acid sodium salt P100
(1.52 MDa, CPN Sp. s ro, Dolni Dobrouc, Czech Republic; pyrocatechin (≥99.5%), 2,3-
acid (99%), and 2,5-dihydroxybenzoic acid (98%) (Sigma-Aldrich, St. Louis, MO, USA);
methanol for HPLC, propyl 4-hydroxybenzoate (99%, internal standard) (Avantor Perfor-
mance Materials Poland SA, Gliwice, Poland); liquid thioglycolate substrate (TG; Cherwell
Laboratories Ltd., Bicester, UK); Trypsin Soy Broth (TSB) according to EP + USP (Merck
Sp. z o.o., Warsaw, Poland); and sodium chloride and peptone broth (pH 7.0, OXOID, UK),
cleanliness class for analysis.

A cytotoxicity study was performed with a rabbit corneal cell line (SIRC) obtained
from the European Collection of Cell Cultures (ECACC, Salisbury, UK). Unless otherwise
stated, all cell culture reagents used in the experiments were purchased from Sigma-
Aldrich (St. Louis, MO, USA). The cell line was grown in DMEM medium, without
phenol red, supplemented with 10% (v/v) FBS; 1% (v/v), 10,000 penicillin units; 10 mg/mL
streptomycin solution; and 1% (v/v), 1% L-glutamine (200 mM). Cells were grown at 37 ◦C
in a humidified atmosphere containing 5% CO2.

Eprus® minims sterile 1 mL made of polyethylene (LDPE) (Eprus Sp. z o.o., Bielsko-
Biała, Poland) was used as the immediate packaging of the eye drops.



Pharmaceuticals 2021, 14, 849 17 of 25

The permeability studies used were: regenerated cellulose membranes, MWCO 12,000–
14,000 (Visking®, Serva Electrophoresis GmbH, Heidelberg, Germany); and corneas ob-
tained from pig eyeballs (domestic pig) (local slaughterhouse).

3.2. Equipment and HPLC Conditions
3.2.1. HPLC-UV

Liquid chromatography with UV detection (HPLC-UV) was used to determine CS in
eye drops and to analyze the chemical purity of the drops. The device was a Shimadzu
LC-10AT VP liquid chromatograph with SPD-10A VP UV–vis detector (Shimadzu, Kyoto,
Japan), Rheodyne 7120 with 20 µL dosing loop; stationary phase: Nucleosil 100 C18,
4.6 mm × 150 mm, 5 µm (MZ Analytical); mobile phase: methanol-water-acetic acid
(60:40:1, v/v/v), flow rate 1.0 mL/min for the assay and 0.5 mL/min for the purity analysis;
detection at 230 nm or 270 nm for determination and purity analysis, respectively [39].
Detailed validation information was published in our previous paper [39].

3.2.2. SEC-UV/RID

An HPLC Prominence-i LC-2030C Plus system with UV–vis and a RID-20A refracto-
metric detector operated with LabSolutions DB—GPC software v.6.87 (all from Shimadzu,
Kyoto, Japan) were used for stability analysis of HA solutions and prepared eye drops.
Aqueous gel filtration chromatography (GFC) with UV at 230 nm [47] and RI detection
(RID) was performed in a YarraTM SEC-4000 column (300 mm × 7.8 mm, 3 µm ultra-
pure silica particle size, 500 Å pore size) with a SecurityGuardTM Cartridge GFC-4000
(4 mm × 3.0 mm) System (all from Phenomenex®, Torrance, CA, USA), at 30 ◦C. The
running buffer was a mixture of 0.2 M NaNO3 and 0.01 M NaH2PO4 (pH 7.0) at a flow
rate of 1.0 mL/min [48]. The mobile phase was prefiltered through an OlimPeakTM 0.2 µm
hydrophilic PTFE filter (Teknokroma, Barcelona, Spain) and degassed on an ultrasonic
degasser. Injections of 20 µL were made. The temperature of both detectors was 40 ◦C.

3.2.3. HPLC-MS/MS

The HPLC-MS/MS assays were performed using a 1260 Infinity liquid chromatograph
(Agilent Technologies, Santa Clara, CA, USA) with a triple quadrupole tandem mass
spectrometer 4000 QTRAP (Sciex, Framingham, MA, USA). A TurboV ion source operating
in negative ion mode (electrospray ionization—ESI) was used. Chromatographic separation
was accomplished by applying a Nucleosil 100 C18 column, 4.6 × 150 mm, 5 µm (MZ
Analytical) at 20 ◦C. Isocratic elution was used with a mobile phase consisting of 1% formic
acid in a methanol–water mixture 60:40 (v/v) and a flow rate of 1000 µL/min. The injection
volume was set at 5.00 µL. The total run time was 10 min.

An 11 PLUS syringe pump (Harvard Apparatus, Holliston, MA, USA) coupled directly
to the ESI ion source of the mass spectrometer was used to select and optimize the ion
transitions. These procedures were conducted by injecting methanolic–water solutions at
1:1 (v/v) of compounds of interest to the mass spectrometer at a flow rate of 10 µL/min.
Final optimized conditions were as follows: ion spray voltage (IS): −4500.0 V; curtain
gas nitrogen (CUR): 40.0 psi; temperature (TEM): 600 ◦C; nitrogen as ion source gas (GS1,
GS2): 60.0 psi and 60.0 psi. Detection was performed on a mass spectrometer operated in
multiple reaction monitoring (MRM) mode. Dwell time was set at 50.0 ms. The HPLC-
MS/MS system was controlled, and the data acquisition and processing were conducted
using Analyst Software version 1.6.3 (Sciex, Framingham, MA, USA) [39]. More validation
information was published in our previous paper [39].

3.2.4. Other Equipment

The spectrophotometric analysis was performed using a UV–vis Lambda 20 spec-
trophotometer (Perkin Elmer, Buckinghamshire, UK) and the FTIR IRAffinity-1 spectropho-
tometer (Shimadzu, Kyoto, Japan).
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The following were used in the permeation studies: a Franz V6A-02 diffusion cell
(Permegear, Inc., Hellertown, PA, USA), an Epsilon 2-4 LSC plus a freeze dryer (Martin
Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany), and a Bio RS-24
mini rotator (Biosan SIA, Riga, Latvia).

A Binder KBF 240 climatic chamber (Binder GmbH, Tuttlingen, Germany) with a
Hydrolab Basic 10 water treatment system (Hydrolab Sp. z o.o., Sp. K., Straszyn, Poland)
and Atlas Suntest CPS + (Atlas, Mount Prospect, IL, USA) were used for stability studies.

The physicochemical properties of the eye drops were assessed using a Shott Lab CG
842 pH meter (Schott Group, Mainz, Germany), a Marcel Os 3000 osmometer (Merazet
SA, Poznan, Poland), and a HAAKE RheoStress1 rotational rheometer (ThermoScientific,
Waltham, MA, USA) with a Thermo HAAKE DC 30 temperature controller.

A small steam sterilizer (Extacta, M.O. Com S.R.L., Montecchio, Emilia, Italy) was
used for sterilization.

SIRC morphology was observed under a Nikon Eclipse TS100 microscope with an
attached model C-SHG fluorescent unit and a DS-SMc digital camera. Absorbance was
read using a Biotek Instruments plate reader, model Elx-800 (Highland Park, Winooski,
VT, USA).

3.3. Methods
3.3.1. Determination of CS in Eye Drops Using UV and HPLC-UV Methods

UV method: 0.2 mL of the eye drops was supplemented with water (or PBS in the
permeation study) to 100.0 mL. The CS content was calculated using the parameters of the
standard curve: y = (1.34 ± 0.01) 10−2 x [39] or y = (1.38 ± 0.01) 10−2 x for PBS buffer as
solvent (x—CS concentration in µg/mL; y—absorbance at 296 nm). The parameters of the
CS standard curve in PBS solution were determined in the range of 5.5–88.6 µg/mL [26].
The validation and revalidation information can be found in our previous papers [26,39].

HPLC-UV method: 0.1 mL of the test drops was added to 2.5 mL of methanolic propyl
4-hydroxybenzoate (1 mg/mL, i.s.) and made up to 25.0 mL with the mobile phase. The
test and reference solutions (CS 2%) were applied to the chromatography column. The CS
content in the drops was calculated as the arithmetic mean of three determinations.

3.3.2. Chemical Purity by HPLC-UV and HPLC-MS/MS

HPLC-UV method: a solution of freshly prepared drops corresponding to a CS con-
tamination of 0.1% (P0.1%) and a mixture of eye drops and a mobile phase (1:3, v/v) were
applied to the column and developed for 30 min (0.5 mL/min, UV 270 nm).

HPLC-MS/MS method: a mixture of eye drops and a mobile phase (1:4, v/v) was
applied to the column, and the presence of ions with retention times 2.47, 2.21, and 2.15 min
(acid 2.3- and 2,5-dihydroxycarboxylic acid (152.9→ 108.9 and 152.9→ 80.9), pyrocatechin
(108.9→ 90.9 and 108.9→ 80.9) [26].

3.3.3. Analysis of Eye Drops’ pH, Osmolarity, and Viscosity

Each measurement was repeated three times and performed directly in the tested
drops. The rheological tests were performed at a temperature of 25.0 ± 0.5 ◦C (geometry of
the bob and Z20 cup; diameter: 20 mm, gap size: 4.2 mm).

3.3.4. Sterility Test of Eye Drops

The sterility of the eye drops was tested following the requirements of the European
Pharmacopoeia 10th Edition (2019; chapter 2.6.1. Sterility) [49] using the membrane filtration
technique and direct inoculation of the culture medium [26]. Under the requirements of
the European Pharmacopoeia, the suitability of the media and methods used was confirmed
prior to the sterility test.

Evaluation of microbial growth was performed at one- or two-day intervals during
14-day incubation (34 ± 1 ◦C—TG and 22 ± 1 ◦C—TSB).
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3.3.5. Procedure for the Preparation of CS and HA Eye Drops

HA solution (0.8%): 0.8 g of HA was added to 99.2 g of water at room temperature
and stirred for 3 h until completely dissolved. The resulting solution was allowed to swell
for 24 h. The solution was then filtered through a Scott G-1 clarifier.

Eye drops with CS (2%) and HA (0.4%): 0.4 g of sodium chloride and 0.02 g of sodium
bicarbonate were dissolved in 40.0 g of water, then 2.0 g of CS was added, mixed, and
made up to 50.0 g with water (solution A). Then 50.0 g of HA solution (0.8%) was added
to solution A, mixed, transferred to glass bottles, sealed, and autoclaved at 121 ± 2 ◦C for
20 min (Preparation I). In another procedure, 50.0 g of solution A was filtered through a
sterilization filter (0.22 µm) into a sterile bottle, 50.0 g of a sterile 0.8% HA solution was
added, and the bottle was closed with a sterile stopper under sterile conditions (Preparation
II). The eye drops (Preparations I and II) were then aseptically transferred to the immediate
packaging (Eprus®, 1 mL).

HA solution (0.4%) for stability and interaction studies: 0.4 g of sodium chloride was
added and dissolved in 49.6 g of water at room temperature. Then, 50.0 g of a 0.8% HA
solution was added, mixed, and filtered through a Scott G-1 caliper filter. The solution was
divided into three parts, transferred to glass bottles, capped, and autoclaved at 121 ± 2 ◦C
for 20 min, 134 ± 2 ◦C for 12 min, and 105 ± 2 ◦C for 30 min, respectively.

3.3.6. Penetration through a Hydrophilic Membrane

Phosphate buffer pH 7.4 (PBS): 8.0 g of sodium chloride, 1.44 g of disodium hydrogen
phosphate, 0.24 g of potassium dihydrogen phosphate, and 0.2 g of potassium chloride
were weighed and dissolved in 900 mL of distilled water. The solution was then adjusted
to pH 7.4 (HCl or NaOH 0.2 M) and made up to 1000.0 mL with water.

Test for CS permeation through a hydrophilic membrane: the test was performed at
35 ± 0.5 ◦C and 200 rpm with 8.0 mL of PBS buffer as acceptor. A membrane made of re-
generated cellulose (Visking®) was presoaked in PBS solution (24 h, room temperature). CS
eye drops (20 mg/mL) were placed in the donor chamber (1.0 mL), and at the appropriate
time, 1.0 mL of the solution was withdrawn from the acceptor chamber and immediately
replaced with fresh acceptor fluid. Then, the withdrawn solution (1.0 mL) was diluted to
25.0 mL with PBS buffer. The CS content was determined by the UV method by repeating
the determination three times. At the same time, a study of the permeation of CS from its
isotonic solution (2% CS in 0.99% NaCl) was performed. A blank test was performed to
confirm the selectivity of the method.

3.3.7. Penetration through a Porcine Cornea

Ex vivo porcine corneal CS permeation test: the procedure described in Section 2.5
was followed by placing a preaerated PBS buffer solution into the acceptor part of the Franz
cell. Two time frames (5 min and 3 h) were adopted, after which the acceptor solution was
withdrawn and diluted to 10.0 mL with PBS buffer. In addition, 0.2 mL of the solution
was withdrawn from the donor portion in parallel and diluted to 100.0 mL with water.
The CS content in the acceptor and donor parts was determined by the UV method. The
examination was performed twice for each of the analyses described (after 5 min and 3 h),
each time using a new cornea. Each sample was analyzed in triplicate. A blank test was
performed to confirm the selectivity of the method.

After the permeation test, the corneas were freeze-dried (21 h, −35 ◦C, 0.2 mbar) after
washing 3 times with distilled water.

Extraction of CS from the lyophilized cornea: extractions were carried out 3 times
with a mixture (7.0 mL) of water–methanol (1:2, v/v) at room temperature (minirotor). The
supernatant solutions were pooled, diluted to 25.0 mL with the same solvent, and filtered
(0.2 µm). Further, 3.0 mL of the filtrate was made up to 10.0 mL with the same solvent. The
content of CS was determined (UV method) using a solution of CS in a mixture of water
and methanol (1:2) (60.5 µg/mL) as a reference solution.
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3.3.8. Eye Drop Stability

The eye drops were photodegraded in direct minims packaging in an Atlas Suntest
CPS + device (250 W/m2; 1.2 × 106 lux·h). At the same time, the drops were exposed to
light in the immediate packaging, protecting them from light with aluminum foil. HPLC-
UV and HPLC-MS/MS were used to analyze the degree of CS photodegradation and the
presence of its products.

The influence of temperature and air humidity on the stability of drops stored in
bottles and minims was carried out under accelerated test conditions (40◦/75% RH; RH—
relative humidity), in a long-term test (25 ◦C/60% RH), and in uncontrolled conditions
(2–8 ◦C). The HPLC-UV method determined the CS content and the drop quality (pH,
osmolarity, viscosity), and HPLC purity and microbiological purity were assessed.

3.3.9. Cytotoxicity of Tested Eye Drops Using the Modified STE Assay

The following solutions were used to test the cytotoxic effect on the SIRC cell line:
Group A—sterile preparation (2% CS and 0.4% HA: A-1); control sample—sterile 0.4%

HA solution (A-2).
Group B—sterile preparation (2% CS and 0.4% HA) stored for 6 months (40 ◦C/75%

RH): in a glass bottle (B-1), in minims (B-2), and in minims and a package cardboard box
(B-3); in uncontrolled conditions at 2–8 ◦C: in minims (B-4) and in a glass bottle (B-5);
control sample—freshly prepared sterile eye drops containing CS (2%) and HA (0.4%) (B-6).
The B1–3 solutions were colored to varying degrees.

Group C—HA solution (0.4%) after sterilization at: 105 ± 2 ◦C, 30 min (C-1); 121 ± 2 ◦C,
20 min (C-2); 134 ± 2 ◦C, 12 min (C-3); and control sample—nonsterile HA solution
(0.4%) (C-4).

Sterile 0.9% NaCl was used as a control. Moreover, an additional control (cell culture
medium only—M) was also used.

The schematic illustration of experimental protocols is presented in Figure 9.
MTT assay: Cells were seeded in 96-well plates at a density of 2× 104 cells per well and

incubated for 48 h in cell culture conditions before starting an experiment. Subsequently,
tested solutions and controls were added to wells, and cells were incubated for 10 min at
room temperature. After incubation, the cells were rinsed twice with PBS. MTT assay was
performed according to a previous report [27]. To test the cytotoxic effect immediately after
incubation with the tested solution, for one plate, 170 µL of reaction solution containing
methylthiazolydiphenyl-tetrazolium bromide (MTT) solution (5 mg/mL in PBS) in culture
medium (final concentration 0.59 mg/mL) was added to each well. The plates were
incubated for 2 h at 37 ◦C and then centrifuged at 1200 rpm for 3 min. The formazan
crystals were extracted with 200 µL dimethylsulfoxide (DMSO). The absorbance was
measured at 570 nm with a plate reader (Biotek Instruments, Elx-800). Cell viability was
calculated as a percentage of the control.

To test the cytotoxic effect after 24 h, after incubation with the tested solutions (10 min),
150 µL of fresh medium was added to each well, and cells were incubated for a 24 h period.
Then, the MTT assay, according to the described procedure, was performed.

Neutral red uptake (NRU) assay: SIRC cells were seeded at a density of 2 × 104 cells
per well in 96-well plates and incubated for 48 h under cell culture conditions. After
incubation, the cells were exposed to the tested solutions for 10 min. Then, cells were
washed twice with PBS, and 150 µL of fresh in the medium was added to each well. The
cells were incubated for 24 h, and the NRU test was performed according to procedures
previously described [40,50] with some modifications. Briefly, NRU solution (50 µg/mL
in medium without FBS) was added to each well and incubated for 3 h at 37 ◦C. The dye
was extracted with a mixture of 1% (v/v) acetic acid, 50% (v/v) ethanol, and 49% (v/v)
sterile water, and the absorbance was read using a spectrophotometer at 570 nm with a
plate reader (Biotek Instruments, Elx-800). The results were calculated as a percentage of
the control.
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Figure 9. A schematic illustration of the in vitro experiments using the SIRC cell line. The impact of tested eye drops on cell
viability was determined using MTT and NRU assays.

Statistical analysis: The results are presented as the mean + SD from two independent
experiments. The values were calculated using GraphPad Prism version 8.00 for Windows,
GraphPad Software, San Diego, CA, USA. Data were compared for statistical significance
by the Dunnett’s multiple comparison test; a probability value (p) of less than 0.05 was
considered significant.

3.3.10. Analysis of the Stability of HA Solutions and CS and HA Interactions by
Size-Exclusion Chromatography

The following solutions were applied to the YarraTM SEC-4000 chromatographic col-
umn: hyaluronic acid (0.4%), nonsterile and sterilized at 105 ± 2 ◦C for 30 min, 121 ± 2 ◦C
for 20 min, and 134 ± 2 ◦C for 12 min, as well as these solutions stored 6 months under
accelerated test conditions (40 ◦C/75% RH); colored eye drop solutions containing CS
(2%) and HA (0.4%) and eye drop solutions containing CS (2%) and HPMC (0.5%) after
at least 3 months of storage under accelerated test conditions; freshly made eye drops
with CS (2%) and HA (0.4%) (sterile and nonsterile) and stored for 12 months in uncon-
trolled conditions at 2–8 ◦C; blank test—CS drops (2%) without HA. Chromatograms were
analyzed using UV (230 nm) and refractometric (RI) detection. To confirm or exclude
the presence of photodegradation products of salicylic acid, solutions of the reference
substances (0.1 mg/mL) of 2,3- and 2,5-dihydroxycarboxylic acid, and pyrocatechin in the
mobile phase, were applied to the column. Each solution was injected in triplicate to the
column and the retention times, surface areas, and asymmetry coefficients of the observed
peaks were recorded.
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3.3.11. Analysis of CS and HA Interactions Using FTIR

KBr tablets were prepared, and the following FTIR spectra were made: CS, CS and
HA equilibrium mixture, and the residue after evaporation of stained eye drops stored for
a minimum of 3 months (40 ◦C/75% RH).

4. Conclusions

The presented methodology can be applied in the hospital or community pharmacy to
prepare eye drops containing CS and HA under aseptic conditions. The developed formula
of eye drops with CS (2%) and HA (0.4%) met the criteria of stability and safety when
the product was stored in conditions of no light access and at a temperature of 2–8 ◦C.
The maximum permissible level of the sum of the pollutants in this case was taken as 1%.
The color changes observed during storage at higher temperatures indicated the potential
interaction in the pharmaceutical phase. Notably, this effect was observed only in drops that
contained both compounds—CS and HA. Further research should clarify this phenomenon,
since the interaction product of these two compounds was not observed immediately after
sterilization of the drops. Whether the applied drop sterilization technique was the factor
initiating the process is yet to be determined. Did the change in the sterilization method
of the HA solution (filtration technique—sterilizing filtration of the polymer solution is
not possible in the clinical pharmacy practice; e.g., in a hospital pharmacy), or the finished
product affect this process? Was there an interaction between CS and HA, or possibly
between CS and HA degradation products? Despite the cytotoxicity results indicating that
the vitality of the corneal cells was not affected after the application of these eye drops, their
quality defect in the form of discoloration limits their use by determining their shelf life.

Considering the lack of a preservative in the prepared drops, minims can be used as a
single-dose immediate packaging. Sterile Eprus® minims (1 mL) met the requirements of
maintaining the sterility of the drops and ensured the stability of the drops in conditions
lacking access to light and at temperatures no higher than 2–8 ◦C. Eye drops with CS (2%)
and HA (0.4%) stored in minims at 2–8 ◦C in the absence of light for 12 months showed no
signs of discoloration.

The significance of the research was to design novel eye drops for treating corneal dis-
eases. This study demonstrated the promising potential of eye drops based on hyaluronic
acid to deliver choline salicylate efficiently by increasing the viscosity. Moreover, hyaluronic
acid may itself serve as a therapeutic agent. After appropriate clinical trials, the devel-
oped formulation can be introduced as an eye preparation with a local anti-inflammatory,
regenerating, and moisturizing effect.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph14090849/s1, Figure S1: Cell morphology 24 h after incubation with the tested solutions
A-1, A-2, and C-(1–4), and appropriate controls; Figure S2: NRU staining 24 h after incubation with
the tested solutions A-1, A-2, and C-(1–4), and appropriate controls; Figure S3: Cell morphology 24 h
after incubation with the tested solutions B-(1–6), and appropriate controls; Figure S4: NRU staining
24 h after incubation with the tested solutions B-(1–6), and appropriate controls.
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38. Farmakopea Polska, XIIth Ed. (Polish Pharmacopoeia); Urząd Rejestracji Produktów Leczniczych, Wyrobów Medycznych i Produktów
Biobójczych: Warszawa, Poland, 2020.
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