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Natural killer (NK) cells are large granular lymphocytes involved in our defense against

certain virus-infected and malignant cells. In contrast to T cells, NK cells elicit rapid

anti-tumor responses based on signals from activating and inhibitory cell surface

receptors. They also lyse target cells via antibody-dependent cellular cytotoxicity, a

critical mode of action of several therapeutic antibodies used to treat cancer. A body

of evidence shows that NK cells can exhibit potent anti-tumor activity against chronic

myeloid leukemia (CML), acute myeloid leukemia (AML), and myelodysplastic syndromes

(MDS). However, disease-associated mechanisms often restrain the proper functions

of endogenous NK cells, leading to inadequate tumor control and risk for disease

progression. Although allogeneic NK cells can prevent leukemia relapse in certain

settings of stem cell transplantation, not all patients are eligible for this type of therapy.

Moreover, remissions induced by adoptively infused NK cells are only transient and

require subsequent therapy to maintain durable responses. Hence, new strategies are

needed to trigger full and durable anti-leukemia responses by NK cells in patients

with myeloid malignancies. To achieve this, we need to better understand the interplay

between the malignant cells, their microenvironment, and the NK cells. This review

focuses on mechanisms that are involved in suppressing NK cells in patients with

myeloid leukemia and MDS, and means to restore their full anti-tumor potential. It also

discusses novel molecular targets and approaches, such as bi- and tri-specific antibodies

and immune checkpoint inhibitors, to redirect and/or unleash the NK cells against the

leukemic cells.

Keywords: NK cells, myeloid malignancy, cancer immunotherapy, drug development, NK cell dysfunction

INTRODUCTION TO NATURAL KILLER CELLS, THEIR
RECEPTORS, AND ROLE IN THE IMMUNE SYSTEM

The natural killer (NK) cell was discovered in the mid-1970s based on its ability to lyse
certain tumor cells without prior sensitization of the host (1–4). Based on this, and the
understanding that both T and B cells in contrast to NK cells need to undergo somatic gene
rearrangement to become fully functional with specific immunity that quickly respond upon
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recalling, NK cells have for long been considered innate
immune cells. However, more recent data have challenged
this perception by demonstrating that NK cells also can carry
memory-like features (5). Today, NK cells are explored in a
wide variety of contexts, including, but not limited to, infectious
diseases, autoimmunity, pregnancy, and cancer. Thus, from an
unknown cell type with undetermined biological meaning and
significance in the mid-1970s, it has now more than 40 years
later been recognized that NK cells are key components of our
immune system.

NK cells have traditionally been classified as group 1 innate
lymphoid cells and develop from hematopoietic stem cells
(HSCs) while maturing outside the bone marrow compartment
(6, 7). They have the capability to migrate to a number
of tissues to launch immune responses to infections and
cancer (8). The basis for target recognition by NK cells was
revealed in the mid-1980s when the “missing-self ” hypothesis
was postulated (9). However, as predicted by the investigators
at that time, activation signals are needed in addition to
“missing-self ” to trigger cytotoxicity (10). Today, we know that
a delicate interplay between an array of germ-line encoded
receptors expressed on the NK cell surface control NK cell
degranulation (Figure 1) (11, 12), a cytotoxicity mechanism that
lyses target cells via the release of substances such as perforin
and granzymes. The key receptors controlling self-recognition
by human NK cells are HLA class I-binding receptors, including
the Killer Immunoglobulin-like Receptor (KIR) family as well

FIGURE 1 | NK cell receptors, their function, and ligands. Schematic illustration showing how NK cell activity and cytotoxicity are controlled by signals from cell

surface receptors. Cytokines and corresponding cytokine receptors on the NK cell are shown at the lower part of the NK cell. Inhibitory signals triggered by receptors

(red) upon engagement of their ligands (in brackets) are shown on the left side of the NK cell. Activating signals triggered by receptors (green) upon engagement of

their ligands (in brackets) are shown on the right side. Binding of LFA-1 (blue) on NK cells to ICAM-1 on target cells direct the granulae release toward the target cell,

which is needed for efficient target cell lysis.

as the Natural Killer Group 2A (NKG2A) and Leukocyte
immunoglobulin-like receptor subfamily B member 1 (LILRB1,
also referred to as LIR-1) (11). The inhibitory KIRs and the
NKG2A receptor have also been shown to be involved in NK
cell education, a functional maturation process that allows self-
inhibited NK cells to become potent killers upon interaction
with cells losing self-HLA class I expression (13). In contrast
to the inhibitory receptors, an array of activation, co-activation,
and adhesion receptors such as the natural cytotoxicity receptors
(NCRs) NKp30 and NKp46 and the NKG2D, 2B4, and DNAM-
1 receptors trigger NK cell activation following binding to
ligands up-regulated on cells undergoing stress and/or infection
(11). Under normal conditions when NK cells are not heavily
activated by cytokines, at least two of these receptors need
to be stimulated simultaneously to trigger degranulation (14).
This is in contrast to the FcγRIIIA receptor (CD16a), that
upon ligation to the Fc portion of an antibody bound to a
target cell alone potently can trigger degranulation (15). This
process is referred to as antibody-dependent cellular cytotoxicity
(ADCC). Importantly, engagement of the LFA-1 receptor on the
NK cell is required in most situations to direct the granulae
release toward the target cell and thereby trigger efficient
target lysis (15). The latter adds another layer to how NK
cell cytotoxicity is regulated. In addition to target cell lysis
via the release of granzymes and perforin, NK cells also kill
cells via stimulation of death receptors on the target cell
surface, which triggers caspase-dependent apoptosis (16). Both
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TNF-related apoptosis-inducing ligand (TRAIL) and Fas ligand
(FasL) on the NK cell surface can trigger caspase-mediated
apoptosis in target cells expressing TRAIL-R1 and/or -R2 and
Fas, respectively (17). Importantly, NK cells do not only kill
infected and tumor-transformed cells via these mechanisms, but
also utilize these receptors to control immune responses by
killing, i.e., T cells (18, 19).

NK cells have several functions in the immune system. Based
on data from individuals with severe NK cell deficiencies and
data from experimental animal models, it has been recognized
that they are highly implicated in controlling Epstein–Barr
virus (EBV) (20–22), but also involved in the defense against
Herpes simplex virus (HSV) infections (23). Moreover, it is well-
established that NK cells can react to cytomegalovirus (CMV)
infection and prevent CMV reactivation following allogeneic
stem cell transplantation (SCT) (24, 25). Beyond their role in
viral infections, NK cells have an immunomodulatory role either
by directly controlling other immune cells (18, 19) or by release
of chemokines and cytokines that can attract and stimulate both
innate and adaptive components of the immune system (26, 27).
NK cells also have a documented role in pregnancy (28). Given
the rapid advances in our understanding of NK cells, additional
functions for these cells in the body will likely be unveiled in the
near future.

The role for NK cells in cancer has been addressed since
the discovery of this lymphocyte subset. Over the years, it has
become clear that NK cells are involved in tumor immune
surveillance (29). Indirect evidence comes from cohort studies
showing that individuals with poor NK cell function early in life
have a higher risk of presenting with cancer compared tomatched
controls (30). Clinical observations also indicate that a ligand
repertoire on acute myeloid leukemia (AML) blasts favoring NK
cell activation is positively linked to better outcome of patients
undergoing chemotherapy (31). More direct evidence from
animal models indicate that knock-out of key NK cell receptors
such as NKG2D and DNAM-1 leads to higher incidence of tumor
formation compared to in mice with wild-type expression of
these receptors (32, 33). Another line of evidence comes from
clinical studies on allogeneic SCT and adoptive NK cell infusion
showing NK cells can be utilized to treat patients with cancers,
including myeloid malignancies (34, 35). This has opened up a
new field focusing on NK cell-based cancer immunotherapies
that all aim to bolster the NK cell tumor targeting capacity
to improve outcomes of patients with cancer (36). In parallel
to this development, more and more studies also demonstrate
that NK cells in patients with cancer are defective, and in some
cases also few in numbers, indicating a potential breach of NK
cell-mediated tumor immune surveillance that may facilitate
disease progression. Dysfunctional NK cells have been reported
in both solid tumors (37) and hematological malignancies,
including myeloid malignancies (38, 39). For some of these
cancers, it has also been proposed that restoration of the NK
cell function after treatment with cytoreductive chemotherapy,
or other targeted drugs, can re-establish NK cell-mediated cancer
control. As will be discussed below, a prime example of this
is chronic myeloid leukemia (CML), but there are also data
reporting that this can occur in other myeloid malignancies

such as AML and myelodysplastic syndromes (MDS) as well
as in chronic myelomonocytic leukemia (CMML). Notably, in
contrast to malignancies of the myeloid lineage, data on the
role for NK cells in targeting B cell-derived leukemias such as
acute lymphoblastic leukemia (ALL) and chronic lymphocytic
leukemia (CLL) are less clear and will not be discussed in
this review.

This review will focus on our current understanding of the
role for NK cells in targeting malignant myeloid cells and
thereby preventing the initiation and/or the progression of AML,
MDS, and CML, and how malignant cells in these diseases
can evade NK cell recognition. Methods to circumvent and/or
restore this imbalance will be discussed. In the emerging era of
immune checkpoint inhibitors and tumor targeting antibodies,
including bi- and tri-specific killer engagers, the review will have
a special focus on the mechanisms governing suppressed NK
cell function in these diseases and means to restore the NK
cell phenotype and function to define potential opportunities
to use such drugs in clinical practice. As other reviews and
articles have comprehensively covered the role of NK cells
in settings of allogeneic SCT and adoptive cell transfer to
treat AML, CML, or MDS, our review will only touch upon
these topics. Instead, this review will have a particular focus
on the endogenous NK cells and their therapeutic potential
and limitations.

EVIDENCE FOR NK CELL-MEDIATED
TARGETING OF MALIGNANT MYELOID
CELLS AND DATA SUPPORTING A ROLE
FOR NK CELLS IN THE TREATMENT AND
CONTROL OF CML, AML, AND MDS

Introduction to CML, AML, and
MDS—Biological and Clinical Similarities
and Differences
Although originating from the myeloid lineage, CML with
its 9;22 translocation that creates the BCR/ABL fusion gene
is biologically and clinically very different from AML and
MDS. From being a disease with high mortality following
transformation to blast crisis, where allogeneic SCT was
considered the only treatment option that could offer a potential
cure, CML is now efficiently treated using tyrosine kinase
inhibitors (TKIs) (40). Unfortunately, similar approaches have
not been equally successful for MDS and AML, diseases that do
not express the BCR/ABL tyrosine kinase fusion gene but are
rather triggered and driven by multiple mutations. In contrast
to CML, the more aggressive AML disease as well as high-
risk MDS are generally associated with dismal outcome. Hence,
there is an urgent need of identifying new and more efficient
treatment options for these malignancies. To successfully design
new therapies that induce durable responses, it is likely key
to understand the underlying disease and how it potentially
compromises the immune system. For deeper understanding
of the CML, AML, and MDS diseases per se, please see
references (41–43).
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NK Cell-Mediated Targeting of
Tumor-Transformed Myeloid Cells via
Natural Cytotoxicity and Its Role in Treating
Patients With Myeloid Malignancies
Preclinical studies have firmly demonstrated that NK cells can kill
leukemic cells of the myeloid lineage. Data derive from studies
using leukemia cell lines, but also freshly isolated leukemic blasts
from patients with CML, AML, or MDS. In addition to these
studies exploring the potential of primary human NK cells,
studies have also demonstrated that NK cell lines can target
primary as well as immortalized AML and CML cells (44).

The first series of experimental studies on this topic were
conducted using AML and CML blasts and published just a
few years after the NK cell was first described. In a small
ex vivo study published already 1983, investigators were able
to show that freshly explanted CML blasts could be lysed by
interferon (IFN)-activated NK cells from healthy donors (45). As
demonstrated in a paper from the group of Ronald Herberman a
few years later (1989), themain basis for prevention of clonogenic
growth of freshly explanted AML and CML blasts or cells
from pre-leukemic patients (today called MDS) was cell-to-cell
interaction, although soluble factors produced by the NK cells
were also involved (46). Importantly, the anti-leukemia activity
was only detectable in these experiments when enriched NK cell
populations were used. The need for cell-to-cell contact to trigger
NK cell-mediated inhibition of autologous CML blast growth has
later been verified in other studies (47).

The more recent studies on this topic have mainly focused
on targeting AML cells with NK cells in vitro. Most studies
have addressed the potential of resting and overnight cytokine-
activated [i.e., interleukin (IL)-2 or IFN] NK cells (39, 45).
Other studies have explored the potential of ex vivo expanded
NK cells (48, 49). The molecular specificity of NK cell-
mediated cytotoxicity of leukemic cells is based on several
receptor–ligand interactions. For instance, the NKG2D and
DNAM-1 receptors as well as the NCRs have been reported
important for the targeting of AML and CML blasts (50–
52), whereas studies on freshly isolated MDS blasts have
revealed that the DNAM-1 receptor is central with contributions
from the NKG2D receptor and the NCRs NKp30 and NKp46
(39). It is also evident from the literature that blockade of
inhibitory KIR, CD94/NKG2A, and LIR-1 augment NK cell-
mediated killing of leukemic blasts (53), indicating that they
express enough HLA class I to at least partially inhibit NK
cells. The role for these activation and inhibition receptors
in targeting of myeloid malignancies by NK cells will be
discussed in more detail in section Means to Restore NK
Cell Function and Trigger Their Cytotoxicity Against Myeloid
Malignancies below.

Exploring Human NK Cells to Target CML,
AML, and MDS Cells Implanted in Animal
Models
Until today, the vast majority of xenografted mouse models
used to explore the anti-leukemia potential of primary human
NK cells have focused on human leukemia cell lines. One

of the major reasons for this is that engraftment of primary
AML, CML, and MDS cells has historically been difficult, with
only recently reaching robust and reliable engraftment rates
in optimized models (54–56). Furthermore, the use of human
leukemia cell lines enables the researcher to introduce luciferase
and/or fluorescent proteins (such as green fluorescent protein;
GFP) to efficiently track the tumor burden in the mice. This is
exemplified in several studies on human xenografted leukemia,
which will be discussed below.

Ex vivo expanded peripheral blood NK cells can prevent
leukemia development in severe combined immunodeficiency
disease (SCID)-beige mice and NOD-scid IL2Rgammanull (NSG)
mice inoculated with K562 cells (49, 57). In line with this,
investigators have also shown that NK cells generated from
CD34+ hematopoietic stem cells ex vivo as well as from cord
blood cells can clear K562 cells in mice (58, 59). Moreover,
cytokine-induced killer cells, featuring a mixed NK and T-cell
phenotype, were capable of mediating potent reduction of tumor
burden in mice engrafted with the AML cell line THP-1 (60). In
contrast to utilizing human leukemia cell lines as targets in the
animal models, the ability of primary human NK cells to target
xenografted primary myeloid leukemia in mice has only been
highlighted in few studies. One example of the latter comes from
a study that efficiently utilized ex vivo expanded human NK cells
expressing a single KIR (61). There are also data addressing the
role for primary human NK cells targeting primary xenografted
autologous myeloid leukemia. As demonstrated by Siegler et al.
(62), ex vivo expanded NK cells are able to target xenografted
autologous AML blasts. In this study, the authors speculate that
up-regulation of the NKG2D receptor and the NCRs following ex
vivo expansion and activation of the NK cells prior to adoptive
infusion into the mice was key to govern the anti-leukemic
effects. Although several models have been used to establish that
primary human NK cells can target leukemic cells implanted in
mice, we predict that development of more advanced models will
be valuable tools to explore how the leukemic cells can negatively
affect the adoptively infused NK cells in detail.

Data on Utilizing NK Cells to Treat Patients
With Myeloid Malignancies
Data supporting NK cell-mediated rejection and control of
myeloid leukemia in patients have been generated from studies
on allogeneic SCT. In 2002, Ruggeri et al. reported that KIR-
ligand mismatching in the graft-vs.-host (GvH) direction of
donor NK cells was key to prevent AML relapse following haplo-
identical SCT (34). In line with these data, Hsu et al. also
demonstrated that the genomic lack of one or more ligands in the
recipient for donor KIR was associated with improved outcome
in AML and MDS in settings of T-cell-depleted HLA-identical
sibling transplantations (63). Studies on large transplantation
cohorts have also linked certain KIR genotypes and KIR–
KIR-ligand genotype pairs that also include activating KIRs to
post-transplant control of leukemia (64–66). More recent data
also indicate the expansion of adaptive NK cell subsets post-
transplantation is linked to improved outcome in AML, which
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adds an additional layer to the role of NK cells in post-transplant
relapse protection (67).

The potential of utilizing mature NK cells in setting of
adoptive cell transfer to treat myeloid leukemia patients was
demonstrated by Miller et al. (35). In this study, 19 patients
with relapsed/refractory AML were treated with overnight IL-
2-activated haplo-identical NK cells. In this patient population
with very advanced high-risk disease, 5 out of 19 patients had
a complete remission (CR). Remarkably, four out of the five
responders had received donor NK cells with a KIR-ligand
mismatch in the GvH direction. Following this publication,
there has been an explosion of clinical trials demonstrating
improved outcome of AML and MDS patients treated with NK
cells in different settings (49, 68–73). Of note, most of these
studies have not been able to demonstrate a beneficial effect
of KIR-ligand mismatching. This may relate to the relative loss
of cell surface HLA class I expression on the myeloid blasts
compared to the lymphocytes. As demonstrated by Verheyden
et al., the relative expression of HLA class I, and especially HLA-
C, was markedly down-regulated on myeloid blasts compared to
autologous T cells potentially leading to reduced inhibition by
HLA-Bw4- and HLA-C-binding KIRs and thereby attenuation of
the role for KIR-ligand mismatching (74). Instead, data indicate
that outcomes following adoptive NK cell therapy are positively
predicted by presence and expansion of donor NK cells and
dampened host immune activation post NK cell infusion as
well as removal of regulatory T cells prior to NK cell infusion
(72, 75). As shown by Romee et al., adoptive infusion of memory-
like NK cells can trigger anti-AML responses while leading to
improved persistence of the NK cells (49). Another factor that
has been highlighted in more recent studies is the dose of
alloreactive NK cells. This has been demonstrated in the setting
of adoptive NK cell infusion as post-consolidation therapy for
elderly patients with AML (70), and also in the setting of pre-
allogeneic SCT for patients with AML, MDS, or CML (71).
Nevertheless, due to the relatively poor persistence of adoptively
infused NK cells, objective clinical responses induced in these
settings are only transient. Hence, these protocols can be used
as a bridge to an allogeneic SCT or maybe to deepen responses
in the post-consolidation setting, but not cure patients with
myeloid malignancies.

Collectively, the capacity of NK cells to target AML, MDS,
and CML blasts in vitro and in xenografted mouse models is
well-documented with clear involvements of the NKG2D and
DNAM-1 receptors, but also the NCRs. Based on data from
CML, AML, and MDS patients undergoing allogeneic SCT, it is
clear that NK cells do have a role in the clearance and control
of myeloid malignancies in certain settings. Although adoptive
NK cell transfer can be effective and adds to the notion that
NK cells can be utilized to target myeloid malignancies, clinical
remissions are only transient. An alternative approach that may
induce durable remissions without the need of cellular therapy
would be to bolster the anti-tumor potential of the endogenous
NK cells. This approach has until now been relatively unexplored
and likely been limited due to leukemia-induced dysfunction of
the NK cells in these patients. With the increased knowledge, we
predict that this approach will be a more viable option in the near

future. NK cell dysfunction in myeloid malignancies and how to
restore it will be described in the following sections of this review.

NK CELL FUNCTION AND MATURATION IN
PATIENTS WITH MYELOID MALIGNANCIES
AT DIAGNOSIS AND UPON TREATMENT

NK Cell Numbers and Function During
Treatment and Disease Progression
The anti-leukemic activity of NK cells inversely correlates to
disease progression in AML—the NK cells are suppressed at
diagnosis, restored at remission, and again suppressed at relapse
(76, 77). Similarly, in MDS, the cytolytic activity of NK cells
is severely altered, even in the presence of IL-2 stimulation in
vitro, as compared to NK cells from healthy donors (78). In
CML, the NK cells decrease in number along disease progression,
respond less to stimuli, and exhibit reduced cytolytic activity
(79, 80). Similar to AML patients in CR, CML patients with
a major molecular response (MMR) to TKIs have restored
cytolytic functions of NK cells (81). In support of NK cells being
involved in immune control of CML cells, patients with a high
percentage of NK cells at the time of TKI discontinuation had
a better long-term outcome (82). Also, the role for “missing-
self ” reactivity by endogenous uneducated NK cells has been
highlighted in CML patients treated with TKI. Patients carrying
non-interacting KIR3DL1 and HLA-B allele pairs, leading to
less inhibition of NK cells upon interaction with CML blasts,
have better outcome upon TKI treatment (83). In AML, higher
cytolytic activity of NK cells predicts a better long-term outcome
of patients at both diagnosis and in remission (84–87). In
addition, high expression of the activating NK cell receptors
NKp30 or NKp46 predicts a better outcome (38, 88–90). The
role for “missing-self ” genotypes has, like for CML, also been
associated with an improved outcome in AML following post-
consolidation treatment with dihydrochloride and low-dose
IL-2 that activates NK cells (91). In a follow-up study, the
investigators identified that the efficacy against AML was linked
to a dimorphism in HLA-B at amino acid −21 that has an
impact on NK cell education (92), again supporting a critical
role for NK cells in this disease. In a separate study, the
outcome following treatment of AML and high-risk MDS with
the hypomethylating agent Azacytidine could be predicted by NK
cell function after three to six cycles (93). Taken together, NK
cell function is often suppressed upon diagnosis and at disease
progression of myeloid malignancies, but restored in remission.
Increased number of NK cells as well as more activated NK
cells at diagnosis and following remission correlate with better
outcome for patients treated with hypomethylating agents, TKI
and IL-2. These findings suggest that NK cells have a central
role in the control of myeloid malignancies by counteracting
disease progression.

Altered Maturation of NK Cells in Myeloid
Malignancies
Normal NK cell differentiation is defined by combinations
of markers that include CD56, CD16a, CD57, KIRs, and
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NKG2A (94). Immature NK cells (CD56brightCD16a−CD57−)
are cytokine-producing cells with low cytotoxic activity, whereas
more mature NK cells (CD56dimCD16a+CD57+) have higher
cytotoxic activity (95). NK cell differentiation is characterized
by down-regulation of NKG2A and up-regulation of KIR,
which alter their reactivity given the HLA class I repertoire
expressed on the target cell. In myeloid malignancies, NK cell
maturation was suggested to be perturbed with a selective
loss of an immature NK cell population in both AML
patients and in leukemic mice (77, 96). This loss of primitive
NK cells was accompanied by an increased percentage of
phenotypically more mature (CD56dimKIR+CD57+) NK cells
in the peripheral blood of AML patients (97). However,
opposing findings of a decreased proportion of mature NK
cells (CD56dimCD16a/CD57bright) in AML and MDS have
also been reported (98). Consistent with previous findings
by Martner et al. (99), Chretien et al. divided the AML
patients into three subtypes based on the NK cell maturation
and found that patients with more immature NK cells had
reduced relapse free and overall survival, suggesting that disease-
induced alterations in NK cell maturation affect patient outcome
(100). Therapies can also affect the differentiation stage of
the NK cells. In first remission, an increased percentage of
immature (CD56bright) NK cells in AML patients has been
observed, possibly because the NK cells are under reconstitution
after intense chemotherapy (101). In CML, treatment with
the TKI dasatinib is associated with differentiation of NK
cells (102). Upon MMR or molecular response (MR), CML
patients have more mature cytolytic NK cells (CD57+CD62L−),
indicating restoration of NK cell function (81). Although several
of the studies described above found that disease-induced
mechanisms and certain treatments influence the maturation
of NK cells in myeloid malignancies, interpretations of how
the maturation stage of NK cells in this context affect their
anti-leukemic activity is so far mainly based on correlative
findings. Hence, more studies are needed to clarify how the
maturation stage of NK cells in myeloid malignancies is
perturbed and affected by treatment both in a short- and, more
importantly, long-term perspective. Single-cell RNA-sequencing,
which is an emerging methodology that recently has increased
our understanding of NK cell regulation (103, 104), has the
potential to further clarify how NK cell maturation is affected
by treatment.

Collectively, disease-induced mechanisms in myeloid
malignancies negatively affect core properties of NK cells such
as their differentiation and cytotoxic potential correlating
to disease progression. Moreover, the NK cell function
during and after treatment is linked to treatment responses
and outcome, suggesting that NK cells play a key role in
controlling myeloid malignancies. By further characterizing
the mechanistic basis for how NK cell dysfunctions
arise and how NK cell differentiation and function is
modulated by treatment may translate into new treatment
opportunities for myeloid malignancies as discussed in more
detail below.

THE IMPACT OF SHARED GENETIC
ABERRATIONS BETWEEN NK CELLS AND
MALIGNANT MYELOID CELLS

The cellular origin of myeloid malignancies is thought to be
a normal HSC that first acquires genetic lesions that give
rise to a pre-malignant clone (105–107). In support of this
hypothesis, early genetic aberrations associated with clonal
hematopoiesis and myeloid malignancies can be found in
multiple hematopoietic lineages, including NK cells, affecting
their function (Figure 2A). Although NK cells isolated from
chronic phase CML patients were found to be BCR/ABL1
negative (108, 109), Nakajima et al. observed BCR/ABL1+ NK
cells in advanced phases of the disease (110). The reason why
BCR/ABL1+ NK cells are found predominantly in advanced
phases of the disease is currently unclear but might be due
to an expansion of the malignant stem cell pool during
disease progression that gradually outcompetes normal HSCs.
By contrast, T cells were always BCR/ABL1 negative, suggesting
that the presence of BCR/ABL1 is not compatible with T cell
development (110). To evaluate the impact of BCR/ABL1 on
NK cell differentiation and function, BCR/ABL1 was introduced
into cord blood CD34+ cells and the NK92 NK cell line (111).
Enforced BCR/ABL1 expression in cord blood CD34+ cells
resulted in altered NK cell differentiation (110), and in NK92
cells, a decreased cytotoxicity was observed (112). Consistent
with these findings, BCR/ABL1+ NK cells from CML patients
grown in culture had reduced cytotoxic and proliferative capacity
(113). In contrast, BCR/ABL1+ dendritic cells selectively activate
NK cells, demonstrating that NK cells can also be affected by
other non-myeloid cell lineages that express BCR/ABL1 (114).

Although early studies did not detect chromosomal
aberrations in NK cells from MDS patients (115, 116), later
studies reported aneuploid NK cells ranging from 20 to 60% in
MDS (78, 117). In addition to acquired mutations shared with
the malignant cells and NK cells in patients, certain congenital
mutations that pre-dispose for MDS/AML are associated with
defects in NK cells. One such example is SAMD9L gain-of-
function mutations that pre-disposes for MDS and are associated
with defects in myeloid cells, B and NK cells (118). Also,
constitutive Gata2 mutations that pre-disposes for MDS/AML
are associated with alterations in NK cells as evidenced by an
accumulation of terminally differentiated NK cells (119). In
AML, DNMT3A mutations, which are early and often initiating
events associated with clonal hematopoiesis (120), are found in
NK cells, but to a lesser extent in B and T cells (121).

Taken together, early genetic aberrations driving malignant
transformation are detected in a substantial fraction of NK cells
in patients with myeloid malignancies. Some of these aberrations
as exemplified by enforced BCR/ABL1 expression in NK cells
negatively affect NK cell cytotoxicity and differentiation. Future
studies combining genetic characterization by massive parallel
sequencing of NK cells with functional NK cell assays are
expected to further clarify the full functional impact of cancer-
associated genetic aberrations co-existing in NK cells.
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FIGURE 2 | Mechanisms behind NK cell dysfunction and

phenotypic/maturation alterations in myeloid malignancies. Schematic

illustration showing how various mechanisms contribute to NK cell dysfunction

and phenotypic/maturation alterations. (A) NK cells arise from hematopoietic

stem cells (HSCs) that through progenitor stages differentiate to mature NK

cells (purple). Initiating genetic aberrations in myeloid malignancies are thought

to arise in HSCs, referred to as pre-malignant HSCs, that among other cell

(Continued)

FIGURE 2 | types give rise to NK cells, which are dysfunctional in their

cytotoxic capacity and have altered maturation. (B) NK cells are regulated by

various secreted factors and cell–cell interactions affecting their cytotoxic and

cytokine-secreting capacity. Regulatory T cells (Tregs), myelo-derived

suppressor cells (MDSC), and malignant myeloid cells contribute to the

suppression of NK cells that become dysfunctional with altered cytokine

secretion and reduced cytotoxic capacity.

MECHANISMS SUPPRESSING NK CELLS
IN MYELOID MALIGNANCIES AND
MEDIATING ESCAPE FROM NK CELL
RECOGNITION

As appreciated from the previous section, NK cells in patients
with CML, AML, andMDS are often, if not always, dysfunctional
compared to healthy control NK cells. An array of mechanisms
has been identified, including but not limited to soluble factors,
cell-to-cell interactions, and other regulatory elements in the
tumor microenvironment (Figure 2B). As described above,
mutations affecting the NK cell population can also contribute
to poor function of these effector cells (118). Below, we will
discuss the so far known mechanisms driving the development
of dysfunctional NK cells in these diseases.

Several studies published today have linked poor NK cell
function with altered NK cell subset composition, phenotype,
and ability to form a fully functional immunological synapse
(38, 39, 122–127). In some cases, these alterations have been
linked to poor clinical outcome (38, 125). Most of these studies
have highlighted down-regulation of key activation NK cell
receptors such as NKG2D, DNAM-1, and the NCRs, down-
regulations that do not seem to correlate with the subtype of
AML or MDS (38, 39, 122–124, 128). Nevertheless, studies have
shown that the loss of these receptors positively correlates to
the leukemia burden in the patients (38, 39, 123) and that it
can be fully, or at least partially, restored in patients achieving
CR following chemotherapy (38). In fact, data show that NK
cell-to-tumor cell interactions can trigger the loss of DNAM-
1 and NCRs (37, 38, 126, 129). Receptor–ligand interactions,
triggering internalization of the activation NK cell receptor, has
been highlighted as one of the most critical mechanisms (37, 38,
129, 130). Loss of activating receptors, such as NKG2D, can also
be triggered by the presence of soluble molecules in the tumor
microenvironment. As shown by Boissel et al. and several other
groups, soluble NKG2D ligands (NKG2D-Ls) including MICA,
MICB, ULBP1, and ULBP2, shedded by the tumor cells per se,
and tumor exosomes expressing NKG2D-Ls trigger the reduction
of NK cell surface NKG2D (131–135). In this context, it should
be highlighted that reports indicate that AML blasts, including
AML stem cells, may also evade NK cell-mediated killing by
expressing low or no NKG2D-Ls (52, 136, 137). The NKG2D
receptor can also be down-modulated via cytokines such as TGF-
β (138). In addition to these mechanisms governing suppressed
NK cell function leading to poor NK cell-mediated targeting of
leukemic cells, data from a pre-clinical animal model on de novo
AML along with collected NK cell from patients with AML have
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indicated that the microRNA (miRNA) miR-29b, a regulator of
T-bet and Eomes, can be elevated in NK cells via AML cell-
induced activation of the transcription factor aryl hydrocarbon
receptor that directly up-regulates miR-29b expression resulting
in incomplete maturation and poor cytotoxicity (96, 139). Other
soluble mechanisms involve the release of Tim-3 that prevent
the release of IL-2 while increasing the release of galectin-9 and
thereby hamper NK cell cytotoxicity and targeting of primary
AML cells (140). Despite that CD137 (4-1BB) is a therapeutic
target for agonistic antibodies in clinical development that
stimulate NK cells and T cells (141), stimulation of CD137
expressed on the surface of activated NK cells has been shown to
suppress their function in AML (142). The CD137Lwas primarily
identified in AML of the monocytic lineage, although it was
found on other AML subtypes too (142). Further studies are
needed to dissect the exact role for this interaction in regulating
NK cell function in myeloid malignancies.

Several other mechanisms behind the escape of myeloid
malignancies from NK cell recognition have also been described.
Data show that down-regulation of ligands for DNAM-1 on
the leukemic cell surface renders the cells resistant to NK
cell targeting (143). Another study suggests that the leukemic
blasts can avoid NK cell recognition by expressing low levels
of NCR and NKG2D ligands, a resistance that can be reverted
following exposure to differentiation-promoting myeloid growth
factors and IFN-γ (136). In a separate study, expression of the
oncogenic fusion proteins PML-RARA and AML1-ETO found
in acute promyelocytic leukemia (APL) and some non-APL
AMLs, respectively, was associated with the loss of the 2B4
ligand CD48 on the leukemia cell surface (144). Interestingly,
CD48 expression was increased on APL cells following exposure
to an HDAC inhibitor (HDACi). On the contrary, increased
levels of IFN-γ in the tumor microenvironment may lead to up-
regulation of HLA class I, and especially HLA-E, on the tumor
cells leading to immune escape by inhibition of NK cells via the
CD94/NKG2A receptor (145). Along these lines, up-regulation
of the glycoprotein CD200 on AML cells resulted in escape from
NK cell-mediated lysis via interaction with the CD200 receptor
on the NK cell surface, a phenomenon that was restored using a
CD200 inhibitory antibody (128).

Factors in the tumormicroenvironment can also play a critical
role. In addition to suppressed NK cell function, it has been
demonstrated that NK cell proliferation can be inhibited by the
tumor while not influencing the NK cell viability and cytotoxicity
per se (146). As shown in CML, AML, and CMML, reactive
oxygen species (ROS) can trigger both apoptosis of NK cells in
the tumor microenvironment but also reduced NK cell function
connected to reduced expression of activation NK cell receptors
(147–149). Data also show that cell-to-cell interactions between
AML cells and mesenchymal stromal cells render the AML cells
less susceptible to NK cells (150). More details on the role for
the tumor microenvironment learnt from other malignancies
are not discussed in this review as they have been reviewed
elsewhere (151).

In conclusions, an array of mechanisms has been proposed
to trigger NK cell suppression, reduced NK cell numbers, and
escape from NK cell-mediated recognition. Most of them have

been addressed in studies on tissue samples from patients or
in ex vivo experiments with NK cell co-cultures. Although
shown in experimental animal mouse models (152), the loss
of function of adoptively infused NK cells in human has not
yet been systematically addressed. Nevertheless, understanding
these mechanisms is key to developing new NK cell-based
therapies against myeloid malignancies, especially those relying
on endogenous NK cells and that may lead to long-term
non-chemotherapy-based control of these diseases. The next
section will discuss means to restore and/or trigger anti-leukemic
responses and tumor control by NK cells.

MEANS TO RESTORE NK CELL FUNCTION
AND TRIGGER THEIR CYTOTOXICITY
AGAINST MYELOID MALIGNANCIES

Dysfunctions of NK cells associated with myeloid malignancies
restrain tumor immune surveillance, but may also limit
therapeutic options that depend on NK cells for their mode-
of-action. In addition to drugs used in the clinic that restore
NK cells such as TKI for CML and hypomethylating agents for
MDS and AML, a number of pharmacological strategies to re-
establish and/or bolster NK cell function, including cytokines,
engineered antibodies, and small-molecule drugs, are currently
being explored with the aim of utilizing the endogenous NK cells
to clear and control myeloid malignancies (Figure 3).

Cytokines Including Histamine and IL-2
In 1998, high-dose IL-2 was the first immunotherapy approved
for metastatic malignant melanoma and showed durable
responses in a subset of patients (153). Although associated with
significant toxicity, IL-2 therapy demonstrated that cytokine-
induced activation of the immune system, including T cells
and NK cells, can have long-term beneficial effects in certain
cancers. IL-2 have in pre-clinical studies shown therapeutic
efficacy by restoring NK cell receptor expression and bolster
NK cell cytotoxicity against autologous AML blasts in vitro
(48), but clinical studies evaluating IL-2 monotherapy in
AML and MDS have been disappointing (154–156). However,
in contrast to monotherapy, Brune et al. demonstrated that
combining histamine with low-dose IL-2 treatment in AML
results in improved leukemia-free survival (157). Histamine
dihydrochloride acts by enhancing the immune-promoting
properties of IL-2 by reducing production of immunosuppressive
reactive oxygen species (ROS) (158), which leads to expansion of
CD56bright NK cells (90, 159). For this therapy, a high expression
of NKp30 and NKp46 on CD16a+ NK cells before and during
treatment predicted leukemia-free and overall survival (90). In
addition to activating NK cells, it is a concern that IL-2 also
stimulates Tregs, which are immunosuppressive and counteract
NK cell activation (160). For histamine with low-dose IL-2
treatment, a promising observation was that the increase in Tregs
was transient, whereas the increase in NK cells was more long-
lasting (161). In contrast to IL-2, IL-15 that activates memory T
cells and bulk NK cells is associated with less toxicity, suggesting
that IL-15 has several advantages over IL-2 in a clinical setting
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FIGURE 3 | Drugs and approaches explored to restore and augment the antileukemia-capacity of NK cells. Schematic illustration showing how drugs can restore,

augment, and direct NK cell-mediated killing of malignant myeloid cells. Drugs promoting NK cell-mediated killing of myeloid malignant cells by directly affecting NK

cells, inhibiting regulatory T cells (Tregs) or myelo-derived suppressor cells (MDSC), and/or affecting malignant myeloid cells are shown. IL-2DT, IL-2 diphtheria toxin

fusion protein. IMiDs, immunomodulatory imide drugs (include thalidomide and analogs such as lenalidomide and pomalidomide). AHRi, aryl hydrocarbon receptor

inhibitor; GSK3βi, GSK3β inhibitor; HMA, hypomethylating agents (includes azacytidine and decitabine).

(160). Partially, by inducing the expression of the activating NK
cell receptor NKp30, IL-15 was found to enhance the cytotoxicity
of NK cells from AML patients (162, 163). When expressed in a
non-secreted form in NK cells, IL-15 stimulated autonomous NK
cell growth and increased their cytotoxicity against leukemia and
lymphoma cells in cultures and in mice (164). However, recent
reports indicate that chronic or repetitive exposure of IL-15 to
NK cells lead to NK cell exhaustion (165, 166), suggesting that
the long-term effects of IL-15 should be carefully monitored in
future studies.

In CML, interferon alpha (IFN-α) was used as a standard
treatment prior to the TKI era. Although the full mechanistic
basis for how IFN-α has antileukemic activity is unknown, IFN-
α has been shown to boost the function of endogenous NK cells
(167). Another cytokine that has been shown to bolster NK cells
in CML is IL-2. In line with findings described above for IL-2 in
AML, Cervantes et al. used IL-2 to stimulate autologous NK cells
and demonstrated selective suppression of CML progenitor cells
relative to corresponding normal progenitors (47).

Small-Molecule Drugs
As discussed in section Mechanisms Suppressing NK Cells in
Myeloid Malignancies and Mediating Escape From NK Cell
Recognition, one mechanism that has been put forward to
explain impaired tumor immune surveillance by NK cells in
myeloid malignancies is long-term exposure of soluble NKG2D
ligands such as MICA, MICB, and ULBP2 secreted by the
malignant blasts. Consistent with this notion, hypomethylating

agents (azacytidine and decitabine) that are used to treat
AML and MDS patients were found to decrease shedding
of MICA, MICB, and ULBP2 and restore NK cell function
(168). In line with these findings, Vasu et al. reported that
decitabine enhances NK cell cytotoxicity induced by an anti-
CD33monoclonal antibody (mAb) against AML blasts associated
with up-regulation of NKG2D (169). In an AML xenograft mouse
model, decitabine treatment potentiatedNK cell-mediated killing
of the AML cells by NKp44 up-regulation, suggesting that
hypomethylating agents are promising drugs for enhancing NK
cell activity by multiple mechanisms (170). Complementary to
decitabine, which up-regulates NKG2D, the HDACi valproic acid
was found to induce the expression of NKG2D-Ls on AML cells,
rendering themmore sensitive to lysis by NK cells (171). Another
approach to enhance NK cell function in AML is inhibition
of glycogen synthase 3 kinase beta (GSK3β). Parameswaran
et al. provided pharmacological and genetic evidence that
inactivation of GSK3β restores NK cells from AML patients
resulting in enhanced killing of autologous leukemic cells (172).
Mechanistically, GSK3β inhibition promoted up-regulation of
LFA-1 on NK cells and its partner ICAM-1 on AML cells,
associated with increased AML–NK cell conjugates (172).

Another clinically approved drug that improves NK cell
function is lenalidomide, used for treatment of multiple
myeloma, 5q- MDS, and B-cell lymphomas (173). In patients
with relapsed/refractory solid tumors or MDS, lenalidomide
treatment was found to increase IL-2 and IL-15 levels
accompanied by restoration of NK cell function (174). Similar to
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AML, lenalidomide and its derivate pomalidomide potentiated
NK cell function (175). The antileukemic activity of these drugs
was associated with down-regulation of HLA class I molecules on
the AML cells (175). Although lenalidomide has been shown to
achieve anti-cancer activity by inducing degradation of essential
proteins for 5q- MDS and multiple myeloma cells (176, 177),
the mechanistic basis for how lenalidomide activates NK cells is
currently unclear.

In CML, a somewhat unexpected finding is that several
TKIs (imatinib, dasatinib, and nilotinib), dasatinib in particular,
induces expansion of NK cells from diagnostic values, indicating
that these therapies promote tumor immune surveillance
mediated by NK cells (178, 179). Moreover, TKI therapy results
in improved NK cell function and killing of leukemic cells (180).
Recent findings revealed that the restored NK cell function
by dasatinib treatment is coupled to down-regulation of the
NK cell inhibitory receptor NKG2A (181). A positive effect of
dasatinib on the immune system was suggested to persist even
long-term after stopping treatment, as a CML patient remained
in MR several years post-treatment, associated with cellular
immunity by memory and effector cytotoxic T lymphocytes and
NK cells (182).

Antibody-Based Therapies That Depend on
NK Cells for Eradicating Myeloid
Malignancies
Therapeutic antibodies can achieve anti-tumor responses not
only by modulating the activity of their protein targets but
also by redirecting effector cells of the immune system to the
cancer cells. By targeting cell surface proteins up-regulated on
the malignant cells, a selective immune response can be activated
against the cancer cells. In particular, NK cells are critical effector
cells for eliciting ADCC. Therapeutic antibodies designed to
induce ADCC are predominantly of IgG1 isotype and bind to
an antigen on cancer cells and to the low-affinity CD16a on NK
cells with their Fc domain. In addition to physically linking the
malignant cells and NK cells together, binding of the antibody to
CD16a is sufficient to activate the NK cells and induce ADCC,
even without additional activation signals (12, 15). One such
example is Rituximab, which targets CD20 on B cells, and is
used today for treatment of several forms of B cell malignancies
(183). Consistent with NK cells playing a key role in mediating
ADCC upon Rituximab treatment, patients homozygous for the
single-nucleotide polymorphism CD16a-158V, which bind IgG1
with higher affinity than CD16a-158F, showed improved clinical
response to Rituximab (184, 185).

For myeloid malignancies, there is a strong rationale to target
a chemotherapy-resistant reservoir of self-renewing leukemia
cells, referred to as leukemia stem cells, as these are associated
with disease relapse after initial responses to therapy (107,
186, 187). Consistent with this hypothesis, antibodies directed
to IL3Rα (CD123), which is up-regulated on AML stem-cell-
enriched cells, showed anti-leukemic activity in pre-clinical
models of AML (188, 189). To enhance the binding to CD16a, an
Fc-engineered anti-CD123 antibody was developed that showed
superior NK-cell mediated killing of leukemia stem cells in

AML and CML (190–192). Similarly, an antibody that binds
to CD133 on myeloid cells and with amino acid substitutions
(S293D/I1332E) in the Fc domain for enhanced binding to
CD16a induced strong degranulation and lysis of CD133-
expressing AML cells in the presence of either autologous
or allogeneic NK cells (193). Interleukin 1 receptor accessory
protein (IL1RAP) is another candidate therapeutic target up-
regulated on leukemia stem cells in myeloid malignancies (194–
196). Consistent with IL1RAP being up-regulated on leukemia
stem cells vs. normal hematopoietic stem and progenitor cells,
IL1RAP-targeting antibodies with enhanced CD16a-binding
capacity induced selective NK cell-mediated ADCC when
exposed to candidate leukemia stem cells (196). Moreover,
Ågerstam et al. demonstrated that IL1RAP-targeting antibodies
exhibited potent antileukemic efficacy in CML and AML
xenograft models (197, 198).

Another promising approach to direct the immune system to
kill cancer cells is the use of bispecific antibody-based modalities
that can be designed to bind one antigen on the cancer cell
and a separate antigen on a cytotoxic immune cell. By using
a Bispecific Killer Engager (BiKE) consisting of a single-chain
variable fragment (scFv) targeting CD16a on NK cells and a
scFv targeting CD33 on AML cells, NK cell-mediated cytotoxicity
and cytokine release could be effectively triggered (199). With
the aim to boost NK cell activity and persistence, as a further
development of the 16 × 33 BiKE targeting CD16a and CD33,
IL-15 Trispecific Killer Engagers (TriKE) referred to as 16 × 15
× 33 TriKEs have been developed (200). When compared to the
16 × 33 BiKE, Vallera et al. demonstrated that the 16 × 15 × 33
TriKE induced superior NK cell cytotoxicity and cytokine release
when exposed to AML cells (200).

Prevent Suppression From the
Microenvironment
Certain types of immune cells are immune suppressive and
can restrain immune-mediated attacks against malignant cells.
Both Tregs and myeloid-derived suppressor cells (MDSCs)
have been shown to restrain NK cells, hence, therapeutic
interventions aimed at depleting either of these cells have the
potential to enhance NK cell activity (201). One approach
to deplete MDSCs is the use of the 16 × 15 × 33 TriKEs,
which, in addition to killing CD33+ malignant cells, are also
effective in killing CD33+ MDSCs, leading to restoration of NK
cell function in MDS (202, 203). In CML patients, dasatinib
treatment is associated with inhibition of Tregs. Consistent with
this hypothesis, the response rate after 18 months’ treatment
with dasatinib was significantly better in CML patients with
low numbers of Tregs that inversely correlated with NK
cell counts, indicating that inhibition of Tregs by dasatinib
enhances NK cell-mediated killing of leukemic cells (102).
The TNF family member receptor activator for NF-KB ligand
(RANKL) is mainly known as a regulator of bone remodeling
but also regulates immune functions. Activation of RANKL
signaling in AML cells result in secretion of immune-modulatory
factors that impaired NK cell function (204). Consistent with
this finding, treatment of AML cells with Denosumab, an
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inhibitory RANKL antibody, resulted in enhanced NK cell
function (204).

Checkpoint Inhibition
Immune checkpoint inhibitors targeting the PD1/PDL1
interaction have been clinically validated and show remarkable
response rates in several forms of cancer. Mechanistically,
the selective anti-tumor effect of the T cells is based on the
recognition of tumor neo-antigens presented on HLA class I
molecules. With a high mutational burden in certain cancers,
more tumor neo-antigens are formed and recognized by the T
cell receptors. As myeloid malignancies have a relatively low
mutational burden, immune checkpoint inhibitors for T cells
are expected to be less effective in disorders such as AML.
However, recent data by Hsu et al. proposed that NK cells
express PD1 and that blockade of the PD1/PDL1 interaction
also activates NK cells that are indispensable for the therapeutic
effect of these therapies (205). Hence, blocking PD1/PDL1 may
show unexpected therapeutic efficacy in myeloid malignancies
by activating NK cells, possibly in combinations with other
therapies, a route that warrants further investigations.

As postulated by the “missing-self ” hypothesis (9), NK cells
are regulated by inhibitory HLA class I molecules that bind to
their cognate KIRs on NK cells. To enhance NK cell activity,
the mAb 1-7F9 that cross-reacts with KIR2D molecules and
block the interaction with virtually all HLA-C molecules was
developed (206). In the presence of NK cells, 1-7F9 induces
selective killing of HLA-C expressing AML cells vs. normal
peripheral blood mononuclear cells (206). When evaluated in
a phase I study in AML, increased expression of the activation
marker CD69 on NK cells was observed and relapse-free survival
compared favorable to historical data from comparable patient
cohorts (207). Blocking KIRs also augments ADCC induced by
antibodies binding to CD20 and CD33, suggesting that KIR
blockade can enhance the efficacy of therapeutic antibodies that
rely on ADCC for killing of cancer cells (206, 208). However,
based on data claiming that the anti-KIR antibody can rapidly
detune NK cell function in vitro and in cancer patients (209),
thereby limiting its therapeutic efficacy, and given the pre-
clinical data indicating that KIR blockade augments ADCC
(206, 208), better responses are likely to be achieved when
combining KIR blockade with other drugs that boost NK cell
cytotoxicity. In addition to tumor-targeting antibodies, drugs
such as lenalidomide that is reported to boost NK cell function
per se, and maybe also decitabine or HDACi as discussed above,
may be relevant. Further studies are needed to fully delineate the
efficacy of such approaches and if it induces durable remissions.
In addition to KIR, a subset of NK cells expresses the inhibitory
receptor NKG2A that bind to HLA-E on healthy and cancer
cells. In line with a key role for NKG2A in immune checkpoint
regulation, Ruggeri et al. demonstrated that targeting of NKG2A
with a blocking antibody resulted in strong NK-cell mediated
anti-leukemic activity in mice engrafted with primary leukemia
cells (210). Similar data for KIR and NKG2A have also been
generated in ex vivo experiments by others (53). Again, it should
be highlighted that targeting these receptors alone may have
limited efficacy due to the risk of detuning of baseline NK

cell cytotoxicity and that combination therapies may generate
better results.

In summary, several clinically approved drugs and drugs in
pre-clinical development can be utilized to improve NK cell
function by distinct mechanisms. Hence, identifying beneficial
combinations of these therapies in a disease- and genotype-
specific manner has the potential to not only restore tumor
immune surveillance in patients with myeloid malignancies, but
also further enhance NK cell activity over normal baseline levels.
If further combined with other immunotherapies or targeted
therapies that neutralize oncogenic drivers, multiple therapies
can be used simultaneously to attack the malignant cells, a
strategy that will minimize the risk for resistance mechanisms to
arise and may ultimately lead to cure of patients.

CONCLUDING REMARKS AND FUTURE
OUTLOOK

In recent years, significant advances have been made in our
understanding of the role for NK cells in myeloid malignancies.
We have become aware of the idea that NK cells in patients
with MDS, AML, and CML most often are dysfunctional,
but also that their phenotype and function can be partially
restored following administration of tumor-targeting drugs such
as TKI, chemotherapy, and hypomethylating agents, and also
by immunostimulatory agents such as cytokine-based therapies.
Data also demonstrate that such restoration of the endogenous
NK cell function can be key in achieving durable responses in
subgroups of patients. Although therapeutic strategies involving
adoptive NK cell infusions hold promise, with objective clinical
response rates of 30–50% in patients with advanced disease such
as relapsed and/or refractory AML and high-risk MDS, these
results are only transient and non-curative today. Therefore, a
tempting and, in many ways, more natural approach to achieve
long-term remissions would be to redirect the endogenous NK
cells to target and control the disease. This notion is based on
the ample support for NK cell-mediated immunosurveillance
of myeloid malignancies along with the abovementioned data
demonstrating that endogenous NK cells can be key to attain
durable remissions, a phenomenon that is in line with that
observed for donor NK cells in preventing leukemia relapse
in certain settings of allogeneic SCT. Identifying therapies that
redirect endogenous NK cells is especially of interest given
the aging population, in which more and more patients are
ineligible for an allogeneic SCT or even to high-intensity
chemotherapy. In addition to its simplicity and potential to serve
the broader population, the current high costs for SCT and
cellular immunotherapies favor this alternative approach.

However, to be able to develop effective therapies that rely
on endogenous NK cells, we need to better understand what
factors that cause tumor evasion fromNK cells and identify drugs
that prevent or neutralize them. We also need to recognize what
drugs can be utilized to selectively augment the tumor killing
capacity of the endogenous NK cells per se and the temporal
aspects of using these drugs. Moreover, to achieve durable
disease control, we need to identify therapies that not only
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activate the NK cells short-term and potentially exhaust them,
but more importantly to develop drugs or approaches/protocols
that stimulate the NK cells for enhanced tumor immune
surveillance long-term. To this end, combinational therapies
and/or sequential therapies may be required for achieving
significant clinical responses. Nevertheless, it will be critical to,
in more detail, understand the processes that govern NK cell
development and how it is perturbed in disease, findings that
may translate into new therapeutic opportunities. Lessons may
also be learnt from studies on ALL, as this leukemia seems
to be less vulnerable to targeting by NK cells compared to
AML. Such studies could potentially improve our understanding
of the molecular specificity of NK cell killing of leukemic
cells in general but also evasion mechanisms employed by
the ALL cells per se as well as factors in the bone marrow
environment of that disease in particular. As mentioned in this
review, both cytokines, antitumor antibodies, including BiKEs,
and TriKEs, and checkpoint inhibitors hold promise for the
treatment of myeloid malignancies but need to be studied in
greater detail until their full potential can be expected. We also
need to identify new molecules to target in order to explore
new therapeutic opportunities as well as biomarkers to monitor
NK cell function during treatment. While this is explored, we
will likely start receiving the first insights into the potential
role for CAR-NK cells in treating cancer, which hopefully will
contribute to our understanding while adding another layer of
immunological pressure to retain the myeloid malignancy in
remission. Compared to CAR-T cells that can induce toxic and
even lethal cytokine release syndromes and neurotoxicity, the
CAR-NK cells are expected to be better tolerated, but their
potential short persistence in patients might limit their clinical
use. Several molecular targets expressed on myeloid leukemia
cells, such as CD123 and CD33 but also NKG2DLs and CD7,
are currently being explored in the CAR field and more efficient
protocols for CAR-NK cell development are being established.
However, the discovery of additional and potentially more
suitable molecular targets is needed to more selectively target

the malignant myeloid cells while sparing normal cells. Another
important aspect is also that the suppressed autologous NK cells
in myeloid malignancies used for reprogramming to CAR-NK
cells need to have restored or ideally enhanced function prior to
reprogramming and that mechanisms potentially dysregulating
the CAR-NK cells following re-infusion need to be controlled.
This also applies if using IPS- or cord blood-derived CAR-NK
cells. Hence, drugs and approaches discussed in this review are
utterly important and need further attention also in relation
to CAR-NK cells against myeloid malignancies to induce and
maintain durable remissions.

Based on the data presented in this review, we strongly believe
that new unique opportunities to better utilize NK cells to induce
long-term remissions in patients with myeloid malignancies will
be a reality in the near future.
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