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Simple Summary: The tumor microenvironment (TME) is considered to play a key role in the
development of many types of tumors. Muscle invasive bladder cancer (MIBC), which is well known
for its heterogeneity, has a highly complex TME. Herein, we integrated mass cytometry and imaging
mass cytometry to systematically investigate the complexity of the MIBC TME. Our investigation
revealed tumor and immune cells with diverse phenotypes. We identified a specific cancer stem-
like cell cluster (ALDH+PD-L1+ER-β−), which is associated with poor prognosis and highlighted
the importance of the spatial distribution patterns of MIBC TME components. The present study
comprehensively elucidated the complexity of the MIBC TME and provides potentially valuable
information for future research.

Abstract: Muscle invasive bladder cancer (MIBC) is a malignancy with considerable heterogeneity.
The MIBC tumor microenvironment (TME) is highly complex, comprising diverse phenotypes and
spatial architectures. The complexity of the MIBC TME must be characterized to provide potential
targets for precision therapy. Herein, an integrated combination of mass cytometry and imaging
mass cytometry was used to analyze tumor cells, immune cells, and TME spatial characteristics
of 44 MIBC patients. We detected tumor and immune cell clusters with abnormal phenotypes. In
particular, we identified a previously overlooked cancer stem-like cell cluster (ALDH+PD-L1+ER-β−)
that was strongly associated with poor prognosis. We elucidated the different spatial architectures of
immune cells (excluded, infiltrated, and deserted) and tumor-associated collagens (curved, stretched,
directionally distributed, and chaotic) in the MIBC TME. The present study is the first to provide in-
depth insight into the complexity of the MIBC TME at the single-cell level. Our results will improve
the general understanding of the heterogeneous characteristics of MIBC, potentially facilitating
patient stratification and personalized therapy.

Keywords: muscle invasive bladder cancer; tumor microenvironment; cancer stem cell; mass cytom-
etry; imaging mass cytometry
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1. Introduction

Muscle invasive bladder cancer (MIBC) is a highly aggressive malignancy, and the
ninth leading cause of cancer-related deaths worldwide. It is associated with a 40–60%
survival rate at 5 years [1,2]. MIBC is characterized by heterogeneity, and high rates
of recurrence and mortality [3,4]. Approximately 20–25% bladder cancer patients are
diagnosed with MIBC during their initial diagnoses [5]. Despite an improvement in MIBC
survival rates with cisplatin-based neoadjuvant chemotherapy (NAC) followed by radical
cystectomy, precise treatment options for MIBC patients are urgently needed [6].

The tumor microenvironment (TME) comprises multiple types of cells, including
tumor, immune and stromal cells. The heterogeneous phenotypes, quantities and loca-
tions of TME components affect the complexity of TME [7]. Complex TMEs play pivotal
roles in tumor progression, metastasis, recurrence, and significantly affect therapeutic
responses [8]. In the TME, tumor cells are stimulated by metabolites, stromal cells, and sig-
naling molecules, owing to which they exhibit remarkable plasticity [9]. Plasticity enables
tumor cells to constantly convert between differentiated states and cancer stem cell (CSC)
states [10]. This allows them to adjust to ever-changing microenvironments, evade immune
attack, invade and disseminate [11]. Furthermore, an immunosuppressive TME promotes
immune evasion, and is associated with a poor prognosis. It recruits abundant exhausted T
cells and regulatory T cells (Tregs). Both are, in fact, the main targets of immune checkpoint
inhibition therapies that have recently revolutionized cancer therapy [12,13]. Exhausted
T cells are characterized by dysfunction, and persistently express multiple inhibitory re-
ceptors (such as PD-1, CTLA-4, Tim-3, and LAG3) [14]. Tregs play immunosuppressive
functions by secreting immunosuppressive cytokines [15]. Analyses of various cancers
have shown that T cell exhaustion and Tregs drive tumor progression [14,16].

With the rapid development of single-cell technologies, studies have comprehensively
explored the heterogeneity of MIBC [17,18]. Many clusters of tumor, immune, and stromal
cells with important functions have been identified. Using single-cell RNA sequencing
(scRNA-seq), studies have elucidated that tumor cells involved in bladder cancer lose the
ability to express MHC-II molecules, and that inflammatory cancer-associated fibroblasts
accelerate tumor progression [19]. However, scRNA-seq cannot illustrate the spatial
distribution characteristics and interactions between neighboring cells in different types
of cell clusters. In contrast to scRNA-seq, an integrated combination of mass cytometry
(CyTOF) and imaging mass cytometry (IMC) can be used to systematically investigate the
diverse phenotypes of the cells in the TME at the single-cell level. They can also be used
to explore the spatial location characteristics of such cells. Therefore, the two techniques
constitute a practical strategy for TME research [20,21].

Herein, we integrated CyTOF and IMC to explore the complexity of the MIBC TME.
CyTOF analysis revealed the abnormal phenotypes of tumor cells and immune cells, and
IMC identified the major spatial phenotypes of the MIBC TME. This single-cell proteomic
analysis demonstrates the complexity of the MIBC TME and provides a foundation for
precise TME-targeted MIBC therapy.

2. Results
2.1. TME Landscape in MIBC

To map the TME landscape of MIBC, 79 samples from 44 patients (Figure S1), including
44 cancer (CA) tissues and 35 para-carcinoma (CP) tissues, were evaluated by CyTOF.
t-SNE algorithms were performed to reduce the high dimensional data and generated two-
dimensional map of data. The analysis of single cells in the MIBC TME revealed various
unique protein expression patterns (Figure 1A). In order to detect the specific clusters in the
TME, phenograph algorithm was utilized to identify 21 clusters with distinct phenotypes
(Figure 1B). The analysis of clusters from CA and CP tissues showed that the frequencies
of many clusters in CA and CP tissues differed, indicative that the constitution of the
TME in CA and CP tissues varied (Figure 1C). In the 21 specific clusters, 6 immune cell
clusters represented as CD326−/lowCD45+, and 5 tumor epithelial cell clusters expressed
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CD326+CD45−/low, while the clusters showed that CD326−/low CD45−/low were defined as
“other cells” which maybe dedifferentiated tumor cells, fibroblast, endothelial cells or other
cell types. Interestingly, we detected that 7 specific clusters positively expressed CD326
and CD45 which possessed the characteristics of immune cell and tumor epithelial cell
simultaneously. These 21 specific clusters exhibited highly heterogeneity among individual
samples (Figure 1E). In the MIBC TME, tumor cell clusters exhibited diverse protein
expression patterns. Cluster 1 highly expressed ICAM-1 (CD54) and vimentin, positively
expressed cancer stem cell markers CD90 and LGR5 [22,23]; Cluster 2 characteristics of
high levels of CD47, Notch 2, vimentin, CD90, LGR5, Sox2; Cluster 3 exhibiting high levels
of PD-L1, androgen receptor (AR), bladder cancer stem cell markers CD133, ALDH [24,25];
Cluster 6 was characterized by high levels of PD- L1, ALDH, and lacked expression of ER-β.
All these 4 clusters were characterized by cancer stem-like cell phenotypes; Cluster 10
and 18 exhibited high levels of vimentin, ER-β and ICAM-1, positive expression of PD-L1
(Figure 1D). To further explore the characteristics of the specific clusters, we stratified
patients based on the frequency of each cluster, into high- and low-abundance groups.
Notably, the SPADE analysis showed that the tumor epithelial cells of cluster 10 high-
abundance group patients highly expressed c-Myc, Ki67, and vimentin, when compared
with low-abundance group patients, indicating that the high-abundance group patients
may exhibit epithelial-mesenchymal transition (EMT) state and a high proliferation rate.
Cluster 18 exhibited the same patterns as cluster 10 (Figure 2A,B).

To reveal the relationships of clusters in MIBC ecosystem, spearman rank correlation
analysis was performed. Many relationships among the clusters in the MIBC TME were
revealed (Figure 2C). Cancer stem-like cell cluster 3, CD326+CD45+ tumor epithelial cell
cluster 10 and 18 existed robust relationships with each other (Figure 2D), indicating that
these clusters potentially played similar roles in the TME, while multiple strong relation-
ships were found between tumor cells clusters and immune cells clusters (Figure 2C). The
above results suggested that the interactions of clusters contributed to the complexity of
the MIBC TME.

2.2. A Specific Cancer Stem-Like Cell Cluster Associates with Poor Prognosis

Interestingly, we identified a previously unappreciated cancer stem-like cell cluster
ALDH+PD-L1+ER-β− (Cluster 6) which was strongly associated with poor clinical outcome
(Figure 1D and Figure 3A). When patients were divided into high- and low-abundance
groups according to the frequency of cluster 6, we found that cluster 6 high-abundance
group patients were associated with advanced stage and age (Figure 3B,C). Meanwhile,
tumor dedifferentiation occurred in 63.6 percent of cluster 6 high-abundance group pa-
tients, which lost expression of epithelial cell markers Pan-CK and E-cadherin, while only
27.8 percent of low-abundance group patients appeared in dedifferentiation states (Figure
3F,G). Furthermore, spatial analysis from IMC showed that cluster 6 was located in the
stromal regions of the tumor invasive front (Figure 3D,E), representing a phenotype of the
tumor budding cell [26].
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Figure 1. TME landscape in MIBC. (A) t-SNE plots of indicated markers of single cells from all samples. (B) t-SNE plots
of the distinct clusters from cancer (CA) and para-carcinoma (CP) tissues. (C) Relative frequencies of 21 clusters in CA
and CP tissues. (D) Heatmap of indicated markers expression of 21 clusters. (E) Relative frequencies of 21 clusters in
individual samples.
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Figure 2. Characteristics of specific clusters. (A) SPADE analysis of tumor epithelial cells in cluster 10 or 18 high- and low- 
abundance groups; the red dots indicate high expression, and the blue dots indicate low expression, the dots size reflect 
cells numbers. (B) c-Myc, Ki67 and vimentin expression levels of tumor epithelial cells in high- and low-abundance group 
of cluster 10 or 18. (C) Spearman rank correlation analysis shows the relationships among clusters in the MIBC TME. (D) 
Spearman rank correlation analysis shows the relationships among cluster 3, cluster 10 and cluster 18. 
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Figure 2. Characteristics of specific clusters. (A) SPADE analysis of tumor epithelial cells in cluster 10 or 18 high- and
low- abundance groups; the red dots indicate high expression, and the blue dots indicate low expression, the dots size
reflect cells numbers. (B) c-Myc, Ki67 and vimentin expression levels of tumor epithelial cells in high- and low-abundance
group of cluster 10 or 18. (C) Spearman rank correlation analysis shows the relationships among clusters in the MIBC TME.
(D) Spearman rank correlation analysis shows the relationships among cluster 3, cluster 10 and cluster 18.
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Figure 3. A specific cancer stem-like cell cluster associates with poor prognosis. (A) Survival curves show distinctive prog-
nosis of patients in cluster 6 high- and low-abundance group. (B) Line plot shows that cluster 6 high-abundance group 
patients are older than low-abundancy group patients. (C) Histogram reveals that the advanced stage patients always 
belong to cluster 6 high-abundance group. (D) Highlighting the position of cluster 6 by ALDH (cyan), PD-L1 (red), ER-β 

Figure 3. A specific cancer stem-like cell cluster associates with poor prognosis. (A) Survival curves show distinctive
prognosis of patients in cluster 6 high- and low-abundance group. (B) Line plot shows that cluster 6 high-abundance group
patients are older than low-abundancy group patients. (C) Histogram reveals that the advanced stage patients always
belong to cluster 6 high-abundance group. (D) Highlighting the position of cluster 6 by ALDH (cyan), PD-L1 (red), ER-β
(white), while collagen I presents as green, DNA presents as blue, scale bars are indicated in images. (E) IMC analysis
reveals that cluster 6 has invaded into muscular layer; cluster 6 presents as cyan, α-SMA presents as red. (F) Frequency of
dedifferentiation samples in cluster 6 high- and low-abundance groups. (G) Images of dedifferentiated tumor cells, Pan-CK
presents as red, E-cadherin presents as green, DNA presents as blue. (H) Gene ontology (GO) analysis shows that the DEGs
of cluster 6 high- and low-abundance groups enrich in neuro-related pathways. (I) Transcription factor enrichment analysis
reveals the top 30 potential transcription factors of the DEGs between cluster 6 high- and low-abundance groups.
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To further understand the molecular characteristics of the high- and low-abundance
group’s patients in cluster 6, we next analyzed the DEGs between these two groups and
found that many DEGs were enriched in neuronal cell body, positive regulation of neuro-
genesis, neurotransmitter transport, neuro migration, and other neuro-related pathways
(Figure 3H). Transcription factor enrichment analysis of the DEGs showed that in 7 of the
top 10 potential transcription factors of the DEGs: SCRT1, DPF1, ZnF488, PIN1, CUX2
previously promoted neural differentiation and neuroendocrine cancer progression, while
EMX1 and MYRF were reported to promote the development of nervous system [27–33],
implying that cluster 6 might be regulated by neural related genes (Figure 3I). Furthermore,
we observed that glycosphingolipid synthase B4GALNT1 was significantly upregulated in
cluster 6 high-abundance group (Figure 4A). It was reported previously to affect neuro-
tumor progression and cancer stem cell characteristics by regulating glycosphingolipids,
which are enriched in exosomes [34–36]. In TCGA bladder urothelial carcinoma (BLCA)
cohort, high levels of B4GALNT1 were significantly related to clinical stages and poor prog-
nosis (Figure 4B,C). In our cohort, the genes significantly related to B4GALNT1 expression
were enriched in neurotransmitter transport, positive regulation of neuron differentiation,
and many other neuro-related pathways (Figure S2A). Immunohistochemical (IHC) stain-
ing and hematoxylin-eosin (HE) staining results showed that B4GALNT1 was also located
in stromal region (Figure S2B), implying a robust relationship between B4GALNT1 and
cluster 6.

Then, we downloaded the published scRNA-seq data of 8 bladder cancer tissues to
further explore the underlying mechanisms of B4GALNT1 [19]. According to the expres-
sion levels of B4GALNT1, we divided 8 tissues into high- and low-expression groups.
32,511 single cells from 8 tissues were clustered into 25 clusters (Figure S2C). EPCAM
and COL1A1 were used to identify tumor epithelial cells and fibroblasts, as described in
a previous study [37] (Figure S2D,E). Obviously, B4GALNT1 was enriched in fibroblast
clusters (Figure S2F), consisting of our IHC and HE results. DEGs enrichment analysis
showed that the major upregulated DEGs between fibroblasts in high- and low-expression
group of B4GALNT1 were significantly enriched in extracellular space, extracellular region,
ECM and the extracellular exosome (Figure 4D). Furthermore, a GO analysis of upreg-
ulated DEGs between tumor epithelial cells in high- and low-expression group showed
that extracellular exosome was the top-ranked signaling pathway; also, extracellular space
and ECM were in the top 20 signaling pathways (Figure 4E). In addition, several heat
shock proteins: HSPH1, HSPD1, HSPA6, HSPA1B, HSPA1A, HSP90AA1 were upregu-
lated in the fibroblasts of high-expression group (Figure 4F). Indeed, studies reported that
heat shock proteins are enriched in exosomes, which can promote cell-cell crosstalk in
TME [38,39]. Importantly, neighborhood analysis from IMC can precisely illustrate the
cell-cell interactions of specific cell clusters in TME according to the location information
of single cells [40]. Here, neighborhood analysis showed that the interaction rates of the
clusters in the TME of B4GALNT1 high-expression patients were significantly higher than
that of low-expression patients (Figure 4G,H), and the spatial distribution of the clusters in
B4GALNT1 high-expression patients was more chaotic than that in low-expression patients,
indicative of more cell-cell crosstalk occurred in the TME of B4GALNT1 high expression
patients (Figure 4I,J). Taken together, all these data may suggest that B4GALNT1 pro-
moted crosstalk among cell clusters by activating extracellular exosomes, thus facilitating
MIBC progression.
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Figure 4. Cluster 6 is potentially regulated by B4GALNT1. (A) Volcano plot of the DEGs between cluster 6 high- and
low-abundance groups. (B) Violin plot shows the B4GALNT1 expression levels of BLCA cohort in TCGA. (C) Disease-free
survival and overall survival of B4GALNT1 high- and low-expression group patients in TCGA BLCA cohort. (D,E) GO
analysis shows the top 20 pathways in which the DEGs of fibroblasts (D) or tumor epithelial cells (E) in B4GALNT1 high- and
low-expression group are significantly enriched. (F) The expression levels of HSPH1, HSPD1, HSPA6, HSPA1B, HSPA1A,
HSP90AA1 in B4GALNT1 high- and low-expression groups. (G,H) Interaction heatmap of 5 B4GALNT1 high-expression
patients (G) and 5 B4GALNT1 low-expression patients (H). The red bands indicate interaction, and the blue bands indicate
avoidance. (I,J) Clusters spatial distribution images of B4GALNT1 high (I) and low (J) expression patients, which were
highlighted by histoCAT software.
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2.3. The Heterogeneous Phenotypes of Immune Cells in the MIBC TME

Immunotherapy recently revolutionized cancer therapy, which is influenced by tumor
immune microenvironment [12,13]. To map the immune microenvironment landscape of
MIBC, we design a panel which contained 34 antibodies to analyze the protein expression
patterns of immune cells in MIBC ecosystem. To acquire the protein expression of immune
cells, we gated the immune cells in cytobank platform with immune cells specific marker
CD45. Then, t-SNE and phenograph algorithms were used to deal with high dimensional
data and identify 19 immune cell clusters with distinct phenotypes in MIBC ecosystem
(Figure 5A), including 6 CD4+ T cell clusters, 5 CD8+ T cell clusters, 2 B cell clusters, 3 DC
cell clusters, 2 macrophage clusters, and a NK cell cluster (Figure 5C). The frequencies of
clusters in CA tissues and CP tissues were greatly different, indicating that the immune
microenvironment of CA tissues and CP tissues were distinctive (Figure 5A,B). We further
analyzed the frequencies of clusters in individual cancer samples, found that a distinct
immune cell cluster with an absolute advantage in number existed in each sample, and sug-
gested that the immune cells were heterogeneous among individual samples (Figure 5D).

T cells play a dual role of anti-cancer and pro-cancer activities in the immune mi-
croenvironment [41,42]. In MIBC ecosystem, 11 T cells clusters with diverse expression
patterns of immune checkpoint, co-inhibitory receptor and activation markers, as shown in
Figure 5C, represented exhaust or immunosuppressive phenotypes [43]. Cluster 16 charac-
terized by high levels of PD-1 (CD279), TIM-3, GranzymeB, CD27, positively expressed in
CD95, HLA-DR, CTLA-4, ICOS (CD278), was an exhausted CD8+ T cell cluster. Cluster 10,
cluster 12, and cluster 13 negatively expressed of PD-1, CTLA-4 and HLA-DR, while cluster
17 had the same markers expression pattern as cluster 16, but low expression levels of PD-1,
ICOS, CTLA-4, HLA-DR, and CD95. Cluster 19 high expressed CD3, CD4 and Foxp3, was
identified as a Treg cell cluster, which positively expressed PD-1, TIM-3, HLA-DR, high
expressed CTLA-4, CD28, CD27, ICOS. The cluster 11, cluster 14, cluster 15, and cluster 18
played a similar markers expression pattern as cluster 19, but with low expression levels
(Figure 5C,E). When dividing patients into high- and low-abundance group, according to
the frequencies of each cluster, we found that the frequencies of infiltrating T cells, includ-
ing CD4+ T cells, CD8+ T cells, Tregs and PD-1+ T cells in cluster 16 high-abundance group,
were higher than in the low-abundance group (Figure 5F). Meanwhile, the frequencies of
PD-1+, TIM-3+ and CTLA-4+ immune cells of cluster 16 high-abundance group were also
significantly higher than the low-abundance group (Figure 5G and Figure S3A). Further-
more, the immune checkpoint, co-inhibitory receptor and activation markers expression
levels of CD8+ T cells, Tregs and macrophages in cluster 16 high-abundance group were
prominently higher than the low-abundance group (Figure S3B). Cluster 19 played similar
patterns with cluster 16 (Figure 5F,G). This suggests that cluster 16 and cluster 19 may be
associated with the immunosuppressive microenvironment of MIBC.
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Figure 5. The heterogeneous phenotypes of immune cells in MIBC and the TME. (A) t-SNE plot of immune cell clusters
from CA and CP tissues. (B) Relative frequencies of the 19 immune cell clusters in CA and CP tissues. (C) Heatmap of
specific markers expression of the 19 immune cell clusters. (D) Heatmap of the frequencies of 19 immune cell clusters in
each sample. (E) Frequencies of specific CD4+ T cell clusters and CD8+ T cell clusters in CA and CP tissues. (F) Frequencies
of infiltrating immune cells of high- and low-abundance groups of cluster 16 and 19. (G) SPADE analysis of PD-1+, TIM-3+,
CTLA-4+ immune cells in cluster 16 and 19 high- and low-abundance groups.
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2.4. The Spatial Resolution-Based Phenotypes of the MIBC TME

In a personalized precision medicine era, the subgrouping of patients based on molecu-
lar characteristics is emerging as a critical factor for prognosis and treatment of cancers [44].
Recently, a consensus molecular classification (ConMC) summarized the merits of the
published classifications and converged MIBC on six subtypes, based on 1750 MIBC tran-
scriptomic profiles from 18 published datasets [45]. The ConMC provides a new framework
for MIBC research. In this study, we grouped 38 samples into six molecular subtypes based
on the ConMC (Figure S4A), and analyzed the characteristics of the TME among the six
molecular subtypes at the single-cell level. However, the TME components of the six
molecular subtypes were no significant differences, indicative of the great heterogeneity
of the MIBC TME, and the ConMC did not lay a foundation for the MIBC TME research
(Figure S4B,C).

Next, to further dissect the complexity of the MIBC TME, we performed IMC to explore
the spatial resolution-based phenotypes of the MIBC TME. Pan-CK (epithelium), Collagen
I (extracellular matrix), and CD45 (immune cell) were visualized to identify morphological
features of the MIBC TME. In the TME, we observed several major spatial phenotypes of
tumor cells, immune cells, and collagen signatures. In tumor regions, two types of the
TMEs were occurred; type I region showed a strong expression of the epithelial cell markers
Pan-CK and E-cadherin (Figure 6A). Meanwhile, type II region lost the expression of Pan-
CK and E-cadherin, indicative of the occurrence of tumor dedifferentiation (Figure 6B). It
always occurred in poor prognosis samples. Immune cells in the MIBC TME also exhibited
three major spatial distribution patterns. The immune cells enriched in type I region were
excluded by tumor cells, which cloud not infiltrated tumor nests (Figure 6C). Type II region
recruited the immune cells infiltrating tumor nests (Figure 6D). Type III region showed few
immune cells (Figure 6E). Similarly, four major spatial distribution patterns of collagen
signatures occurred in the MIBC TME. The curved collagen fibers wrapping around tumor
nests were enriched in type I region (Figure 6F). The collagen fibers enriched in type II
region stretched and aligned more parallel to the tumor boundary (Figure 6G). Type III
region contained the directionally distributed collagen fibers (Figure 6H). Meanwhile, type
IV region displayed chaotically aligned collagen fibers without clear tumor boundaries
(Figure 6I). All these results suggested that the MIBC TME was highly complex; this is why
the treatment responses of MIBC patients were extremely different.
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Figure 6. The spatial resolution-based phenotypes of the MIBC TME. (A,B) Images of differentiated tumor cells (A) and
dedifferentiated tumor cells (B), Pan-CK presents as red, E-cadherin presents as green, DNA presents as blue. (C–E) Three
spatial distribution patterns of immune cells, type I (C), type II (D), type III (E), CD45 presents as red, Pan-CK presents as
blue. (F–I) Four spatial distribution patterns of collagen signatures, type I (F), type II (G), type III (H), type IV (I), Collagen
presents as green, Pan-CK presents as blue.
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3. Discussion

MIBC is a highly heterogeneous disease. As a key driver of tumor progression,
the TME endows tumor cells with considerable plasticity and the ability to alter their
phenotype to adapt to the changing circumstances. In the present study, we revealed
the abnormal phenotypes of tumor epithelial cells and immune cells in the MIBC TME,
and highlighted the complexity of the TME. Previous investigations have used bulk RNA
sequencing and scRNA-seq to gain insight into bladder cancer TME [8,19,46]. Although
these investigations have produced some important discoveries, the results are limited.
Therefore, we integrated CyTOF and IMC to explore the complexity of the MIBC TME.

In the present study, CyTOF was performed to assess the phenotypic diversity of
the MIBC TME at the single-cell level. The single-cells proteomics analysis expanded our
perspective on the abnormal phenotypes of tumor epithelial cells and immune cells. Using
CyTOF, we demonstrated that some specific tumor epithelial cells clusters are character-
ized by diverse expression patterns of markers that are specific for metastasis, immune
checkpoint, cancer stem cell, and cancer relative pathways. We identified a previously
overlooked cancer stem-like cell cluster ALDH+PD-L1+ER-β− (cluster 6). This cluster was
located in the stromal region of the tumor invasive front, and represents a phenotype of
tumor budding cells. Many studies have reported that tumor budding cells are typically
located at the tumor invasion front, reflecting the EMT [47]. Tumor budding cells express
high levels of the cancer stem cell markers LGR5, ALDH1A, CD44, and always escape
immune surveillance [26]. Recent studies have suggested that tumor budding cells are
characterized by malignant and active invasion, and are independent prognostic indicators
of many tumor types [48–50]. Therefore, cluster 6 may be invasive and malignant. When
the patients were stratified into high- and low-abundance groups based on the frequency of
cluster 6, the high-abundance patients had poor prognoses. Furthermore, many transcrip-
tome DEGs between high- and low-abundance groups highly enriched in neuro-related
pathways. It is possible that cluster 6 is regulated by neural-related genes. Neuro-signaling
can promote cancer cell growth and metastasis by regulating the TME [51]. There is also
evidence that metastatic tumors acquire a remarkable property associated with neurons
and that tumor cells with neuronal features are always endowed with plasticity, which
affects the aggressiveness of the tumor [52,53]. Furthermore, glycosphingolipid synthase
B4GALNT1, which has previously been associated with neuro-tumor progression and
cancer stem cell characteristics by affecting glycosphingolipids, was upregulated in the
high-abundance group [34,35]. The IMC and IHC analysis showed that both cluster 6 and
B4GALNT1 were located in the stromal region. Therefore, the results described above
indicate that cluster 6 is related to neural cells and is potentially regulated by B4GALNT1.
Bladder cancer with neural features is rare, but is a lethal malignancy with a high rate
of metastasis and a median overall survival expectation of 9–20 months [54,55]. Perhaps
cluster 6 contributes to the high malignancy and plays a key role in MIBC progression.
However, when we overexpressed B4GALNT1 in bladder cancer cell lines, there were no
observable phenotypic changes, implying that B4GALNT1 might facilitate MIBC progres-
sion by cooperating with stromal cells. Previous studies reported that cancer-associated
fibroblasts promote cisplatin resistance, induce EMT, and associate with poor progno-
sis in bladder cancer [19,56,57]. Therefore, to further confirm the mechanism by which
B4GALNT1 acts in MIBC, we analyzed the published scRNA-seq data of eight bladder
cancer tissues samples, and found that the major upregulated DEGs of fibroblasts in the
high- and low-B4GALNT1 expression groups were significantly enriched in the extracel-
lular exosome and the ECM-related signaling pathways. The DEGs in tumor epithelial
cells exhibited a similar pattern. The fibroblasts in the high-B4GALNT1expression group
expressed high levels of heat shock proteins, which have been reported to be enriched in
exosome and to promote exosome release [58]. This suggests that ECM remodeling and
activation of exosome mechanism possibly occurred in the high-B4GALNT1 expression
group. Extracellular exosome can improve tumor innervation and intercellular crosstalk
to facilitate tumor dissemination [59]. In addition, neighborhood analysis from IMC il-



Cancers 2021, 13, 5440 14 of 21

lustrated that the high-B4GALNT1 expression patients had more chaotic TMEs than the
low-B4GALNT1 expression patients, which implied strong crosstalk among the specific
clusters. Therefore, we speculate that B4GALNT1 induces ECM remodeling, and activates
extracellular exosomes to promote cell–cell crosstalk and accelerate MIBC progression.

With the successful application of immunotherapy, tumor immune microenvironment
has become the focus of considerable attention. In the present study, CyTOF revealed
that the T cell clusters expressed PD-1 to different degrees, and the frequency of PD-1+ T
cells varied among individual samples. Furthermore, the T cell clusters in the MIBC TME
co-expressed activation markers and co-inhibitory receptors, which were characterized by
exhausted phenotypes, as reported previously [60].

Subgrouping of patients based on molecular characteristics has considerably affected
the selection of therapeutic regimens and the forecasting of therapeutic responses and
prognoses [44]. The establishment of tumor molecular subtypes has advanced our un-
derstanding of tumor genotypes and phenotypes, presenting a potential application in
therapeutics and prognosis estimation [61,62]. At present, the ConMC divides MIBC into
six molecular subtypes and systematically exposes specific differentiation patterns, mu-
tation genes, histology, and overall survival rates in the six molecular subtypes [45]. The
study provides a foundation for the study of MIBC heterogeneity. Herein, based on the
ConMC, we divided 38 samples into six molecular subtypes, but did not observe any
significant differences in the TME components of the MIBC subtypes. Suggesting that
the MIBC TME has great heterogeneity, the ConMC may not be suitable for studying the
remarkable heterogeneity of the MIBC TME.

Cancer metastasis and progression originate from abnormal interactions between
tumor cells and the TME [63]. Both the quantity and the spatial distribution of TME
compositions contribute to the complexity of the TME and impact cancer progression [64].
We observed several types of TME in situ in MIBC. In the tumor regions, we detected
two types of TMEs: the first type was characterized by a high rate of expression of the
epithelial cell markers Pan-CK and E-cadherin, and the second type was characterized by
a lack of expression, representing a dedifferentiated phenotype, which always occurs in
malignant and invasive tumors [65]. The immune cells in the MIBC TME also exhibited
three major spatial distribution patterns. The type I region always recruits immune cells,
and is excluded by tumor cells, which may impair anti-tumor immune responses. Immune
cells enriched in the type II region can infiltrate tumor nests, where they may fully exert
their anti-tumor effect. In contrast, the type III region had an immune desert phenotype.
IMC also revealed four major spatial distribution patterns of tumor-associated collagen
signatures in the TME. In the type I region, the curved collagen fibers wrapped around
tumor nests were not conducive to the metastasis of tumor cells. The type II region was
enriched with stretched collagen fibers aligned parallel to the tumor boundary, which may
be beneficial to tumor growth and metastasis. The collagen fibers enriched in the type III
region were directionally distributed, which may contribute to the unidirectional migration
of tumor cells. In the type IV region, chaotically aligned collagen fibers were enriched;
moreover, as these collagen fibers may contribute to the multidirectional metastasis of
tumor cells, the tumor was indicated to be malignant [66,67]. Collectively, the results from
the present study suggest that the MIBC TME is highly complex and comprises diverse
phenotypes. The spatial resolution-based phenotypes of the TME, which contribute to the
complexity of the MIBC TME, deserve more attention.

However, it should be noted that the present study has some limitations. First, CyTOF
and IMC are dependent on high-quality antibodies. Owing to the limited availability
of commercial antibodies, we could only analyze the characteristics of the TME based
on existing antibody tools. Second, the present study only described the complexity
of the MIBC TME; the functions and genetic profiles of the clusters identified herein
require further research. In particular, the functions and underlying mechanisms of the
ALDH+PD-L1+ER-β− cancer stem-like cell cluster require urgent investigation. Third, all
the phenotypes of clusters identified herein were based on a cohort of 44 patients with
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MIBC. Larger and independent cohorts should be analyzed to reveal additional valuable
clinical phenotypes.

In summary, we integrated CyTOF and IMC to understand the complexity of the
MIBC TME at the single-cell level. The results emphasized various spatial phenotypes of
the MIBC TMEs. Therefore, the present study has expanded the background knowledge
required for precision MIBC therapy.

4. Materials and Methods
4.1. Patients and Samples

Seventy-nine tissue samples were collected from 44 MIBC patients who underwent
radical cystectomy in the First Affiliated Hospital of Guangxi Medical University during
February 2018 and October 2019. All participants had not received any tumor therapy be-
fore enrolment, and the diagnosis of MIBC was confirmed by two experienced pathologists.
Paraffin histopathological sections were obtained from the pathology department of the
First Affiliated Hospital of Guangxi Medical University. Written informed consent was
provided by all participants. This study was approved by the ethics committee of the First
Affiliated Hospital of Guangxi Medical University (2019(KY-E-147)).

4.2. Cell Isolation

The fresh bladder cancer tissues were transferred from the operating room to the
laboratory in cold HBSS (311-512-CL; WISENT, Saint-Jean-Baptiste, Quebec, Canada) with
1% penicillin-streptomycin (15240062; Gibco, Shanghai, China) within 20 min of removal.
Bladder tissues were washed with cold Dulbecco’s phosphate-buffered saline (DPBS,
without Mg2+ and Ca2+, 311-425-CL; WISENT), minced into small fragments with surgical
scissors, and centrifuged at 300× g for 5 min at 4 ◦C. After discarding the supernatant, the
tissue fragments were transferred to a tissue detach tube (Miltenyi, Bergisch Gladbach,
Germany) and perfused with 8 mL of collagenase type I (1.5 mg/mL; 17100017; Gibco)
supplemented with DNase I (0.2 mg/mL; 10104159001; Roche, Basel, Switzerland). Next,
the tissue was dissociated with GentleMACS tissue dissociator (Miltenyi) according to
manufacturer’s instruction at 37 ◦C for 20 min. After centrifugation (5 min at 300× g, 4 ◦C),
residual tissue fragments were dissociated again. Enzymatic dissociation was terminated
with 10 mL DMEM (319-006-CL; WISENT) supplemented with 10% FBS (10099141; Gibco).
Next, the cell suspension was filtered through a 70 µm cell strainer and washed with red
blood cell (RBC) lysis buffer (Solarbio, Beijing, China) to remove red blood cells. Finally,
the single cell suspension was washed with DPBS again, and cells were frozen in FBS,
complemented with 10% DMSO.

4.3. RNA-Sequencing

Bulk RNA sequencing was performed as previously described [68]. Briefly, total
RNA of 38 MIBC tissues was extracted by Trizol (Life Technologies Corporation, Carlsbad,
CA, USA). Total RNA concentration was estimated with a Nanodrop spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). RNA sequencing was performed using the
Illumina NextSeq 500 platform (Illumina, San Diego, CA, USA). Samples were successfully
classified into six molecular subtypes by the ConMC based on transcriptomic data [45].
Data from the cancer genome atlas (TCGA) were analyzed by a bioinformatics tool GEPIA
(http://gepia.cancer-pku.cn/detail.php (accessed on 19 August 2020) with the default set-
ting [69]. Transcription factor enrichment analysis was performed with the bioinformatics
tool ChEA3 (https://maayanlab.cloud/chea3/#top (accessed on 4 March 2021)) with the
default setting [70]. Single cell RNA sequencing data of 8 bladder cancer tissues were mined
from a recent publication [19]. The quality control of raw data was according to published
pipelines, and data processing was performed as previously described [71]. Briefly, the
integrated data matrix was subjected to dimensionality reduction by principal component
analysis (PCA). 25 clusters were identified with the FindClusters function in Seurat, and
they were visualized with 2D t-SNE plots. EPCAM and COL1A1 were used to identify

http://gepia.cancer-pku.cn/detail.php
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tumor epithelial cells and fibroblasts. Differentially expressed genes (DEGs) of tumor
epithelial cells or fibroblasts between B4GALNT1 high- and low-expression groups were
identified by Seurat FindMarkers function. Gene ontology (GO) analysis was performed
with clusterProfiler.

4.4. Antibodies and Antibody Labeling

Antibodies used for CyTOF in this study were listed in Tables S1 and S2. Some
preconjugated antibodies were purchased from supplier (Fluidigm, San Francisco, CA,
USA) directly, while others were labeled with specified metal tag using the MaxPAR
antibody conjugation kit (Fluidigm) according to the manufacturer’s instruction.

4.5. Mass Cytometry

Cryopreserved cells were recovered and single cells from 4 samples were barcoded
with barcoding reagents simultaneously, as previously described [72]. Surface staining
for CyTOF was performed as previously described, with slight modifications [73]. Briefly,
Cisplatin (Fluidigm) staining was used to identify dead cells, and then cells were stained
with antibody cocktails. Cells were then incubated with Cell-ID intercalator-Ir (Fluidigm)
overnight at 4 ◦C to identify cellular events and data acquired with CyTOF2TM mass
cytometer (Fluidigm). EQ™ four element calibration beads (201078, Fluidigm) were used
to normalize signals according to the manufacturer’s instructions.

FCS files generated by CyTOF2TM mass cytometer were deconvoluted (debarcoded)
and uploaded to Cytobank platform (www.cytobank.org (accessed on 11 December 2019)).
To clear data, events recorded were gated according to DNA sign intensity and cell length.
Populations of interest were gated manually, and the events of population were exported
as FCS files and .csv files. The signal values of channels acquired by CyTOF were converted
using arcsinh transformed with a cofactor of 5, and the characteristic clusters were identified
by performing phenograph on 79 samples, which randomly extracted 5000 cells per sample
to analyze using cytofkit R package [74]; t-distributed stochastic neighbor embedding (t-
SNE) was used to convert high-dimensional data into two dimension with default setting:
perplexity value 30, iteration value 1000, using the t-SNE R package; and phenotype
heatmaps of clusters were drawn using pheatmap R package. Spearman rank correlation
analysis was displayed in R using the Corrplot R package, with the frequency of clusters as
input [75].

4.6. Imaging Mass Cytometry

Paraffin slices (thickness of 5 µm) were incubated at 65 ◦C for 2 h in an oven. Slices
were then incubated with xylene to further deparaffinized and carried through sequential
rehydration from absolute ethanol to 75% ethanol before washing with double distilled
water. Antigen retrieval was performed in a 50 mL EP tube, which contained 40 mL
Tris-EDTA buffer pH 9.0 (FC16FA0005, Sangon Biotech (Shanghai) Co., Ltd., China) for
30 min at 96 ◦C. The 50 mL EP tubes were slowly cooled at room temperature for 20 min.
After washing with PBS, slices were blocked with 3% BSA in DPBS for 45 min at room
temperature, and then incubated with a metal-conjugated antibody cocktail (diluted with
DPBS solution contained 0.5% BSA) overnight at 4 ◦C in a humid chamber. The following
day, slices were counterstained with 1:400 dilution of Cell-IDTM Intercalator-Ir (Fluidigm)
in DPBS for 30 min at room temperature, washed with DPBS containing 0.1% Triton-X
(TC259563, Thermo scientific, Waltham, MA, US) and absolute DPBS twice, and dried at
room temperature for at least 20 min. Finally, slices were detected by a Hyperion imaging
mass cytometer (Fluidigm) at a resolution of 1 µm and a frequency of 200 Hz. The area of
region of interest (ROI) was 1 × 1 mm2, and the energy was between 4 and 6. The data
were exported as MCD files and .txt files which were read by MCD viewer software. The
antibodies panel used in IMC was listed in Table S3, and all antibodies had positive signals
(Figure S5).

www.cytobank.org
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MCD files exported from hyperion imaging mass cytometer were exported into tiff
files by MCD viewer software. The tiff files were loaded into CellProfiler Version 3.1.9 to
generate cell segmentation masks and extract the intensity of markers in the panel [76].
Subsequently, the tiff files with cell masks were imported into histoCAT software Version
1.73 to further analyses [77]. t-SNE analysis was used to transform high dimensional
data into two dimensions. The tissue-specific clusters with diverse phenotypes were
identified by phonograph analysis based on similar markers expression pattern, and then
the clusters were used to run neighborhood analysis to reveal the interaction or avoidance
of cell–cell neighbors.

4.7. Statistical Analysis

Two-sided Student’s t test and Kruskal–Wallis rank sum test were performed for sta-
tistical analysis. p < 0.05 was considered statistically significant. Spearman rank correlation
analysis was used to evaluate the correlation of specific clusters. Overall survival curves of
MIBC patients were estimated using Kaplan–Meier analysis and compared by the log-rank
test. The software GraphPad Prism 8 was used for statistical analysis.

5. Conclusions

In this study, CyTOF and IMC were used to investigate the complexity of the MIBC
TME, revealing the heterogeneous characteristic of TME that is more complex than previ-
ously understood. We revealed the diverse phenotypes of tumor cells and immune cells
of MIBC, and identified a specific cancer stem-like cell cluster that associated with poor
prognosis. In addition, our study also dissected the spatial resolution-based phenotypes of
immune cells and collagen signatures. Taken together, our study provides a resource of
the MIBC TME for future study, and might provide approaches for the precise treatment
of MIBC.
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panel. Table S2: Purified antibodies of immune panel. Table S3: Purified antibodies of IMC pane.
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Abbreviations

MIBC muscle invasive bladder cancer
TME tumor microenvironment
NAC neoadjuvant chemotherapy
ConMC consensus molecular classification
CyTOF mass cytometry
IMC imaging mass cytometry
CA cancer
CP para-carcinoma
EMT epithelial–mesenchymal transition
IHC immunohistochemical
H&E hematoxylin-eosin
CSC cancer stem cell
Tregs regulatory T cells
scRNA-seq single-cell RNA sequencing
AR androgen receptor
BLCA bladder urothelial carcinoma
RBC red blood cell
PCA principal component analysis
DEGs differentially expressed genes
GO gene ontology
t-SNE t-distributed stochastic neighbor embedding
ROI region of interest
TCGA the cancer genome atlas
ECM extra cellular matrix
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