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Brain tumor research has been stapled for human health while brain network research is
crucial for us to understand brain activity. Here the structural controllability theory is applied
to study three human brain-specific gene regulatory networks, including forebrain gene
regulatory network, hindbrain gene regulatory network and neuron associated cells cancer
related gene regulatory network, whose nodes are neural genes and the edges represent
the gene expression regulation among the genes. The nodes are classified into two
classes: critical nodes and ordinary nodes, based on the change of the number of driver
nodes upon its removal. Eight topological properties (out-degreeDO, in-degree DI, degree
D, betweenness B, closeness CA, in-closeness CI, out-closeness CO and clustering
coefficientCC) are calculated in this paper and the results prove that the critical genes have
higher score of topological properties than the ordinary genes. Then two bioinformatic
analysis are used to explore the biologic significance of the critical genes. On the one hand,
the enrichment scores in several kinds of gene databases are calculated and reveal that the
critical nodes are richer in essential genes, cancer genes and the neuron related disease
genes than the ordinary nodes, which indicates that the critical nodes may be the
biomarker in brain-specific gene regulatory network. On the other hand, GO analysis
and KEGG pathway analysis are applied on them and the results show that the critical
genes mainly take part in 14 KEGG pathways that are transcriptional misregulation in
cancer, pathways in cancer and so on, which indicates that the critical genes are related to
the brain tumor. Finally, by deleting the edges or routines in the network, the robustness
analysis of node classification is realized, and the robustness of node classification is
proved. The comparison of neuron associated cells cancer related GRN (Gene Regulatory
Network) and normal brain-specific GRNs (including forebrain and hindbrain GRN) shows
that the neuron-related cell cancer-related gene regulatory network is more robust than
other types.
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1 INTRODUCTION

The world has opened its eyes to the threat posed by cancer
(McGuire, 2016). Brain tumor is a mass or growth of abnormal
cells in the human brain. It can begin in the human brain
(primary brain tumors), or begin in other parts of body and
spread to brain (secondary, or metastatic, brain tumors) (Cheng
et al. 2014). Brain tumor accounts for 85–90% of all primary
central nervous system (CNS) tumors (Mehta et al., 2011). There
are new cases and deaths from brain tumor and other nervous
system tumors estimated around the world every year.
Approximately 256,213 new cases of brain and other CNS
tumors were diagnosed in the year 2012, with an estimated
189,382 deaths (Ferlay et al., 2012), and there are 296,851 new
cases and 241,037 deaths in 2018 (Bray et al., 2018). Furthermore,
the cause of most adult brain and spinal cord tumors is not
known. It is urgent to study the pathogenic mechanism and
treatment for brain tumors.

Many studies have focused on the role of single molecule or
single pathway in regulating tissue-specific nuclear structure and
gene expression. For example, SATB1, a cell type specific nuclear
protein, can recruit chromatin remodeling factors and regulate
many genes during thymocyte differentiation. And it is proposed
by Cai-s et al. as a novel gene regulator, which can provide sites
for tissue-specific and region specific histone modification of
DNA sequences (Cai et al., 2003). Fass et al. (2018) studied the
role of GPCR-kinase interacting protein 1 (GIT1), and found that
GIT1 deletion interferes with the specific network of GIT1
interacting synapses. Although the understanding of individual
molecules is crucial, the focus is on understanding the entire gene
regulatory network at the system level. Because the properties of
gene regulatory networks cannot be fully understood by studying
single molecules (Kitano, 2002).

Marbach D et al. Developed a comprehensive resource of 394
cell types and tissue-specific gene regulatory networks with 37
genome wide association studies (GWAS), which clarifies the
genome-wide connectivity among transcription factors,
enhancers, promoters and genes (Marbach et al., 2016).
McKenzie A T et al. identified a novel set of brain cell
consistent signatures and robust networks from the integration
of multiple data sets, so it goes beyond the limitations associated
with each individual research specific technical problem
(McKenzie et al., 2018). Therefore, it is feasible to construct
brain specific gene regulatory network based on relevant data and
it is effective to study it based on network analysis.

Network Science has become an emerging and highly
interdisciplinary research area that aims to increase our
understanding of complex networks (Barabási, 2009; Börner
et al., 2007; Liu et al., 2016; Gao et al., 2015; Peng et al.,
2015). At the same time, with the increasing of massive
genomic, proteomic, and metabolomics data, the formation of
multi-layer biological molecular network is promoted, which lays
a foundation for the analysis of biological problems by network
science (Liu et al., 2019b; Ortmayr et al., 2019; Malod-Dognin
et al., 2019; Liu et al., 2019a). Detailed maps of mammalian brains
could lead to a revolution in brain science, which allows us to
understand and find the cure of numerous neurological and brain

diseases. With that, network science could be applied in brain
research widely (Sporns et al., 2005; Barabási and Pósfai, 2016;
Liu and Pan, 2016b). It has been applied in many kinds of
biological networks, such as mouse inter-region brain
networks and human transcription factor regulatory networks
(Chang, 2015). Liu et al. used the control theory of structural
controllability to analyse numerous models of real networks, for
instance, the directed human protein interaction network, which
helped us to identify disease genes and drug targets (Vinayagam
et al., 2016), the human signaling network to identify driver nodes
(Liu and Pan, 2015) and so on. It has been proved that a system’s
behaviour can be guided towards a desired state with a suitable
choice of control signals to some significant nodes (Liu and Pan,
2016a; Liu et al., 2011; Yan et al., 2017; Liu et al., 2017). Therefore,
it’s feasible that we can apply controllability theory of network
science on the analysis of brain-specific gene regulatory network.

Network structural controllability analysis (Liu et al., 2011, Liu
et al., 2017) has been a general framework in identifying critical
nodes that have crucial roles in controlling the state of the whole
system. By applying this framework to human liver metabolic
networks (Liu and Pan, 2014), the critical driver metabolites tend
to be essential. Moreover, this framework can be used to predict
potential drug-targets (Liu and Pan, 2015). It is fair to expect that
there are some possible connections between the structural
controllability theory and the human brain-specific gene
regulatory networks, which could provide valuable
informations on the brain-specific gene regulatory networks,
such as identifying essential genes, brain-related disease genes
and drug targets.

In this work, we apply structural controllability method to
analyse large-scale directed human brain-specific gene
regulatory networks, where nodes are neurons and edges
represent the gene expression regulation among the genes.
The weight of each edge ranges from 0 to 1, which measures the
normalized activity levels of the enhancer. We classify the
nodes into two classes: critical genes and ordinary genes. Then
we do the topological and biological analyse of these two kinds
of genes, and find that critical genes tend to be essential genes.
By calculating eight topological properties (out-degree, in-
degree, degree, betweenness, closeness, in-closeness, out-
closeness and clustering coefficient), we can see that critical
genes have higher score of topological properties than ordinary
genes. Moreover, the enrichment in several kinds of gene
databases is explored, which shows that critical nodes are
richer in essential gene, cancer gene and the neuron related
disease gene than ordinary nodes. Besides, GO analysis and
KEGG pathway analysis also help to infer that critical nodes
are useful for us to explore more significant biological
information and to identify the biomarker for brain tumor
research. Finally, since the gene regulatory network is not
complete or there may be some false links, we do sensitivity
analysis of the results by perturbing the network. We find that
the result of node classification is quite robust, and the neuron
associated cells cancer related gene regulatory network is more
robust than the health networks. The findings in our paper
could help identify potential essential, cancer and neuron
related disease genes.
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2 RESULTS

2.1 Classification by Driver Nodes
2.1.1 Description of Brain-specific Gene Regulatory
Network
We construct three brain-specific gene regulatory networks,
which consist of forebrain gene regulatory network (forebrain
GRN), hindbrain gene regulatory network (hindbrain GRN) and
neuron associated cells cancer related gene regulatory network
(neuron associated cells cancer GRN). They are directed networks
and their nodes are neuronal genes. Their edges represent the
regulation among neuronal genes, specifying the genome-wide
connectivity among transcription factors, enhancers, promoters
and genes (Marbach et al., 2016). Forebrain GRN and hindbrain
GRN are normal and healthy human’s brain-specific gene
regulatory networks, while neuron associated cells cancer
related GRN is cancer patient’s brain-specific gene regulatory
network. In these networks, the edge direction corresponds to the
hierarchy of signal flow between the interacting genes and the
edge weight corresponds to the confidence of the predicted
direction. Generally, we delete the edges whose edge weight is
smaller than 0.05 for our study. By this way, the human forebrain
GRN consists of 14,435 genes (nodes) and 2,22,867 directed
edges, the human hindbrain GRN consists of 14,601 genes and
2,28,708 directed edges, and the neuron associated cells cancer
related GRN consists of 15,320 genes and 2,56,434 edges.

2.1.2 Classification of Brain-specific Gene Regulatory
Networks’ Nodes
By structural controllability theory, the minimum set of driver
nodes is identified and the size of it is calculated as ND. Then the
nodes are classified as critical or ordinary, based on the change of
ND upon their removal. The node is critical ifND has no change or
increases because of its removal, or the node is ordinary if ND

decreases. The results are shown in Table 1. The number of
forebrain GRN’s critical nodes is 642, while the number of
hindbrain GRN’s and neuron associated cells cancer related
GRN’s critical nodes are both 643.

2.2 Topological Analysis
Different centralities of each gene in the three brain-specific gene
regulatory networks are calculated, which including out-degree
DO, in-degree DI, degree D, betweenness B, closeness CA, in-
closeness CI, out-closeness CO, betweenness B and clustering
coefficient CC. The average values of each topological property
are shown in Table 2. It is clear that there are some similar
topological properties among the three brain-specific gene
regulatory networks, so we can make topological analysis from
two aspects.

On one aspect of single network, taking the hindbrain GRN
into account, the ordinary nodes’ out-degree is 0, as shown in
Figures 1B,D, which means that the ordinary genes in the
networks are all just signal receivers. And the degree
distribution suggests that critical nodes have higher degree
than ordinary nodes as shown in Figure 1, (degree
distribution of forebrain GRN and neuron associated cells
cancer related GRN are shown in Supplementary Figure S1,
and it shows the same result as hindbrain GRN). The average of
the ordinary nodes’ betweenness is also 0. What’s more, the
average out-closeness of critical nodes is much bigger than
ordinary nodes, and it is proved convincing by significance
testing (Mann Whitney U test, p-value is smaller than 0.05,
significance level = 0.05, see Table 3). These results imply that
critical nodes are more important or useful for further study.

On the other aspect of comparison of the three brain-specific
gene regulatory networks, the average in-degree, average out-
degree, average betweenness and average clustering coefficient of
neuron associated cells cancer related GRN are bigger than

TABLE 1 | Classification by driver nodes.

Network Critical Number of nodes Total

Ordinary

ForebrainGRN 642(4.45%) 13,793 14,435
HindbrainGRN 643(4.40%) 13,958 14,601
Neuron associated cells cancer GRN 643(4.20%) 14,677 15,320

TABLE 2 | Topological analysis of each gene in human brain network.

ForebrainGRN Ordinary HindbrainGRN Ordinary Neuron associated cells cancerGRN

Critical Critical Critical Ordinary

D 364.402 15.354 375.426 15.476 425.121 16.319
DI 17.257 15.355 19.737 15.476 26.313 16.318
DO 347.145 0 355.689 0 398.809 0
B 25,212.564 0 25,862.054 0 26,124.840 0
CA 2.912e-05 2.779e-05 2.924e-05 2.758e-05 2.872e-05 2.661e-05
CI 4.943e-09 5.008e-09 4.848e-09 4.898e-09 4.407e-09 4.439e-09
CO 1.987e-07 4.800e-09 2.449e-07 4.690e-09 3.012e-07 4.260e-09
CC 0.029 0.279 0.034 0.275 0.040 0.297
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forebrain GRN and hindbrain GRN, no matter critical or
ordinary nodes. It can be explained that the connection of
neuron associated cells cancer related GRN is tighter than the
normal brain network.

2.3 Biological Enrichment Analysis
The enrichment scores of the critical genes and ordinary genes in
different biofunctional gene databases are calculated, and GO
analysis and KEGG pathway analysis are adopted on critical
genes to explore the biological significance.

2.3.1 Enrichment Score Calculating Analysis
The nodes in the databases which consist of essential genes,
cancer genes, and the neuron related disease genes respectively
are characterized as critical and ordinary nodes. Essential

genes are necessary for cellular survivor. The gene
essentiality analysis indicates that critical nodes are
enriched in essential genes, whereas essential genes are
underrepresented among ordinary nodes (Figure 2).
Furthermore, the critical nodes are enriched in cancer genes
and the related disease genes in the Figure 2, and it indicates
that the disease genes are most likely among the critical nodes.
Supplementary Figures S2, S3 show the biological enrichment
analysis of forebrain GRN and neuron associated cells cancer
related GRN, respectively. These results indicate that the
proposed classification method is a reliable and useful tool
for the prediction of brain tumor biomarkers. The critical
genes mined in this way have bioinformatics significance and
have a strong correlation with brain tumors.

2.3.2 GO Analysis and KEGG Pathway Analysis on
Critical Genes
GO (Gene Ontology) analysis (du Plessis et al., 2011) has the
largest resource for cataloguing gene function, which is
subdivided into three non-overlapping ontologies, Molecular
Function (MF), Biological Process (BP) and Cellular
Component (CC). KEGG (Kyoto Encyclopedia of Genes and
Genomes) (Kanehisa and Goto, 2000) is a knowledge base for
systematic analysis of gene functions, linking genomic
information with higher order functional information. More

FIGURE 1 | Characterizing the controllability of human brain-specific gene regulatory network and topological analysis. In the figure, hindbrain GRN is hindbrain
gene regulatory network, forebrain GRN is forebrain gene regulatory network, neuron associated cells cancer related GRN is neural gene regulatory network associated
cells cancer (Table 2).The values in Table 2 are the average of those topological characteristics that consist of out-degree DO, in-degreeDI, degree D, betweenness B,
closeness CA, in-closeness CI, out-closeness CO, betweenness B and clustering coefficient CC. (A) In-degree distribution of hindbrain GRN. (B) Out-degree
distribution of hindbrain GRN. (C) Average in-degree for ordinary and critical nodes in hindbrain GRN. (D) Average out-degree for ordinary and critical nodes in
hindbrain GRN.

TABLE 3 | The significance test ofCO.

Network MannWhitneyU test W

p-value

ForebrainGRN 2.2e-16 86,96,500
HindbrainGRN 2.2e-16 88,70,300
Neuron associated cells cancer GRN 2.2e-16 93,56,600
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detailed biological function of the genes can be obtained fromGO
analysis and KEGG pathway analysis.

David, the online biological enrichment analysis software, is
used to realize the GO analysis and KEGG pathway analysis on
critical genes. The results are shown in Figure 3 and Table 4. GO
analysis points out that critical genes are rich in nucleus (93.4%),
nucleoplasm (42.7%), cytoplasm (33.3%) and so on. Their
molecular functions mostly consist of transcription factor
activity, sequence-specific DNA binding and protein binding.
What’s more, the critical genes mainly play important roles in 7
biological processes, which are positive regulation of
transcription from RNA polymerase II promoter (56.1%),
DNA-templated (56.0%), etc. KEGG pathway analysis shows
that the critical genes are rich in 14 KEGG pathways, which
are confirmed with brain tumor from the Comparative
Toxicogenomics Database (CTD, http://ctdbase.org/).

From the above analysis, we can find that the critical genes we
find are important and have an association with brain tumor. And
GO analysis and KEGG pathway analysis provide the reference
for further study on brain tumor.

2.4 Robustness Analysis of Node
Classification
Since the critical nodes are vital and significant, it’s necessary to
know whether the classification is robustness if the network is
attacked. Therefore, the robustness of node classification is
systematically tested by deleting edges or nodes.

2.4.1 Deleting Edges
Over 96% edges’ weights are between 0 and 0.10 in the three
brain-specific gene regulatory networks. The detailed information
can be seen in Table 5. Therefore, the edges, whose edge weight
are smaller than 0.01, 0.02, . . . , 0.10, are deleted respectively to
get new networks. Then the same method is used to identify the
new networks’ critical nodes and ordinary nodes. Finally, the
proportions of the critical nodes of the new networks to the
original network are compared in Figure 4A and Supplementary
Figure S4. It can be seen that the node classification is robust with
respect to deleting edges in the three brain-specific gene
regulatory networks. What’s more, through comparing the

FIGURE 2 |Biological enrichment score calculating analysis of hindbrain GRN. (A) Enrichment analysis of essential genes. Numbers of essential genes overlapping
with critical and ordinary nodes are shown in red arrows. (B) Enrichment analysis of cancer genes. Numbers of cancer genes overlapping with critical and ordinary nodes
are shown in red arrows. (C) Biological enrichment analysis of neuron associated cells cancer genes. Numbers of these genes overlapping with critical and ordinary
nodes are shown in red arrows.
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FIGURE 3 | Go analysis on critical genes. (A) CC. (B) MF. (C) BP.

TABLE 4 | KEGGPathway analysis on critical genes.

KEGGPathway GeneNumber p value Genes

hsa05202:Transcriptionalmisregulation in cancer 45(7.56%) 1.58e-32 LMO2, TFE3, PPARG,. . .
hsa05166:HTLV-I infection 33(5.55%) 1.32e-13 STAT5A, SPI1, ELK1,. . .
hsa05200:Pathways in cancer 40(6.72%) 5.29e-13 PPARG, SPI1, FOXO1,. . .
hsa04550:Signaling pathways regulating
pluripotency of stem cells 24(4.03%) 1.89e-12 NANOG, HNF1A, OTX1,. . .
hsa05203:Viral carcinogenesis 24(4.03%) 4.99e-09 EGR3, EGR2,SP100,. . .
hsa05030:Cocaine addiction 9(1.51%) 4.29e-05 ATF4, CREB3, RELA,. . .
hsa04390:Hippo signaling pathway 15(2.52%) 5.27e-05 TCF7, SOX2, SMAD4,. . .
hsa04919:Thyroid hormone signaling pathway 13(2.18%) 5.80e-05 THRA, THRB, RXRB,. . .
hsa04022:cGMP-PKG signaling pathway 14(2.35%) 3.25e-04 MEF2D, MEF2B, ATF4,. . .
hsa04668:TNF signaling pathway 10(1.68%) 0.002 33 ATF4, CEBPB, CREB3,. . .
hsa04152:AMPKsignaling pathway 10(1.68%) 0.005 92 SREBF1, HNF4A, CREB3,. . .
hsa04068:FoxO signaling pathway 10(1.68%) 0.010 20 EP300, FOXG1, SMAD4,. . .
hsa04310:Wnt signaling pathway 10(1.68%) 0.012 22 TCF7, EP300, TP53,. . .
hsa04110:Cell cycle 9(1.51%) 0.018 82 E2F4, EP300, TP53,. . .

TABLE 5 | The Edgeweight ratios of threeGRNnetworks.

Network Number of edges edgeweight (0 ~0.10)

All

ForebrainGRN 26,62,324 25,91,577(97.3%)
HindbrainGRN 26,06,819 25,33,623(97.2%)
Neuron associated cells cancer GRN 26,54,287 25,65,486(96.7%)
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three curves in Figure 4B, we can know that the neuron
associated cells cancer related GRN has higher value than the
others, which means the neuron associated cells cancer related
GRN is more robust than the health brain-specific gene
regulatory networks.

2.4.2 Deleting Nodes by Critical Nodes
In this part, the change of giant strongly connected component
(GSCC) and giant weakly connected component (GWCC) are
compared under three deleting strategies. It is applied to the
three brain-specific gene regulatory networks in the same way,

FIGURE 4 |Robustness analysis of node classification. (A) Plot showing the fraction of ciritical nodes in new networks that overlaps with the original hindbrain GRN,
the new networks are obtained by deleting edges from original hindbrain gene regulatory networks. (B) The comparison of three networks in case of deleting edges.

FIGURE 5 | Robustness analysis of node classification. Here we noted the three strategies by the following ways: Firstly, deleting nodes randomly in the whole
hindbrain GRN (noted as randomly—all). Secondly, deleting critical nodes randomly (noted as critical). Lastly deleting the same number of nodes as the second strategy
in the whole hindbrain GRN, andwhich nodes are deleted is randomly (noted as randomly—critical—all). (A) The change of giant strongly connected component (GSCC)
in hindbrain GRN with three methods that are different in the way of deleting critical nodes. (B) The change of giant weakly connected component (GWCC) in
hindbrain GRN with three methods that are different in the way of deleting critical nodes. (C, D) Comparison in the way of deleting nodes randomly in the whole brain-
specific GRN respectively. (E, F) Comparison in the way of critical. (G, H) Comparison in the way of randomly—critical—all.
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so we take hindbrain GRN for example. Firstly, deleting nodes
randomly in the whole hindbrain GRN (noted as
randomly—all). Secondly, deleting critical nodes randomly
(noted as critical). Finally, deleting the same number of
nodes as the second strategy in the whole hindbrain GRN,
and whose nodes are deleted is randomly (noted as
randomly—critical - all). Compared the curve of critical
with randomly—all and randomly—critical—all, the results
are shown in Figures 5A,B indicate that the maximal
connected subgraph becomes smaller and smaller with the
decrease of the critical nodes. It means that the critical nodes
are crucial for the connection of the whole network. It is
consistent with the results of forebrain GRN and neuron
associated cells cancer related GRN from Supplementary
Figure S5. Moreover, the maximal connected subgraph is
bigger than the others as described in Figures 5C–H, which
are the comparisons among three brain networks in the same
strategy. It means that neuron associated cells cancer related
GRN is more robust than normal and healthy brain-specific
gene regulatory network.

3 DISCUSSION

In this paper, the genes in human brain-specific genes
regulatory networks (forebrain GRN, hindbrain GRN and
neuron associated cells cancer related GRN) are divided
into the critical genes and ordinary genes. By calculating
eight topological properties (out-degree DO, in-degree DI,
degree D, betweenness B, closeness CA, in-closeness CI,
out-closeness CO and clustering coefficient CC), we find
that the critical genes play important roles in the human
brain-specific GRN networks. For example, the critical
genes have larger score of CO than the ordinary genes.
Biological enrichment analysis in essential genes database
shows that critical genes are richer than the ordinary genes,
so we predict that critical genes are more significant for us to
explore biological information. Furthermore, the enrichments
in cancer genes database and neuron related disease genes
database are explored, and it is consistent with our prediction.
Because the critical nodes are richer than the ordinary nodes in
these gene databases. It indicates that the critical genes can
contribute to identifying the disease genes related to brain. GO
analysis and KEGG pathway analysis indicate that critical
genes are associated with brain tumor and hint that they
are rich in transcriptional misregulation in cancer, pathways
in cancer and so on, which provide references for further study
on brain tumor. Finally, tests show that the nodes classification
method is robust when the network is attacked. And the tests
indicate that the neuron associated cells cancer related GRN is
more robust than normal and healthy brain-specific gene
regulatory networks (forebrain GRN and hindbrain GRN),
which is straightaway that a person gets sick easily but regains
health difficultly.

In conclusion, controllability theory is also a useful tool to
analyse human brain-specific gene regulatory network. It can
provide a feasible direction for biologists to study whether the

biomarker mined by the proposed method is related to brain
tumor or not. In addition, the research work also raises a number
of questions. For instance, how can we quantify the influence of
each critical genes for the network? Can the work expand to the
structure of function brain network? Answers to these questions
can further provide theoretical foundation for designing
experiments.

4 METHODS

4.1 Brain-specific Gene Regulatory
Networks
There are three kinds of brain-specific gene regulatory
networks. For convenience, we called them hindbrain GRN,
forebrain GRN and neuron associated cells cancer related GRN
respectively. Hindbrain GRN and forebrain GRN are normal
and healthy adult’s brain-specific gene regulatory networks,
while the neuron associated cells cancer related GRN is the
patient’s brain-specific gene regulatory network, who suffers
from brain tumor. They all are dealt with by deleting edges
whose edge weights are smaller than 0.05 before we use them to
analyse in this paper.

4.2 Structural Controllability and Its
Applications to Biological Networks
Biological networks are complex nonlinear systems. The
controllability of nonlinear systems is structurally similar to
that of linear systems (Slotine and Li, 1991; Liu et al., 2011).
We study a system with canonical linear, time-invariant
dynamics formulated by Lombardi and Hörnquist (2007).

dx t( )
dt

� Ax t( ) + Bu t( ), (1)

where the vector x(t) � (x1(t), x2(t), . . . , xN(t))T describes the
states of theN nodes of the networked system at time t. TheN ×N
matrixA is the transposition of the adjacency matrix and captures
the wiring diagram of the system and the interaction strengths
between nodes. The N × M matrix B is the input matrix (N ≥M)
that identifies the nodes into which the input signals are injected,
M is the number of input signals, and u(t) �
(u1(t), u2(t), . . . , um(t))T is the input vector.

In control theory, a system is controllable if it can be driven
from any initial state to any desired final state during a finite time
period (Kalman, 1963). According to Kalman’s controllability
rank condition (Kalman, 1963), the system represented by Eq. 1 is
controllable if and only if theN ×NM controllability matrix C has
full rank, i.e.,

rank C( ) � rank B,AB, A2B, . . . , AN−1B[ ] � N. (2)

This controllability rank condition indicates that to control the
full network we must identify the number of signals and the
nodes into which the signals are injected, called driver nodes.
Liu et al. (2011) recently showed that a full system can be
structurally controlled by inputting signals into a minimum set
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of driver nodes. A system is structurally controllable if it is
possible to choose non-zero weights in A and B such that Eq. 2
holds (Liu et al., 2011). The minimum number of driver nodes
for controlling a full network is denoted ND and the minimum
driver node density is nD = ND/N. The minimum driver node
density required to control the full complex network quantifies
its structural controllability (Liu et al., 2011; Liu et al., 2015).

Structural controllability analysis has been applied to some
biological networks, where interesting properties on the
biological system and drug-targets have been discovered
(Liu and Pan, 2014; Liu and Pan, 2015; Vinayagam et al.,
2016). According to the frequency of appearing in the
minimum driver node sets, or the impact of removing a
node on the minimum number of driver nodes, the nodes
can be classified in to different classes: critical, redundant and
ordinary (as explained in the following subsection). In
biological molecular networks, biological molecules can be
classified with different roles. By doing biological
enrichment analysis of these different biological roles,
candidate essential genes or drug-targets can be identified.

4.3 Node Classification
According to the control theory, a dynamical system is
controllable if, with a suitable choice of inputs, it can be
driven from any initial state to any desired final state within
finite time (Kalman, 1963; Luenberger, 1979). By using the

analytical tool developed by Liu et al. (2011), we can identify
the set of driver nodes in an arbitrary complex directed network,
with time-dependent control that can guide the systems entire
dynamics to study its controllability. Moreover, the minimum
number of driver nodes is determined for a determined network.
Hence, the mathematical framework and analytical tools that
have been developed by Vinayagam et al. (2016) can be used to
compute the minimum number, and denote it as ND. After
removing a node, we denote the minimum number of driver
nodes of the damaged network asND′ . Then we classify the node
by comparing ND and ND′ . A node is critical if ND′ >ND or
ND′ � ND, and ordinary if ND′ <ND. For example, hindbrain
GRN’s ND = 13 959, the deleted node is critical if ND′ � 13 959,
ordinary if ND′ � 13 958.

4.4 Biological Enrichment Score Calculating
Analysis
Biological enrichment score calculating analysis is a method
for enrichment analysis of gene sets, which is used to identify
gene classes that are over-expressed in a large group of genes
and may be related to disease phenotypes. This method uses
statistical methods to identify significantly enriched or
missing genomes. Microarray and proteomic results usually
identify thousands of genes for analysis (Subramanian et al.,
2005).

As described in Figure 6, the oval part represents the gene set
of the network under study, which is represented by S. here, it
refers to the genes that need to be analyzed in the brain gene
regulatory network (the network can be the forebrain GRN,
hindbrain GRN and neuron associated cells cancer related
GRN respectively; the gene can be the critical gene set or the
ordinary gene set). The rectangular part represents some known
functional gene databases, such as essential genes, cancer genes,
conserved genes or other disease-related genes respectively,
which is represented by DB. Overlap means that there will be
some intersection of genetic data between them. Biological
enrichment score calculating analysis is used to quantify the
ratio of the critical genes after classification to the known
functional gene databases.

Then the z score is calculated to estimate the enrichment by
the Eq. 3:

z score � SDB −mean of RDB( )

SD of RDB
(3)

where SDB is the number of genes in the intersection of setDB and
S. RDB is the number of intersection genes between the setDB and
the extracted gene set, which are extracted SDB genes randomly
from S. And the mean of RDB is the mean value of RDB calculated
after 1,000 random samples, while SD of RDB is the standard
deviation calculated after 1,000 random samples. It’s obvious that
critical genes are rich in database DB if z score is bigger than 0.

Essential genes are obtained from DEG database, whose
number is 8,254 for human (Zhang et al., 2004). Cancer genes
are in COSMIC database (Futreal et al., 2004, and we collect 616
cancer genes for our work. Finally, the related disease genes are

FIGURE 6 | The method of Biological enrichment analysis. The circle
represents genes of the network which represents forebrain GRN, hindbrain
GRN and neuron associated cells cancer related GRN respectively. And the
rectangle represents the functional gene database which is on behalf of
essential genes, conserved genes, cancer genes or the related genes
respectively.
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found in the Gene database (NCBI, https://www.ncbi.nlm.nih.
gov/).

4.5 Survival Analysis
To validate whether the expression of critical genes are related to
the survival time of prognosis, we conducted survival analysis by
GEPIA (Tang et al., 2017). In the tool, we selected two brain-
correlated cancers including brain lower grade glioma (LGG) and
glioblastoma multiforme (GBM) from TCGA for analysis. The
median value of the gene was selected as a cut-off to divide the
samples into high and low expression group. As shown in
Figure 7, the top 6 critical genes are highly related to the
survival time of prognosis on both LGG and GBM. This
indicates that the identified critical genes based on structural
controllability analysis may also serve as potential biomarkers for
the survival time of prognosis.

5 CONCLUSION

The comparison of neuron associated cells cancer related GRN
and normal brain-specific GRNs (including forebrain and
hindbrain GRN) shows that the neuron-related cell cancer-
related gene regulatory network is more robust than other

types. In order to obtain more network analysis results, we
can consider combining disease-gene relationship data with
gene-gene action relationship data to further improve the
network topology and effective description, and explore more
pathogenic mechanisms. At the same time, in terms of biological
function analysis, we can further explore the biological function
significance of the screened genes through more biological
function analysis methods, so as to provide more specific tips
for the research of glioma.
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