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Simple Summary: Patients with acute myeloid leukemia (AML) may have a number of different
mutations. Those with mutations in the FLT3 gene have a higher risk of relapse and death than
those lacking these mutations. FLT3 is a key receptor on the surface of AML cells, which drives cell
survival and growth. Although activation of this receptor is normally tightly controlled, in AML,
FLT3 mutations allow it to activate itself, independent of external control. Over the past 5 years,
a number of new drugs have been developed to specifically target these mutations. In this article,
we discuss these drugs and their uses, as well as the mechanisms by which AML cells may gain
resistance to them and how that resistance can be overcome.

Abstract: The treatment of many types of cancers, including acute myeloid leukemia (AML), has
been revolutionized by the development of therapeutics targeted at crucial molecular drivers of
oncogenesis. In contrast to broad, relatively indiscriminate conventional chemotherapy, these targeted
agents precisely disrupt key pathways within cancer cells. FMS-like tyrosine kinase 3 (FLT3)—encoding
a critical regulator of hematopoiesis—is the most frequently mutated gene in patients with AML,
and these mutations herald reduced survival and increased relapse in these patients. Approximately
30% of newly diagnosed AML carries an FLT3 mutation; of these, approximately three-quarters
are internal tandem duplication (ITD) mutations, and the remainder are tyrosine kinase domain
(TKD) mutations. In contrast to its usual, tightly controlled expression, FLT3-ITD mutants allow
constitutive, “run-away” activation of a large number of key downstream pathways which promote
cellular proliferation and survival. Targeted inhibition of FLT3 is, therefore, a promising therapeutic
avenue. In April 2017, midostaurin became both the first FLT3 inhibitor and the first targeted therapy
of any kind in AML to be approved by the US FDA. The use of FLT3 inhibitors has continued to
grow as clinical trials continue to demonstrate the efficacy of this class of agents, with an expanding
number available for use as both experimental standard-of-care usage. This review examines the
biology of FLT3 and its downstream pathways, the mechanism of FLT3 inhibition, the development of
the FLT3 inhibitors as a class and uses of the agents currently available clinically, and the mechanisms
by which resistance to FLT3 inhibition may both develop and be overcome.
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1. Introduction

Acute myeloid leukemia (AML) is a malignancy characterized by the aggressive, malig-
nant clonal expansion of immature myeloid-lineage cells [1]. It accounts for approximately
one-third of all leukemia diagnoses among adults and nearly half of leukemia-related
deaths [2]. It is somewhat less common in children, making up approximately one-fifth of
all acute leukemia diagnoses but accounting for over half of leukemia-related deaths [2]. De-
spite ongoing advances in therapy and steadily improving outcomes, just over a quarter of
adults diagnosed with AML will be alive 5 years after diagnosis; in children, approximately
one-third will have died of their disease within 5 years of diagnosis [2]. However, the
prognosis and clinical outcomes of this disease vary widely among patients, and mortality
is not uniform across disease subtypes. Part of this variance is due to patient-related factors
such as age and clinical performance status [3]. Genetic features, including both molecular
and cytogenetic (e.g., chromosomal) abnormalities, are also critically important, to the
extent that modern AML classification schemata are predicated on the identification of
these mutations [4].

FMS-like tyrosine kinase 3 (FLT3) gene mutations are the most common cytogenetic ab-
normality seen in patients with AML and are present in up to one-third of newly diagnosed
patients [5]. Two primary classes of FLT3 mutations exist. Internal tandem duplication
(FLT3-ITD) within the juxtamembrane domain is the most common (approximately 25%
of all patients), followed by the tyrosine kinase domain (FLT3-TKD) (approximately 6–8%
of all patients) [5]. Patients with FLT3-TKD mutations appear to have a broadly similar
prognosis to those with FLT3 wild-type (FLT3-WT) [6–8]. Patients with FLT3-ITD mutations,
however, have a notably poorer prognosis, and the presence of these mutations heralds a
reduced survival rate and increased risk of relapse [9–11]. FLT3 is, therefore, an inviting tar-
get for pharmacologic inhibition or disruption, and in recent years, a number of promising
agents have been developed for precisely this purpose. The first such agent, midostaurin,
was approved by the United States’ Food and Drug Administration (FDA) in April 2017 for
use in newly diagnosed patients with FLT3-mutated AML [12].

As existing FLT3 inhibitors gain increasing use, and as new FLT3 inhibitors continue
to be developed, resistance to this class of agents is becoming more widespread and
poses a significant challenge. This review, therefore, examines the biology of FLT3 and its
downstream pathways, explores the mechanism of FLT3 inhibition and development and
implementation of FLT3 inhibitors, and assesses the mechanisms by which resistance to
FLT3 inhibition may both develop and be overcome.

2. The FLT3 Receptor

FLT3 is encoded by the FLT3 gene, which is located at 13q12 and contains 24 exons
extending over a region of at least 100 kilobases [13,14]. The resultant protein is membrane-
bound and comprised of 993 amino acids with a combined total molecular weight of
approximately 160 kDA [13]. FLT3 is a ligand-activated, class-3 tyrosine kinase receptor
(e.g., a member of the platelet-derived growth factor receptor (PDGFR) subfamily) with
close structural homology to PDGFR alpha and beta, c-Kit, and colony-stimulating factor
1 receptor (CSF1R) [14,15]. Upon binding to its ligand (FLT3 ligand; FL), FLT3 under-
goes homodimerization and conformational changes—specifically, the intracytoplasmic
kinase tails unfold and undergo autophosphorylation, resulting in FLT3 activation (See
Figure 1) [16]. Following ligand binding, the dimerized, activated receptor is rapidly in-
ternalized and degraded [17]. Structurally, FLT3 may be divided into 4 distinct domains.
Beginning extracellularly and moving inward, these components are (1) the extracellular N
terminal, (2) the transmembrane domain, (3) an intracellular, juxtamembrane domain, and
(4) an intracellular C-terminal region [18]. Within this C-terminal, there are two tyrosine
kinase domains (tyrosine kinase domain 1; TKD1 and tyrosine kinase domain 2; TKD2),
interspersed by an inter-kinase domain [18]. Of the 993 amino acids that make up FLT3,
just over half constitute the extracellular domain, and the transmembrane domain lies
between amino acids 542 and 564 [19]. Amino acids 610–944 comprise the tyrosine kinase
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domain; interspersed between the transmembrane and tyrosine kinase domain lies the jux-
tamembrane domain [19]. Finally, the protein terminates in a 50-amino acid C-terminal [19].
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Figure 1. Wild-type FLT3 is held in an inactive, monomeric conformation. Upon FLT3 ligand binding,
FLT3 dimerizes, auto-phosphorylates, and undergoes a conformational change, leading to activation
of downstream signaling pathways associated with cellular growth, proliferation, and survival.

In humans, FLT3 expression occurs primarily on CD34+ hematopoietic stem cells and
both lymphoid and myeloid progenitor populations; it is largely absent from their dif-
ferentiated progeny, as well as from erythrocyte-lineage progenitors [20–22]. Lower-level
expression has also been detected in reticuloendothelial and lymphoid tissue (including the
spleen and lymph nodes), likely due to the presence of maturing cells of the macrophage and
B-cell lineages, respectively [23,24]. Functionally, FLT3 serves as a critical early regulator of
hematopoiesis and is required for the proliferation of hematopoietic stem cells [25]. Apart
from these roles, and although FLT3 is not expressed in most differentiated cells, it does ap-
pear to play a necessary role in regulating dendritic cell development and activation [26,27].

Activation of the FLT3 receptor results in increased signaling via multiple signal
transduction pathways associated with cell growth, survival, and proliferation, including
RAS/RAF/MAPK/ERK, JAK/STAT, and PI3K/AKT [14,28]. In states of health, FLT3
production and activation are tightly controlled, and its activity is negatively regulated via
dephosphorylation of the juxtamembrane domain—e.g., the juxtamembrane domain plays
an autoregulatory role [13,29]. Mutations that disrupt the function of the juxtamembrane
domain, such as occur in FLT3-mutated AML, cause this tight regulation to be lost, and
FLT3 becomes constitutively activated [19].

3. FLT3 Mutations
3.1. Internal Tandem Duplications

FLT3-ITD mutations arise as duplications of a variable number of base pairs in exons
14 and 15, which code for FLT3′s juxtamembrane domain [17,30]. These duplications
occur in multiples of three, such that the reading frame is preserved (e.g., in-frame) and
may range in size from three to several hundred base pairs [17,30]. As a result, addi-
tional amino acid sequences are inserted into the juxtamembrane domain, most frequently
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in the carboxy-terminal region [17]. These mutations compromise the juxtamembrane
domain’s usual autoinhibitory function and facilitate ligand-independent dimerization,
autophosphorylation, and resultant activation of the receptor (see Figure 2).
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Figure 2. Mutated FLT3 is constitutively active and drives downstream signaling independent of
external ligand binding.

Perhaps counterintuitively, downstream pathway activation differs, however, between
“normal” wild-type FLT3 activation (e.g., by FL binding) versus FLT3-ITD-mutated activa-
tion. Both result in proliferation and inhibition of myeloid-lineage differentiation. However,
compared to wild-type FLT3 activation, FLT3-ITD results in repression of two transcription
factors needed for myeloid maturation (PU.1 and C/EBP (CCAAT/enhancer-binding pro-
tein)) and inhibition of intracellular phosphatases (including SHP-1 (Src homology region 2
domain-containing phosphatase-1)) [31–33]. FLT3-ITD also induces constitutive activity
within the WNT signaling pathway via enhanced expression of the WNT ligand’s receptor,
FRZ-4 (Frizzled-4) [34]. This activity, and in particular the resultant accumulation of high
levels of beta-catenin, occurs in the absence of WNT-ligand when induced by FLT3-ITD.
Combined, these alterations therefore result in enhanced anti-apoptotic, self-renewal, and
proliferative effects as compared to wild-type FLT3 activation. STAT5 phosphorylation is
also discriminant between FLT3 wild-type and ITD-related activation; in the latter case,
STAT5 is more highly phosphorylated and more readily acts as a DNA transcription factor,
thereby enhancing its growth-promoting and anti-apoptotic effects [35].

A subset of FLT3-ITDs occur within the tyrosine kinase domain; these are distinct from
TKD mutations [36,37]. FLT3-ITDs within the tyrosine kinase domain account for up to one-
third of all ITDs and, as is seen in juxtamembrane-ITDs, portend a poor prognosis [36,37].

3.2. Mutations within the Tyrosine Kinase Domain

Tyrosine kinase domain (TKD) mutations arise due to missense mutations in exon
20, which result in the replacement of a single amino acid residue. At least half of all
TKD mutations involve a single codon: aspartic acid 835 (D835); isoleucine 836 (I836) is
also relatively commonly implicated [17]. Substitutions of aspartic acid 835 for tyrosine
(D835Y) are most common, although asparagine (D835N), glutamate (D835E), histidine
(D835H), and valine (D835V) have all been reported [17,38,39]. Isoleucine 836 is most
commonly replaced by methionine (I836M) or asparagine (I836N) [17,39]. The implicated
amino acids play a role in maintaining monomeric FLT3′s inactive confirmation—their
substitution allows constitutive, ligand-independent activation. Interestingly, although
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FLT3-TKD does mediate increased signaling via the RAS/RAF/MEK/ERK, JAK/STAT,
and PI3K/AKT pathways, it does not appear to repress the inhibitory transcription factors
PU.1 and C/EBP [40].

Perhaps as a consequence of their resultant lesser effect on pro-survival/anti-apoptotic
pathways, the prognostic significance of FLT3-TKD mutations is less clearly defined than
that of FLT3-ITD mutations, although it appears that patients with FLT3-TKD mutations
have superior outcomes to those with FLT3-ITD mutations [6–8,41,42]. However, the precise
effects reported are somewhat variable. In a study examining 676 adult patients with de
novo AML, 34 (5%) were identified as FLT3-TKD positive [6]. These patients had superior
overall survival (OS) and relapse-free survival (RFS) versus those with FLT3-ITD, and no
difference from patients with wild-type FLT3. A second study screened 3082 adult patients,
finding 147 (4.8%) with TKD mutations [7]. When analyzed as a whole, FLT3-TKD did
not influence either OS or (event-free survival) EFS, both of which were superior when
compared to patients with FLT3-ITD. However, the presence of both FLT3-TKD and MLL
rearrangements appeared to have a cooperative negative effect on prognosis and worsened
outcomes compared to MLL alone. Conversely, FLT3-TKD appeared to have a positive,
cooperative effect with NPM1, and improved prognosis.

3.3. Non-ITD, Non-TKD FLT3 Mutations

In addition to the well-described abnormalities discussed above, all mutation classes
have been observed within the juxtamembrane domain, including missense, nonsense,
deletions, and insertions [43]. On the basis of the existing evidence, it appears that all of
the known juxtamembrane domain mutations impair its inhibitory function, e.g., they all
increase FLT3 activation/autophosphorylation to varying degrees [43,44]. However, the
resultant downstream signaling does not appear to be as robust as that conferred by canon-
ical FLT3-ITD mutations [43]. It is important to note, however, that these studies (and the
database from which they are drawn [44]) are derived from adult patients with malignan-
cies, and there is, therefore, likely to be a powerful selection bias towards the detection of
oncogenic mutations. Moreover, an insufficient number has been detected to allow accurate
prognostication of the clinical or biological significance of any one specific mutation.

3.4. All ITD Mutations Are not Created Equal

As noted, FLT3-ITD mutations are not monolithic, and their presence/absence is not
dichotomous. Compared to the relatively homogenous FLT3-TKD mutations, in which
D835 and I836 mutations account for the vast majority of cases, FLT3-ITD mutations are
quite varied. Several factors appear important, both biologically and prognostically: the
allelic ratio (AR) and the length of the specific mutation present. Additionally, the presence
of co-occurring mutations is also significant.

The co-occurrence of both FLT3-TKD and -ITD mutations has also been observed in a
small proportion of adult patients, generally <1% of those with FLT3-mutated AML [6,7,41,45].
Co-occurrence may be more common in children, with observed incidence rates of up to
6% of cases [46]. Although case numbers are insufficient to authoritatively prognosticate,
it appears that outcomes are more similar to those seen among patients with isolated
FLT3-ITD lesions.

3.4.1. Allelic Ratio

In FLT3-ITD AML, the allelic ratio (AR) (or allele level) is the number of ITD-mutant
alleles as compared to the number of wild-type alleles present [47]. The AR reflects the
number of malignant versus non-malignant cells, as well as the number of mutant alleles
within each cell [47]. It is something of an imperfect marker, as it is influenced not only by
the actual or “real” biologic AR, but also by the number of blasts present and the presence of
any contaminating cells. In most cases, the predominant AML clone is heterozygous for the
FLT3-ITD mutation, although subclones may be biallelic, hemizygous, possess a different
specific mutation, or lack the FLT3-ITD mutation altogether; such alterations also affect
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the AR [48,49]. It is unclear at which specific “threshold” the AR becomes deleterious, but
higher ARs (e.g., a greater proportion of mutant-to-wild-type alleles) are correlated with an
adverse prognosis [50–54]. Other studies have not shown a marked difference between high
and low ARs [51,55], with patients with FLT3-ITD mutations having poorer outcomes than
those without FLT3 mutations, irrespective of the AR. The absence of detectable wild-type
FLT3 portends a particularly grim outcome [49,56].

One particularly revelatory study examined 630 children with de novo AML enrolled
in the Children’s Cancer Group (CCG) studies CCG-2941 and CCG-2961 [28]. Among that
cohort, 77 (12%) had FLT3-ITD AML, with ARs ranging from 0.01 to 7.5 and a median of
0.53. For children with an AR < 0.43, 4-year PFS was 64%, versus 15% for those with an AR
of 0.43–0.64, and 18% with an AR of >0.64 (p = 0.014). Moreover, compared to patients who
were FLT3-WT, children with ITD ARs > 0.4, >0.5, and >0.6 were at an elevated risk for
disease progression with hazard ratios of 2.5 (p < 0.001), 2.5 (p < 0.001), and 2.1 (p = 0.001),
respectively. Utilizing a threshold of >0.4 as delineating a high ITD AR, patients with an
AR greater than 0.4 demonstrated a 4-year PFS of 16% versus 55% among those who were
FLT3-WT. Patients with low ARs (e.g., 0.4 or less) had similar 4-year PFS to those who were
FLT3-WT (72% versus 55%, p = 0.420). This threshold was subsequently validated based
on a re-analysis of a previously reported trial [57]; similar findings were observed, with
3-year overall survival (OS) of patients with an ITD AR of greater than 0.4, 0.4 or lower, and
FLT3-WT of 20%, 71%, and 63%, respectively (p < 0.001) [28]. The subsequent Children’s
Oncology Group (COG) phase III randomized clinical trial (AAML0531) therefore utilized
an AR of >0.4 to delineate high-risk patients [58].

However, more recently updated analyses of these studies have shown that the pres-
ence of FLT3-ITD mutations, irrespective of the AR and even when between 0.1 and 0.4,
portends a poor prognosis [59]. These poor outcomes were effectively unmasked by ex-
cluding patients with co-occurring, risk-modifying mutations (specifically CEBPA, NPM1,
NUP98-NSD, and WT1); without these patients included in the analysis, EFS from study
entry was 25% with an AR of 0.1–0.4, versus 30% for an AR of >0.4; p = 0.853. Reflect-
ing this more recent knowledge, the COG’s current phase III clinical trial (AAML1831)
includes children with newly diagnosed FLT3-mutated AML and defines FLT3-ITD as any
AR greater than 0.1 (NCT04293562) [60]. Specific sub-analyses will examine outcomes for
those with high ARs (e.g., >0.4) versus those with lower ARs, but these patients will not be
treated differently.

3.4.2. Mutation Length

The length of the specific ITD mutations may influence disease outcomes. Depending
on the study, the median FLT3-ITD size may be 39–61 base pairs; size ranges are quite
heterogeneous, ranging from 6 to 210 base pairs in the referenced studies [45,50,61,62]. One
study in children identified significantly poorer OS and disease-free survival (DFS) with
an ITD length of greater than 48 base pairs [45]; a separate adult study identified medium-
length (48–60 base pairs) ITDs as having worse OS and DFS than those with shorter (<48)
or longer (>60) mutations [61]. A third study of adults showed no difference in OS or DFS
based on ITD length above or below that study’s median length of 61 base pairs but did
observe lower remission rates in those with mutation lengths <61 base pairs [50]. Finally,
a fourth pediatric study did not identify any association between OS or DFS and ITD
mutation length [62].

3.4.3. Co-Occurring Mutations

The mutational landscape of FLT3-ITD-mutated AML is heterogeneous, with an av-
erage of 13.6 coding mutations (e.g., single nucleotide variants and indels) reported in
one large study, which is roughly comparable to AML generally (approximately 10 coding
mutations per case) [63,64]. These mutations often, but not always, tend to occur in AML-
associated oncogenes, including nucleophosmin 1, (NPM1), isocitrate dehydrogenase 1 and 2
(IDH 1, IDH 2), Wilms Tumor 1 (WT1), Runt-related transcription factor 1 (RUNX1), Tet methyl-
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cytosine dioxygenase 2 (TET2), and DNA (cytosine-5)-methyltransferase 3A (DNMT3A) among
others. Moreover, these mutations tend to persist between initial diagnosis and relapse,
hinting at a high degree of stability, particularly DNMT3A, NPM1, IDH2, RUNX1, and
TET2 [63,64]. It is, therefore, perhaps unsurprising that the presence of co-occurring muta-
tions may modify the prognosis and outcomes seen in patients with FLT3-mutated AML.

Despite the poor prognosis generally seen among patients with FLT3-ITD mutations,
in some contexts, its presence may actually prove beneficial, even when the AR is high.
The presence of t(6;9)(p23;q34)/DEK-NUP214 is one such example. This highly deleterious
mutation co-occurs with FLT3-ITD in up to two-thirds of pediatric cases of AML and is
associated with poor outcomes irrespective of FLT3-ITD mutation status [65]. Moreover,
a range of ARs is seen among patients with t(6;9), although most adult patients have
ARs greater than >0.4, e.g., a high AR [66]. In contemporaneous pediatric clinical trials
(e.g., COG AAML03P1, AAML0531, and AAML1031 studies), patients with FLT3-ITD
mutations were considered “high-risk” and underwent allogeneic hematopoietic stem cell
transplantation (HSCT) (in studies AAML03P1, AAML0531, and AAML1031) as well as
receiving the first-generation FLT3 inhibitor sorafenib (in study AAML1031). Retrospective
analysis of children with t(6;9) revealed superior outcomes when a co-occurring FLT3-ITD
mutation was present [66].

Conversely, the effect of co-occurring NPM1 and FLT3-ITD mutations appears to be
largely predicated on the FLT3-ITD AR and to be partially related to age as well. Adult
patients with an AR of less than 0.5 have broadly similar outcomes to those with an NPM1
mutation only, e.g., the presence of an NPM1 mutation may have something of a mitigating
effect but only when the AR is low [67–70]. ARs of 0.5 or greater appear to supersede any
benefit from the NPM1 mutation [67–70]. Given the complexity and lack of standardization
in determining the FLT3-ITD AR, it has been advocated that the co-occurrence of NPM1
and FLT3-ITD mutations, even in the presence of a low AR, not be used as an indication to
de-intensify therapy or to avoid HSCT when otherwise [8,71]. In contrast, the co-occurrence
of FLT3-TKD and NPM1 mutations appears to delineate a generally favorable prognosis—
in at least two studies of adult patients, those with both lesions appeared to have a superior
prognosis as compared to those with either mutation in isolation [7,72].

Unlike in adult patients, among children with co-occurring NPM1 and FLT3-ITD
mutations, the literature suggests that superior outcomes are seen compared to those with
FLT3-ITD mutations alone, irrespective of the AR [59]. In the cited study, EFS from study
entry was 25% for patients with FLT3-ITD alone and an AR of 0.1–0.4, and 30% for an
AR of >0.4 (p = 0.853), but was 70% for those with co-occurring NPM1 or CEBPA plus a
FLT3-ITD mutation (p < 0.001) [59]. These superior outcomes have led to the possibility
of (a) omitting HSCT from treatment and (b) utilizing FLT3-inhibitor-based maintenance
therapy for this cohort of patients, provided that they achieve end-of-induction remission.
This approach is currently under evaluation in the COG’s current phase III clinical trial
(AAML1831) (NCT04293562) [60].

As compared to patients with an isolated FLT3-ITD mutation, co-occurrence of a FLT3-
ITD plus a NUP98-NSD1 and/or WT1 mutation portends an even worse prognosis [59].
Among a large pediatric cohort of patients treated without FLT3 inhibitors, children with
or without FLT3-ITD mutations experienced an EFS of 31% versus 48%, respectively, from
study entry, versus 17% among those with FLT3-ITD mutations plus a NUP98-NSD1 and/or
WT1 mutation (p < 0.001). [59]. These findings were consistent irrespective of the AR, and
patients with an AR below 0.4 did not have improved outcomes compared to those with an
AR of over 0.4. It, therefore, appears that the FLT3-ITD AR loses prognostic significance
when paired with these co-occurring mutations, with patients faring poorly irrespective of
the specific AR.

Both pediatric and adult patients with APL demonstrate FLT3-ITD at higher rates than
in the general AML population (up to 40% of patients with APL versus approximately
25% of all patients with AML) [73]. The presence of FLT3 mutations is associated with an
elevated white blood cell (WBC) count at diagnosis [10], and it was initially believed that
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the presence of FLT3-ITD mutations did not adversely influence outcomes directly among
patients with APL [74]. However, more recent analysis has suggested that the presence
of an FLT3-ITD mutation does indeed portend a poorer prognosis, although to a lesser
extent than in AML generally [75]. FLT3-TKD mutations also have been associated with
poorer outcomes in APL [7]. However, in both cases, it is difficult to ascertain whether these
poorer outcomes are directly related to FLT3 mutational status or with the higher WBC
at diagnosis, with which both FLT3-ITD and -TKD mutations have been associated [7,75].
The impact is further obfuscated by the fact that the presence of FLT3-ITD severely impairs
the efficacy of all-trans retinoic acid (ATRA) in ATRA/chemotherapy regimens, but the
combination of ATRA/arsenic therapy completely restores therapeutic efficacy [73].

3.5. Implications of FLT3 Mutations for AML Risk Categorization

Among adult patients with AML, three primary classification schemata exist. The
classification systems used by the National Comprehensive Cancer Network (NCCN) [76]
and the European LeukemiaNet (ELN) [77] both divide mutations into favorable risk,
intermediate risk, and poor/adverse risk. Based on the NCCN criteria, patients with
FLT3-ITD AML are classified as being at poor risk. The ELN guidelines likewise stratify
patients with FLT3-ITD AML into the “adverse risk” grouping but are somewhat more
specific: only AML with an FLT3-ITD AR of greater than >0.5 is included, and only in
the absence of mutant nucleophosmin (NPM1). Co-occurrence of an NPM1 mutation and
FLT3-ITD with an AR > 0.5 is considered intermediate risk, as is FLT3-ITD with an AR < 0.5
in the absence of NPM1 mutations. FLT3-ITD with an AR < 0.5 and a co-occurring NPM1
mutation falls into the favorable risk category. Finally, the World Health Organization
(WHO)’s classification of myeloid neoplasms and acute leukemia [8] does not specifically
stratify AML by risk based on specific mutation but includes FLT3-ITD as an alteration
with clinical significance.

4. Clinical Implementation of FLT3 Inhibitors in Adult Clinical Trials

The FLT3 inhibitors may broadly be divided into a first generation and a second gener-
ation. First-generation FLT3 inhibitors are generally less specific in their inhibition of FLT3
and may have additional off-target effects. The first-generation inhibitors are generally
quite broad in their effects, with FLT3 being only one of the many tyrosine kinases inhibited
by these agents. The second generation of FLT3 inhibitors are both more selective and
more potent in their targeting of FLT3 specifically and have a resultantly improved toxicity
profile [8]. Additionally, FLT3 inhibitors may be classified mechanistically as either type 1
tyrosine kinase inhibitors (TKIs; e.g., they inhibit the active and inactive conformation of
the target molecule) or as type 2 tyrosine kinase inhibitors (e.g., inhibition of the inactive
conformation only; see Table 1) [78,79]. The type 1 FLT3 inhibitors (e.g., crenolanib, gilteri-
tinib, lestaurtinib, midostaurin, MRX-2843, and sunitinib) are active versus both FLT3-ITD
and FLT3-TKD, whereas type II inhibitors (e.g., quizartinib, ponatinib, pexidartinib, and
sorafenib) are only active versus FLT-ITD. As of writing, two FLT3 inhibitors carry FDA
approvals for use in FLT3-mutated AML (midostaurin and gilteritinib).

Table 1. FDA-approved and in-development FLT3 inhibitors, displayed by generation (first or second)
and tyrosine kinase inhibitor type (type 1 or type 2).

Type 1 FLT3 Inhibitors
(Inhibition of Both Active and Inactive

FLT3 Confirmation)

Type 2 FLT3 Inhibitors
(Inhibition of Inactive
Conformation Only)

First Generation
FLT3 Inhibitors

* Midostaurin [80–83]
Lestaurtinib [84,85]

Sunitinib [86]

Sorafenib [87–90]
Pexidartinib [91]
Ponatinib [92–95]

Second Generation
FLT3 Inhibitors

** Gilteritinib [96–101]
Crenolanib [67,102–105]

MRX-2843 [106–108]
Quizartinib [109,110]

* Midostaurin is FDA-approved for adult patients with newly diagnosed FLT3-mutated AML, in combination
with cytarabine plus daunorubicin induction and cytarabine consolidation. ** Gilteritinib is FDA-approved for
adult patients with relapsed/refractory FLT3-mutated AML.
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4.1. First Generation, Type 1 FLT3 Inhibitors
4.1.1. Midostaurin

Midostaurin is a first-generation, type 1 FLT3 inhibitor and was approved by the
FDA in April 2017 for use in adult patients with newly diagnosed FLT3-mutated AML in
combination with cytarabine plus daunorubicin induction and cytarabine consolidation [80].
This approval was based on the results of the RATIFY study (NCT00651261), a phase III
randomized clinical trial that enrolled 717 patients with newly-diagnosed FLT3-mutated
AML [81]. Of these patients, 214 had FLT3-ITD mutations with an AR of >0.7 (high), 341 had
FLT3-ITD mutations with an AR of 0.05–0.7 (low), and 162 had FLT3-TKD mutations [81].
Participants were randomized to either standard induction therapy (daunorubicin and
cytarabine) or consolidation therapy (high-dose cytarabine), with either midostaurin or
placebo, administered on days 8–21 of each cycle. Allogeneic HSCT was carried out at
the discretion of individual investigators. Following consolidation therapy, a maintenance
phase was administered, in which patients received either midostaurin or placebo for
twelve, 28-day cycles.

Adverse events observed in the RATIFY study were relatively similar; the midostaurin
arm experienced higher rates of grade 3, 4, or 5 anemia (92.7% vs. 87.8%; p = 0.03) and
grade 3, 4, or 5 rash (14.1% vs. 7.6%, p = 0.008) [81]. Median overall survival was superior
in the midostaurin arm (74.4 months versus 25.6 months in the placebo arm; p = 0.009), as
was 4-year overall survival (51.4% versus 44.3% in the placebo group). When analyzed
by mutation type, no significant difference was seen between midostaurin and placebo,
however, and no difference was seen in the complete remission (CR) rate (58.9% versus
53.5% in the placebo group; p = 0.15). Median EFS was also superior among those receiving
midostaurin at 8.2 months versus 3.0 months among those receiving placebo (p = 0.002),
with patients achieving a benefit regardless of FLT3 subtype. A subsequent posthoc analysis
specifically analyzed patients with the FLT3-TKD mutation and confirmed the presence of
an EFS benefit at 5 years (45.2% vs. 30.1% on the placebo arm; p = 0.044) but did not show a
superior 5-year OS (65.9% vs. 58.0%; p = 0.244) [82].

Notably, the RATIFY trial included the addition of midostaurin maintenance following
the completion of induction/consolidation therapy (which also included midostaurin),
and as such, it was not possible to directly determine in which phase the addition of
midostaurin achieved the greatest benefit.

The effect of HSCT on patient outcomes among those receiving midostaurin is difficult
to assess directly. Of the patients enrolled in the RATIFY trial [81], 101 in the midostaurin
arm and 81 in the placebo arm underwent HSCT during 1st complete remission. Neither
group reached median overall survival, but results suggested a possible benefit to the
midostaurin cohort (69.8 months to “not reached” versus 21.8 months to “not reached” in
the placebo group; p = 0.07). Additionally, 227 patients received an HSCT following the first
CR, with no treatment effect observed (p = 0.85). When data were censored at the time of
HSCT, a 24.3% lower risk of death was seen in the midostaurin arm, and the 4-year overall
survival rate was 63.7% versus 55.7% in the placebo arm. This difference, however, was not
statistically significant (p = 0.08).

The RADIUS trial sought to more directly establish the use of post-HSCT midostau-
rin [83]. Following allogeneic HSCT performed in 1st CR, 60 adult patients with FLT3-ITD
AML were randomized to receive either midostaurin twice daily in 12, 4-week cycles,
or midostaurin plus “standard of care (SOC)”. Notably, SOC was non-disease directed,
e.g., was comprised of prophylaxis against infection and graft-versus-host disease (GVHD).
Of the 30 patients enrolled in each arm, 16 patients in the midostaurin arm and 14 in the
control arm completed all 12 cycles. The primary study outcome—RFS—was not signifi-
cantly different between arms (89% in the midostaurin arm versus 76% in the SOC arm,
p = 0.27). However, when patients were stratified based on the level of FLT3 inhibition,
those with inhibition above the median (70%) had superior survival (p = 0.048) and a
trend toward reducing relapse (p = 0.06). Conversely, patients with FLT3 inhibition below
the median (e.g., <70% inhibition) had similar survival and relapse risk to the SOC arm
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(p = 0.9 and p = 0.92, respectively). GVHD risk was not increased in the midostaurin arm,
although serious adverse events were markedly more common (57% versus 30% in the
SOC arm) [83].

As of writing, midostaurin is being evaluated in at least 20 AML clinical trials, in-
cluding in both the relapsed/refractory (R/R) and de-novo setting and in combinations
with a number of both novel agents and existing standard chemotherapeutic drugs [111].
Assessment of its use as maintenance therapy is also ongoing.

4.1.2. Lestaurtinib

Lestaurtinib is a first-generation, type 1 FLT3 inhibitor. It was the first FLT3-directed
TKI investigated for use in AML [84], and although it was granted an orphan drug designa-
tion status by the FDA in 2006, it has not subsequently been approved for use in this context
or any other. The clinical trials AML15 and AML17 investigated lestaurtinib in patients
with de novo FLT3 AML [85]. Patients were randomized to receive lestaurtinib versus no
additional therapy (AML15) or lestaurtinib versus placebo (AML17) following the comple-
tion of each course of chemotherapy for a maximum of 4 cycles. Among the 500 included
patients, 74% had FLT3-ITD mutation, 23% had FLT3-TKD mutations, and 2% had both. No
significant differences were identified in 5-year OS or RFS in either study, although patients
who achieved greater than 85% FLT3 inhibition (based on assessment via plasma inhibitory
assay) did demonstrate significantly superior survival and reduced relapse rates [85]. No
active clinical trials assessing its use in AML appear on ClinicalTrials.gov [111].

4.1.3. Sunitinib

Sunitinib is a first-generation, type 1 FLT3 inhibitor. It does not currently carry FDA
approval for use in AML, but it is approved for use in gastrointestinal stromal tumors,
renal cell carcinomas, and pancreatic neuroendocrine tumors. Sunitinib’s use in FLT3-
mutated AML has been investigated in a phase I/II clinical trial [86], which paired it with
standard 7 + 3 cytarabine/daunorubicin induction and cytarabine consolidation, either
as a continuous daily regimen or on days 1–7 of each chemotherapy cycle. Among the
22 included patients, 3 experienced dose-limiting toxicities, and 13 (59%) demonstrated
CR/CR with incomplete blood count recovery (CRi; 8/14 with FLT3-ITD and 5/8 with FLT3-
TKD). Of the 5 patients who relapsed on treatment, 4 had lost their initial FLT3 mutations.
No active clinical trials assessing its use in AML appear on ClinicalTrials.gov [111].

4.2. First Generation, Type 2 FLT3 Inhibitors
4.2.1. Sorafenib

Sorafenib is a first-generation, type 2 FLT3 inhibitor. At present, it carries FDA ap-
provals for use in metastatic hepatocellular and renal cell carcinomas but not for any
AML-related indication. The primary clinical study evaluating its efficacy, SORAML,
enrolled 276 patients and randomized them to receive 2 cycles of daunorubicin plus cytara-
bine induction therapy, followed by three cycles of cytarabine consolidation with either
sorafenib or placebo being added to all 5 cycles, and as maintenance for a subsequent
duration of 12 months [87]. Notably, patients were not required to have FLT3-mutated
AML, and of the included participants, 46 (17%) had FLT3-ITD mutations, with a median
AR of 0.46.

Among all study participants, SORAML identified superior median EFS (21 months
versus 9 months in the placebo arm) to a 3-year EFS rate of 40% versus 22%, p = 0.013 [87].
When specifically analyzing patients with FLT3-ITD AML, of whom an equal number
were treated on each study arm, non-significant improvements were seen in RFS (median
18 months versus 6 months) and OS (not reached versus 19 months). A number of serious
adverse events were reported—in particular, grade 3 or greater diarrhea, rash, fever, and
cardiac events were all more common in the sorafenib arm. Out of a total of 134 patients
receiving the drug, 42 patients (31.3%) withdrew from the sorafenib arm for toxicity-related
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reasons; dose reductions and drug interruptions were needed in 37 patients (27%) and
50 patients (37%), respectively.

Long-term follow-up data from SORAML has also recently been released [88]. At
5 years, EFS remained superior among patients treated with sorafenib (41% versus 27% in
the placebo arm, p = 0.011), as did RFS (53% versus 36% in the placebo arm, p = 0.035). In
patients with FLT3-ITD mutations, 5-year outcomes including EFS, RFS, and OS all failed
to achieve statistical significance, but showed clear trends towards improved outcomes:
34.8% versus 8.7% (p = 0.084), 42.9% versus 22.7% (p = 0.172), and 59.7% versus 39.1%
(p = 0.178), respectively.

The phase II randomized ALLG AMLM16 clinical trial has analyzed the use of so-
rafenib in 99 newly diagnosed patients with FLT3-ITD AML [89]. Sorafenib was admin-
istered during induction (idarubicin plus cytarabine) and consolidation (idarubicin plus
etoposide) as well as continued for 12, 28-day cycles following completion of therapy.
Although no significant differences were observed between study arms regarding EFS or
OS, a trend was seen towards superior outcomes in patients with FLT3-ITD ARs greater
than 0.7.

Sorafenib’s efficacy as post-HSCT maintenance therapy has also been evaluated in
several studies [90,112]. The SORMAIN study was a phase II randomized clinical trial that
enrolled 83 adult patients with FLT3-ITD AML and assigned them to either 24 months
of placebo or sorafenib following the completion of HSCT [90]. A significant survival
benefit was observed among patients receiving sorafenib: 24-month OS and RFS were
85% and 90.5% in the sorafenib arm and 53.3% and 66.2% in the placebo arm, respectively.
These differences were significant, with p = 0.002 and p = 0.007, respectively [87]. Com-
pared to the SORAML [87] study, SORMAIN [90] identified similar adverse events. A
total of 21 of the 43 patients (48.8%) receiving sorafenib required dose reductions, and
9 patients (22%) discontinued the drug for toxicity-related reasons. Grade 3 or greater
diarrhea, skin toxicity, and electrolyte derangements were all seen at higher rates in the
treatment arm. One additional phase III randomized clinical trial enrolled 202 patients
who underwent HSCT for FLT3-ITD AML, 100 of whom received sorafenib [112]. Patients
received maintenance with sorafenib or placebo from days 30 to 60 following HSCT. Those
receiving sorafenib experienced significantly lower rates of relapse than those receiving
placebo; 1-year cumulative relapse rates were 7% and 24.5%, respectively (p = 0.001), with-
out significant differences in acute or chronic GVHD, infection risk, or hematologic toxicity.
2-year OS and 2-year leukemia-free survival (LFS) were also significantly improved in the
sorafenib versus placebo arm, at 82.1% versus 68.0% (p = 0.012) and 78.9% versus 56.6%
(p < 0.0001), respectively.

The effect of FLT3-ITD mutation heterogeneity on response to FLT3 inhibition has
recently been analyzed [53]. Although the cited study sought to analyze FLT3 inhibitors
in general, 84% of the included patients (131/156) received sorafenib, and only a small
number received other FLT3 inhibitors, midostaurin (9/156) or quizartinib (16/156). No
significant difference in OS or RFS was noted based on the number or length of FLT3-ITD
mutations, nor on the AR, or on the presence of a co-occurring NPM1 mutation.

As of writing, sorafenib is being evaluated in at least 15 AML clinical trials across a vari-
ety of settings, including in both R/R and de-novo FLT3-mutated AML and in combinations
with a number of both novel agents and existing standard chemotherapeutic drugs [111].

4.2.2. Pexidartinib

Pexidartinib is a first-generation, type 2 FLT3 inhibitor. Although it does not carry
approval for AML, pexidartinib was approved by the FDA in August 2019 for use in
adult patients with symptomatic tenosynovial giant cell tumors [80]. Pexidartinib was
designed specifically to combat the emergence of resistance to FLT3 inhibition via the
acquisition of F691 mutations, especially the F691L mutation [91]. The clinical relevance
and development of FLT3 inhibitor resistance of this and other mutations are discussed in
a subsequent section of this review. Pexidartinib has been evaluated in a phase I/II clinical
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trial of 90 patients with R/R AML with FLT3-ITD mutations [91]. The drug was safe and
relatively well tolerated and displayed a 21% overall response rate with an 11% CR rate;
6 patients were able to subsequently undergo HSCT [91]. No active clinical trials assessing
its use in AML appear on ClinicalTrials.gov [111].

4.2.3. Ponatinib

Ponatinib is a first-generation, type 2 FLT3 inhibitor. It carries a relatively broad FDA
approval for use in adults with chronic myeloid leukemia (CML) in the chronic phase,
accelerated phase, or blast phase that has not responded to prior tyrosine kinase inhibitor
therapy, as well as in adults with Philadelphia chromosome-positive acute lymphoblastic
leukemia (Ph + ALL) which is resistant or intolerant to prior TKI therapy. This approval
partially reflects its wide spectrum of activity, including against ABL (ABL proto-oncogene
1, non-receptor tyrosine kinase), c-KIT, C-SRC, FGFR1 (fibroblast growth factor receptor,
LYN, PDGFR (platelet-derived growth factor receptor), and VEGF2R (vascular endothelial
growth factor receptor) [18].

Ponatinib is able to partially inhibit F691L mutations [92] and was initially proposed
as a possible agent to overcome quizartinib resistance via this route. Several early-phase
clinical trials have assessed its use in patients with FLT3-ITD AML in the R/R setting as
monotherapy [93,94] and in combination with azacitidine (the PON-AZA study) [95]. The
drug was well-tolerated in the included patients, with a similar safety profile to that seen
in CML and response rates approaching 50% in both trials.

Several clinical trials of ponatinib are ongoing in the AML context, including as-
sessments of its use for relapse prevention following stem cell HSCT [113], as part of
multiagent therapy for Philadelphia chromosome-positive AML [114], and in children with
R/R disease [115]. As of writing, it has not been approved for use in AML, however.

4.3. Second Generation, Type 1 FLT3 Inhibitors
4.3.1. Gilteritinib

Gilteritinib is a highly selective, second-generation, type 1 FLT3 inhibitor [96]. It
also acts to inhibit the AXL tyrosine kinase receptor, which has been implicated in the
development of resistance to FLT3 inhibitors [96,97]. Gilteritinib has shown efficacy in
both the FLT3-ITD and -TKD contexts [98,99], and was approved by the FDA in November
2018 for use in adult patients with R/R FLT3-mutated AML [80]. This approval was based
largely on the success of the phase III randomized ADMIRAL trial [99]. The study included
371 patients, of whom 247 were assigned to receive gilteritinib monotherapy and 124 were
assigned to receive salvage chemotherapy (mitoxantrone, etoposide, and cytarabine, or
fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin, or low-
dose cytarabine, or azacitidine). Eligible patients underwent HSCT, followed by post-
HSCT gilteritinib maintenance therapy. Patients with FLT3-ITD (328 patients; 88%), -TKD
(31 patients; 8%), or both (7 patients; 2%) were eligible for inclusions; the median AR was
0.77, with patients above this threshold being considered FLT3-ITD high, versus those
below who were considered FLT3-ITD low.

Results showed a significant survival benefit among patients treated with gilteritinib—
median OS was 9.3 months vs. 5.6 months for patients receiving chemotherapy (p < 0.001).
One-year survival rate was 37.1% on the gilteritinib arm versus 16.7% in the chemotherapy
group. These benefits over chemotherapy were maintained whether chemotherapy was
low or high intensity and in patients with either a high or low AR. A higher proportion
of patients treated with gilteritinib achieved CR with either full or partial hematologic
recovery, at 34.0%, versus 15.3% in the chemotherapy arm (risk difference 18.65; 95% CI,
9.8–27.4%). Response rates and remission duration were similar irrespective of FLT3 muta-
tions (e.g., TKD or ITD) and, in both cases, were superior to chemotherapy. Subsequently,
study results have been updated and continue to show similar overall results, persisting to
at least 2 years following completion of therapy [100].
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The safety profile was quite good—notably, more patients reported serious adverse
events on the chemotherapy arm versus the gilteritinib arm. Most grade 3 or greater adverse
events among patients receiving gilteritinib were hematological in nature (e.g., febrile
neutropenia (45.9%), anemia (40.7%), thrombocytopenia (22.8%)), or involved alanine
aminotransferase aspartate aminotransferase. Prolonged QT interval was observed in
4.9% of patients, but only 0.4% (one patient) had a QT greater than 500 msec. Long-term
follow-up data did not reveal any additional safety signals [100].

Beyond its use in the R/R setting, gilteritinib has also been investigated in a number
of trials involving de-novo FLT3-mutated AML. In one such phase 1 study, gilteritinib
was added to standard 7 + 3 induction and high-dose cytarabine consolidation chemother-
apy and continued as maintenance monotherapy [101]. The combination was safe and
well-tolerated, with strong evidence of efficacy observed. Preliminary data are available
for an ongoing phase III clinical trial comparing gilteritinib versus azacitidine versus
gilteritinib plus azacitidine in patients ineligible for intensive chemotherapy [116]. A CR
rate of 67% (10/15 patients) has been reported, with accrual ongoing and no new safety
signals reported.

Multiple randomized clinical trials of gilteritinib are ongoing and aim to assess its
effectiveness as monotherapy (NCT02752035; phase III) [117], as maintenance therapy with
(NCT02997202; phase III) [118] or without (NCT02927262; phase II) [119] preceding HSCT.
Additionally, the use of induction/consolidation midostaurin versus gilteritinib is being
directly compared [120].

4.3.2. Crenolanib

Crenolanib is a second-generation, type 1 FLT3 inhibitor. Although it does not cur-
rently carry an FDA designation or approval for AML or any other disease, its development
is ongoing. In R/R FLT3-mutated AML, preliminary results of an ongoing clinical trial
have shown crenolanib monotherapy to have reasonable efficacy, particularly in FLT3-
inhibitor-naive patients (39% CR and median survival of 8 months), with a tolerable safety
profile [102]. Additionally, in this setting, the combination of crenolanib plus mitoxantrone
and cytarabine was shown to be safe in a small cohort of 8 patients, 6 of whom achieved
CR [103]. Crenolanib has also been paired with intensive salvage chemotherapy, and over-
all response rates of 50% were achieved without major adverse events [104]. In patients
with de novo FLT3-mutated AML, a phase II trial of crenolanib combined with standard
induction/consolidation therapy involving 29 patients achieved an 83% (24/29) CR rate;
2 patients later relapsed [105]. Finally, post-HSCT maintenance therapy appears to be both
safe and well-tolerated, with further phase III studies planned [121].

At present, crenolanib is being evaluated in a phase III randomized clinical trial com-
paring it to midostaurin for use in newly diagnosed patients with FLT3-mutated AML [122],
as well as in a phase III randomized clinical trial comparing salvage chemotherapy with or
without crenolanib for patients with R/R FLT3-mutated AML [123].

4.3.3. MRX-2843

The development of MRX-2843 followed that of UNC1666—both compounds are
type 1 inhibitors of MERTK (MER proto-oncogene, tyrosine kinase) and FLT3. Briefly,
MERTK is a receptor tyrosine kinase that is overexpressed in the vast majority of AML
samples, and inhibition of this receptor has been shown to reduce pro-survival/anti-
apoptotic signaling [106]. UNC1666 showed promising in vitro activity but had poor
bioavailability, and clinical development has not proceeded further [107]. MRX-2843 was
therefore developed to improve upon this. Both in vitro and murine models have shown it
to effectively abrogate FLT3 signaling, and it is also capable of inhibiting the quizartinib-
resistance-inducing mutations D835 and F691 [108]. On the basis of these results, MRX-2843
is currently being evaluated in a phase I study of patients with R/R AML, of whom a subset
will have FLT3-ITD mutations [124]. One additional phase I/II study is also occurring in
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R/R AML, with patients enrolled in the phase II portion of that trial being required to have
either FLT3-ITD or TKD mutations [125].

4.4. Second Generation, Type 2 FLT3 Inhibitors
Quizartinib

Quizartinib is a second-generation, type 2 FLT3 inhibitor. In the AML context, it is
currently approved for use in Japan but does not presently carry FDA approval in the US;
although it was designated a breakthrough therapy in August 2018, the FDA declined to
approve its use in FLT3-mutated AML in June 2019 [80,126]. This was based largely on
concerns regarding cardiotoxicity, as well as concerns regarding the magnitude of benefit
demonstrated in the QuANTUM-R clinical trial [109]. This phase III study randomized
patients with R/R FLT3-ITD AML to single-agent quizartinib or to salvage chemotherapy
using any of the following: low-dose cytarabine, or mitoxantrone/etoposide/cytarabine,
or fludarabine/cytarabine/idarubicin granulocyte colony-stimulating factor. In the 367 en-
rolled patients, OS was superior for quizartinib versus for chemotherapy (p = 0.02), but the
duration was relatively short, with median overall survival of 6.2 months versus 4.7 months
in the chemotherapy arm. Intriguingly, 32% of the patients on the quizartinib arm were
able to proceed to HSCT, versus 11% in the salvage chemotherapy group.

One possible explanation for the relatively disappointing results of the QuANTUM-R
study [109] is the use of quizartinib monotherapy instead of as an addition to the existing
standard of care. The results of the current phase 3 randomized clinical trial “QuANTUM
First” (NCT02668653) [127] will therefore be intriguing. The trial is assessing quizartinib’s
use in conjunction with standard of care chemotherapy, and as continuation therapy, in
patients with newly diagnosed FLT3-ITD AML.

The cardiotoxicity of quizartinib has been of concern and factored into the FDA’s
decision not to approve it. Prolongation of the QT interval, in particular, has been reported,
occurring in up to 17% [110]–22% [109] of patients; however, the incidence of grade 3 or
greater QT prolongation appears to be under 5% [109,110]. Other than this notable toxicity,
however, quizartinib appears to be safe and well-tolerated.

5. FLT3 Inhibition in Pediatric FLT3-Mutated AML

Pediatric patients with AML generally have a superior prognosis to adult patients
with equivalent mutations, and this is true of FLT3 mutations. Compared to children
with FLT3-WT, however, FLT3-ITD carries a poorer prognosis: prior to the advent of FLT3
inhibitors, progression-free survival (PFS) was approximately 33% at 4 years, with relapse
rates of up to 35% [28,128]. FLT3-ITD is therefore classified as a high-risk form of AML
by cooperative groups such as the Children’s Oncology Group (COG), and consolidative
allogeneic HSCT is recommended [128]. The integration of FLT3 inhibition into the modern
treatment paradigm has therefore been a major advance, although many difficulties remain
in securing access to these agents outside of specific clinical trials [129].

The COG phase III clinical trial AAML1031 included sorafenib, a first-generation
FLT3 inhibitor, in all chemotherapeutic courses and as maintenance therapy for one year
following HSCT. Patients were considered to be FLT3-mutated if they carried an FLT3-ITD
mutation with an AR of 0.4 or greater. Significant improvements in outcome were seen,
including a 3-year EFS of 58% (versus 34% in a comparable historical cohort; p = 0.007)
and a reduction in 3-year risk of relapse from 52.2% in the historical control arm to 18.2%
p = 0.006) [130,131]. However, being relatively non-specific, sorafenib was poorly tolerated,
and only 25% of children with FLT3-ITD AML received maintenance sorafenib according
to the study protocol; frequent dose modifications, dose holds, and drug discontinua-
tion occurred [130,131]. Further, significant cardiotoxicity resulted in the study being
temporarily paused [52,130,131].

Midostaurin, another first-generation FLT3 inhibitor, and quizartinib, a second-generation
FLT3 inhibitor, have also been investigated in the pediatric setting. Although data are
currently limited to a single phase I/II trial of midostaurin [132] and a single phase I
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trial of quizartinib [133], both of which occurred in the R/R setting, initial results appear
promising, and further clinical trials are underway [134,135]. Crenolanib has also been
trialed in a small number of pediatric patients in combination with sorafenib [136]. The
combination was well tolerated in this pilot study, which included 9 children with R/R
FLT3-ITD AML and achieved complete remissions in 3 patients. No ongoing pediatric
studies appear on ClinicalTrials.gov [111].

Gilteritinib, a second-generation FLT3 inhibitor, is currently undergoing evalua-
tion in children with FLT3-mutated AML as well, but definitive data are not yet avail-
able. The COG’s phase III AAML1831 clinical trial includes children with newly diag-
nosed FLT3-mutated AML (including both FLT3-ITD with an AR of >0.1 and FLT3-TKD)
(NCT04293562) [60]. Gilteritinib’s efficacy is also being assessed in the context of pediatric
R/R FLT3-ITD AML (NCT04240002) [137].

6. CD33+ Targeting, Consolidative HSCT, and Integration of FLT3 Inhibition

FLT3-ITD mutations are associated with increased expression of CD33 [138]. Briefly,
CD33 is a marker of myeloid differentiation present on the cell surface of malignant blasts
in most cases of AML. It is also a targetable antigen: gemtuzumab ozogamicin (GO) is a
drug-antibody conjugate comprised of the DNA-binding cytotoxin calicheamicin and a
humanized IgG4, anti-CD33 monoclonal antibody [58]. Its integration into AML therapy
has resulted in improved outcomes among patients with newly diagnosed AML, where it
has been paired with standard chemotherapy [58]. CD33 expression and response to GO
appear to be linked, such that patients with high levels of CD33 experience a pronounced
increase in EFS and a reduction in relapse rate; these benefits are seen across AML risk
groups [139]. When combined with consolidative HSCT, patients who had FLT3-ITD AML
and who received GO appear to have a superior prognosis compared to other high-risk
patients without this mutation, even in the absence of FLT3 inhibitor therapy [58]. Moreover,
patients with FLT3-ITD AML who receive GO have superior outcomes as compared to
patients who do not receive it; this difference is further increased when paired with a
consolidative HSCT, such that patients with newly diagnosed FLT3-ITD AML who receive
both GO and an HSCT have the best outcomes [140].

The combination of FLT3 inhibition (using gilteritinib), HSCT, and GO is currently
being tested in the COG’s phase III AAML1831 clinical trial [60]. Preliminary results are
also available for a recent phase I study of midostaurin plus GO in newly diagnosed FLT3-
mutated AML. Although 5/11 patients (45%) experienced at least one serious adverse
event, 10/11 (91%) of patients achieved CR [141].

7. Resistance to FLT3 Inhibition—And How to Overcome It

Despite their undeniable promise in treating patients with FLT3-mutated AML, the
deployment of FLT3 inhibitors has been met with several challenges. Perhaps the most
important of these is the emergence of resistance to FLT3 inhibition. This may occur via
any of a number of mechanisms, but as the understanding of these mechanisms continues
to expand, novel methods of combatting FLT3 inhibitor resistance are also emerging. The
following section has been divided into mechanisms that are intrinsic to AML cells and
to those which are emergent, e.g., those which are selected for and may develop during
therapy. This is, however, something of a false dichotomy as it belies the complex interplay
between the two routes to resistance.

7.1. Intrinsic Mechanisms of Resistance

Although FLT3 inhibitors target FLT3-mutated AML, their disruption of signaling via
wild-type FLT3 is relatively poor by comparison. Physiologic activation via FLT3 receptor—
FLT3 ligand pairing allows downstream pathways to continue to function [142]. Similarly,
even when peripheral circulating blasts are no longer detectable, blasts sequestered within
the bone marrow are minimally affected, if at all. It appears that this protection is mediated
at least partially via the FLT3 ligand, the presence of which has been shown to increase
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the inhibitory concentration necessary to disrupt FLT3 signaling by at least 50% [143].
FLT3-mutated blasts retain the ability to respond to signaling via the FLT3 ligand, and this
signaling impedes the effectiveness of FLT3 inhibitors [144].

Pharmacogenomics may also play a role in both resistance and toxicity. As has been
noted, a key aspect of FLT3 inhibitor efficacy is the degree to which FLT3 signaling is
disrupted, which is itself reflective of drug concentration in vivo. However, FLT3 inhibitors
are metabolized by hepatic cytochrome P450 A4 (CYP3A4) [145]. This has direct clinical
relevance—drugs that inhibit CYP3A are in widespread use, most notably in this pop-
ulation via the azole class of antifungals [146,147]. Moreover, CYP3A4 polymorphisms
which enable rapid or poor metabolism may either diminish efficacy or increase toxicity,
respectively. Beyond hepatic expression, however, CYP3A4 has been identified in the bone
marrow stroma, where it impairs the activity of FLT3 inhibition in a potentially meaning-
ful fashion [148]. The authors of the cited study showed, intriguingly, that pairing FLT3
inhibitors with CYP3A4 inhibitors (clarithromycin, in this case) significantly abrogates this
mechanism of resistance and may be a promising strategy [148].

The bone marrow stromal niche may therefore play an outsized and surprising role
in response to FLT3 inhibitor therapy. Beyond FLT3 ligand expression [143] and CYP3A4
expression [148], it appears that—unlike peripheral circulating blasts—bone marrow blasts
experience cell-cycle arrest rather than apoptosis in response to FLT3 inhibition [143].
Signaling via the RAS/RAF/MEK/ERK pathway appears critically important in the main-
tenance of these FLT3-mutated blasts [143]. However, the addition of pathway-specific
inhibitors (such as the MEK inhibitor trametinib) may therefore provide a therapeutic
benefit, as has been suggested by in vitro data [143]. This observation also parallels and
partially explains the earlier observation that activating RAS mutations facilitated resistance
to FLT3 inhibition [149].

7.2. Emergent Mechanisms of Resistance

Perhaps the most intuitively understood mechanism of resistance is the emergence of
mutations that diminish the function of FLT3 inhibitors; this is directly analogous to the
emergence of antibiotic resistance among bacterial species. The first such case was reported
in conjunction with midostaurin therapy; in that case, the emergence of a single amino acid
substitution within the tyrosine kinase domain (N676K) was sufficient to facilitate resistance
in a patient with FLT3-ITD AML [150]. Amino acid substitutions at F691 and D835 appear
to be more common than at N676 [79,151]. Even in patients with FLT3-ITD AML, the
presence of these point mutations—occurring outside the juxtamembrane domain—disrupt
inhibitor binding to their target sites. It is unclear whether the emergence of leukemic clones
bearing these mutations reflects de novo acquisition, selection pressure on a previously
undetected minor clone, or the presence of a low-level co-occurring TKD mutation within
the predominant FLT3-ITD clone. It, therefore, seems possible that the heterogeneity in
patient response to FLT3 inhibition may be partially reflective of the heterogeneity within
the molecular landscape of FLT3 mutations.

Beyond mutations that disrupt target-site interactions, it appears that simple exposure
to FLT3 inhibitors may be capable of rapidly inducing resistance. FLT3 inhibitors have been
shown experimentally to induce increased expression of FLT3 in as little as 4–8 h [96,152].
Intriguingly, the novel agent fimepinostat (CUDC-907), a dual PI3K and histone deacetylase
(HDAC) inhibitor, has been shown to be capable of downregulating FLT3 [153]. Experimen-
tally, the combination of fimepinostat plus gilteritinib exerts synergistic antileukemic effects
partially mediated via the abrogation of FLT3-inhibitor-induced FLT3-upregulation [152].
Although not yet deployed clinically, this combination raises the possibility of directly
targeting FLT3 resistance by blocking the mechanisms by which it may arise.

Apart from mutations in the targeted receptor and altered expression of that receptor,
leukemic cells are also able to escape FLT3 inhibition by effectively bypassing reliance upon
this receptor. Activation of the FLT3 receptor results in increased signaling via multiple
signal transduction pathways associated with cell growth, survival, and proliferation,
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including RAS/RAF/MAPK/ERK, JAK/STAT, and PI3K/AKT [14,28]. However, these
pathways do not rely solely upon FLT3 for their activation and are activated by a num-
ber of cell-surface receptors. One such receptor is AXL, a member of the TAM receptor
tyrosine kinase family (somewhat recursively named; TAM standing for “Tyro3, Axl and
MerTk”). AXL is activated by growth arrest-specific gene 6 (GAS6) and, like FLT3, pro-
motes cell survival and proliferation via multiple downstream pathways, many of which
overlap or are the same as those activated by FLT3 [154]. AXL has been implicated in
FLT3 inhibitor resistance: signaling has been shown to be upregulated in the presence of
quizartinib and midostaurin [154]. Conversely, AXL blockade synergistically enhances
the antileukemic activity of FLT3 inhibitors [152,154]. This may partially explain the dis-
cordant study results observed between gilteritinib versus quizartinib. The ADMIRAL
trial [99] and the QuANTUM-R trial [109] were similar insofar as their comparison of FLT3
inhibitor monotherapy to salvage chemotherapy in the R/R FLT3-AML setting. However,
gilteritinib inhibits both AXL and FLT3 [152], and this difference may partially account for
the superior outcomes seen with that agent. Further downstream, fimepinostat, discussed
previously, has also been shown to exert synergistic antileukemic effects when combined
with FLT3 inhibition via blockade of both the JAK/STAT and RAS/RAF/MEK/ERK path-
ways [152]. These results suggest the utility of multi-pathway inhibition in overcoming
FLT3 inhibitor resistance.

FLT3′s anti-apoptotic effects are partially mediated via its influence on the B-cell
lymphoma 2 (BCL-2) family of proteins. Briefly, this family, named for the eponymous BCL-
2 protein, is critical to the regulation of the mitochondrial membrane potential (MMP) [155].
Disruption or loss of MMP results in apoptosis via the release of proapoptotic proteins
previously sequestered within the mitochondrial membrane, which, upon their release,
initiate a cascade resulting in the eventual destruction of double-stranded DNA [155].
The members of the BCL-2 family maintain a tightly regulated balance between pro-and
anti-apoptotic proteins—disruption of this balance may tilt a cell either towards apoptosis
or provide it with a potent means of resisting pro-apoptotic signaling [155].

BCL-2 inhibition is an emerging therapeutic area, and effective counters to this resis-
tance mechanism exist. Venetoclax is a BH3-mimetic and selective inhibitor of BCL-2 [156].
It was granted accelerated approval by the FDA in November 2018 for use as part of
first-line treatment of de novo AML adults aged 75 years or older or those unable to
tolerate standard, intensive chemotherapy [156]. Venetoclax, via its mechanisms as a
BCL-2 inhibitor and BH3 mimetic, effectively tilts the intracellular balance irrevocably
towards apoptosis [155]. This agent, when combined with FLT3 inhibition, shows notable
antileukemic synergy in vitro via disruption of BCL-2 signaling, somewhat restoring, in
effect, the pro/anti-apoptotic balance disrupted by FLT3 mutations. Somewhat elegantly,
ERK induction by venetoclax may be one mechanism of resistance to that drug, but its
upregulation is entirely abrogated via the addition of FLT3 inhibitors [157].

Venetoclax also synergizes well with a wide range of other antileukemic agents cur-
rently in development for AML, such as vosaroxin (a second-generation topoisomerase
II inhibitor and DNA intercalating agent) [158], fimepinostat (a dual inhibitor of phos-
phatidylinositol 3-kinases (PI3K) and histone deacetylases (HDACs)) [159], selinexor (an
exportin 1 (XPO1) inhibitor) [160], and SLC-391 (a highly selective inhibitor of tyrosine-
protein kinase receptor UFO; AXL) [161]. This raises an intriguing possibility: the addition
of venetoclax could synergistically enhance the efficacy of multiple therapeutic agents
simultaneously. Although this review has focused on FLT3-mutated AML, venetoclax ap-
pears to be agnostic insofar as its effects on any particular mutation; patients with NPM1,
DNMT3A, FLT3-ITD, and SRSF2 mutations have all demonstrated excellent responses. As
discussed above, resistance to FLT3 inhibition may develop via the bypassing of any one
point of disruption. Simultaneous inhibition of multiple pathways is a means by which re-
sistance could therefore be abrogated. Having been recently integrated into frontline AML
trials [162–164], the combination of venetoclax plus FLT3 inhibition is currently undergoing
evaluation in multiple clinical trials for the treatment of FLT3-mutated AML [165–167].
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8. Conclusions and Future Directions

FLT3 inhibitors have proliferated rapidly, as has the advent of clinical trials assessing
their use in FLT3-mutated AML. Although this disease remains a particularly deadly
malignancy, FLT3 inhibitors are beginning to change the treatment paradigm and are
providing clear improvements in patient outcomes. However, many challenges remain,
and their full integration into the FLT3-mutated AML treatment paradigm will depend on
overcoming these obstacles.

The development of resistance, as discussed above, will continue to pose a threat
and require ongoing innovation. FLT3 inhibitor monotherapy appears to be particularly
vulnerable, and combinatorial approaches are likely to be necessary. A related problem is
the heterogeneity of FLT3 mutations: FLT3 inhibitors are not monolithic, and thoughtful
selection of the optimal agent to target a patient’s mutation may become necessary to
optimize outcomes. Recent literature has also highlighted the importance of co-occurring
mutations and underscored the relatively lessened importance of the FLT3-ITD AR in this
context; certainly, the AR is superseded by the presence of specific co-occurring mutations.

At present, it is not possible to directly contrast the FLT3 inhibitors, as head-to-head
trials are lacking. However, a number of existent clinical trials are seeking to do precisely
that. It is to be hoped that clear efficacy signals will emerge, so as to guide the selection
of the most effective agents. A growing number of FLT3 inhibitors are available, with
additional agents in development, and as the landscape becomes more crowded, it will
become increasingly necessary for clinicians to decide among therapeutic options. Similarly,
although the side-effect profiles of the FLT3 inhibitors are relatively similar, they are not
identical—a situation typified by the apparent heightened arrhythmogenic potential of
quizartinib as compared to other agents of the class. Although much work remains to be
done, with the advent of FLT3 inhibitors, it is to be hoped that these lesions may soon
lose their prognostic significance. This is especially true as these agents become more
selective, are moved to frontline therapy, and are integrated with other therapies that turn
the presence of FLT3 mutations into an advantage, such as has recently been seen with GO.

The ever-growing understanding of the molecular drivers of malignancy has rev-
olutionized cancer therapy. As these lesions become targetable, patient outcomes have
markedly improved. Although much work remains, it is to be hoped that FLT3-mutated
AML will soon join CML and APL as diseases that, while once near-uniform in their
lethality, are now readily treatable via the use of precisely targeted therapies.
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