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Of the chronic diseases affecting grade-school children, asthma
is the most common and accounts for the greatest number of
school days missed. Moreover, it can influence family dynamics
and function in other ways, and unfortunately, it can also be
associated with mortality, particularly in the inner-city
environments of the United States. Thus understanding factors
that lead to its development in early life is essential in
developing strategies aimed at primary prevention. Two risk
factors that have been identified by a number of investigators
include the development of allergic sensitization and wheezing
respiratory tract illnesses caused by viruses and bacteria, either
659
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alone or in combination. Both of these factors appear to exert
their influences within the first few years of life, such that
asthma becomes established before the child enters grade school
at age 5 to 6 years. Therefore, because both allergic sensitization
and viral and bacterial illnesses can occur in children who do
not have asthma, it is paramount to identify genetic and
environmental factors that activate, interact with, and/or direct
the immune system and components of the respiratory tract
along pathways that allow asthma to become established and
expressed clinically. (J Allergy Clin Immunol 2016;137:659-65.)

Key words: Asthma, viruses, bacteria, childhood, rhinovirus, respi-
ratory syncytial virus, allergic sensitization, inflammation

Discuss this article on the JACI Journal Club blog: www.jaci-
online.blogspot.com.

Of the various environmental risk factors demonstrated to be
influential in the inception of childhood asthma, the development
of allergic sensitization in early life,1 followed by wheezing res-
piratory tract illnesses2 caused by infection with various respira-
tory pathogens, appear to be the most consistent and
reproducible.3 It has been shown that allergic sensitization has
its greatest effect on recurrent wheezing and asthmawhen the pro-
cess occurs in the first few years of life4-6 and when it involves
development of sensitization to multiple aeroallergens.5,6 Thus
the strength of its influence appears not to be binary but more
quantitative and developmental in nature.
Preschool wheezing illnesses with both viral7-9 and bacte-

rial10-12 pathogens are also associated with recurrent wheezing
and increased asthma risk. Historically, Respiratory syncytial vi-
rus (RSV) has been considered the most important respiratory
pathogen in producing these long-term lower respiratory
sequelae,13 and more recent data provide additional support for
this relationship.14,15 Furthermore, animal studies provide mech-
anistic evidence bywhich RSV can cause asthma.16 Treatment tri-
als in preterm infants with palivizumab, an anti-RSV mAb, have
demonstrated significant reductions in the development of recur-
rent wheezing.17

With the advent of molecular virology technology during the
past few decades, human rhinovirus has been increasingly
recognized as a major etiologic factor in preschool wheezing
illnesses and a highly significant link with the risk of childhood
asthma. Indeed, rhinovirus-induced wheezing illnesses are asso-
ciated with an approximately 10-fold increase in asthma risk by
6 years of age,7 and potential mechanisms underlying these devel-
opments have been described.18 Certain rhinovirus species (eg,
A and C > B) might be more virulent, thereby causing more lower
respiratory tract illnesses19-22 and increased morbidity, which
result in emergency department visits and hospitalization.20,23

Moreover, the development of recurrent lower respiratory tract
symptoms after rhinovirus C infections can occur more frequently
in subjects with demonstrable allergic sensitization.24

Airway bacteria in early life also influence asthma risk.
Colonization with common respiratory pathogens, such as Strep-
tococcus pneumoniae, Moraxella catarrhalis, and Haemophilus
influenzae, in early life signals an increased risk for recurrent
wheeze and early childhood asthma, and these same pathogens
are associated with acute wheezing illnesses in young children.
New tools to assess the airway microbiome are shedding
additional light on relationships between beneficial versus patho-
genic microbes and the risk for acute wheezing and asthma.
This article will expand on the contributions of allergic

sensitization and viral and bacterial respiratory tract wheezing
illnesses on increased risk for both recurrent preschool wheezing
and childhood asthma. When possible, we will emphasize data
generated in long-term longitudinal studies that have facilitated
etiologic and epidemiologic characterizations.
VIRUSES, BACTERIA, AND ASTHMA

DEVELOPMENT

Early-life viral infections and childhood asthma
Our understanding of the role of viral infections in wheezing

has expanded with the development and evolution of molecular
viral diagnostics. Results from studies using PCR and sequenced-
based tests indicate that there is a long list of viruses that can
cause upper and lower respiratory tract illnesses (Table I),8,25-29

and the clinical manifestations of infections with these different
viruses are quite similar. Infections can lead to no symptoms at
all, cold symptoms, or lower respiratory syndromes, such as pneu-
monitis, bronchiolitis, and acute wheezing illnesses. The risk of
asthma seems to be most closely associated with the occurrence
and frequency of virus-induced wheezing illnesses.7 Other clin-
ical manifestations of acute viral illnesses that are associated
with increased risk of asthma include fever and pneumonitis.4

Nearly all wheezing illnesses in the first few years occur during
viral respiratory tract infections, and the viruses most frequently
associated with wheezing illnesses are RSV and rhinoviruses.28

Other viruses that are commonly detected during wheezing ill-
nesses include metapneumovirus, coronaviruses, parainfluenza vi-
ruses, and bocaviruses. Coinfections with more than 1 virus are
most commonly confirmed in infants and can be associated with
more severe symptoms.8,30 Prolonged illnesses can be caused by
sequential infections withmore than 1 virus, infections with a virus
followed by a bacterial pathogen, or, less commonly, prolonged
infection with a single virus.31 Adenoviruses are more likely than
other respiratory viruses to cause prolonged viral shedding.32
RSV
RSV is an enveloped, nonsegmented, negative-strand RNA

virus of the family Paramyxoviridae, and RSV infections are
ubiquitous in infancy.33 RSV has 2 main antigenic groups (A and
B). In general, RSV-B infections tend to cause less severe ill-
nesses, but virulence varies considerably with individual strains
of RSV, even within the antigenic groups. Most RSV infections
cause mild or asymptomatic illnesses; it is estimated that only
9% of infections lead to outpatient clinic visits, and 5% or less
of infections lead to hospitalization.34 Even so, RSV infections
are the most common cause of bronchiolitis in the first year of
life. Risk factors for RSV-induced bronchiolitis include prematu-
rity; comorbid conditions affecting the heart, lungs, or immune
system; and age and season of birth.35 The peak age for

http://www.jaci-online.blogspot.com
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TABLE I. Viruses that can cause wheezing illnesses

Virus Major antigenic groups

Rhinovirus A, B, C

RSV A, B

Coronaviruses NL63, HKU1, OC43, 229E

Metapneumovirus A, B

Parainfluenza viruses I, II, III, IV

Enterovirus D68, others

Influenza viruses A, B, C

Bocavirus

Adenovirus Serotypes 1, 2, 3, 5, 6, 7

Polyomavirus WU, KI, Malawi
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susceptibility to RSV lower respiratory tract infection is at 2 to
3 months of age after neutralizing antibody acquired transplacen-
tally from the mother has waned.
RSV replicates in epithelial cells lining the upper airways and

bronchioles and in type I pneumocytes. RSV infections that
extend into the lower airways can cause airway narrowing and
closure by causing epithelial cell necrosis and inducing cellular
inflammation and mucus hypersecretion.36

There are several lines of evidence to suggest that more severe
RSV infections in early life can contribute to the risk for
childhood asthma. First, approximately one third of children
with RSV-induced bronchiolitis have recurrent wheezing epi-
sodes. In turn, children with recurrent wheezing are at increased
risk for subsequent asthma, especially if they have atopic parents
or other atopic features.37 Furthermore, in a large Tennessee
Medicaid database children who were born approximately
120 days before the peak RSV season were at increased risk for
bronchiolitis and had a corresponding increase in the risk for
asthma by age 3.5 to 5.5 years.15 Similarly, analysis of RSV-
induced bronchiolitis in birth cohort studies indicates a positive
association with the risk for asthma but not allergic sensitiza-
tion.38,39 Finally, analysis of the Tucson Children’s Respiratory
cohort through young adulthood revealed an interaction between
RSV lower respiratory tract infection in infancy and smokingwith
respect to asthma. Active smoking was a significant risk factor
(relative risk, 1.7; 95% CI, 1.2-2.3; P 5 .003) for asthma only
in young adults with a history of RSV lower respiratory tract
infection during infancy.40

Treatment with mAbs specific for RSV F protein (palivizumab
and motavizumab) can reduce the risk of RSV-induced bronchio-
litis, and several interventional studies have tested whether
prevention of RSV-induced bronchiolitis in infancy leads to a
reduction in recurrent wheezing and asthma. A prospective
nonrandomized study of palivizumab administration to preterm
infants in Canada and Europe reported found an 80% reduction in
the risk of recurrent wheezing from ages 2 to 5 years in nonatopic
children but no effect in atopic children.41 In a multicenter study
conducted in The Netherlands, healthy preterm infants born at 33
to 35 weeks’ gestation were enrolled in a double-blind, placebo-
controlled trial of palivizumab prophylaxis and were monitored
for 1 year to determine effects on recurrent wheeze. Palivizumab
treatment led to a 61% relative reduction in total number of
wheezing days in the first year of life.17 Similarly, a case-
control study of palivizumab in Japanese infants withmild prema-
turity demonstrated reduced recurrent wheezing in the treated
versus untreated groups (6.4% vs 18.9%, P < .001).42 The most
recent study evaluated effects of motavizumab on 2127 healthy
full-term Navajo infants, an ethnic group at high risk for bron-
chiolitis. In a double-blind, placebo-controlled randomized trial
involving infants aged 6 months or less, motavizumab reduced
by 87% the relative risk of hospital admission for bronchiolitis.43

However, motavizumab did not reduce subsequent rates of medi-
cally attended wheezing between the ages of 1 and 3 years (14.9%
vs 14.0% in the placebo group).
Thus passive immunization against RSV certainly reduces

acute bronchiolitis in preterm infants and likely reduces the rates
of recurrent wheezing for premature infants. Whether RSV
prophylaxis can reduce recurrent wheezing in term infants is
unclear. Additional studies are needed to more clearly understand
whomight benefit from prophylaxis to reduce recurrent wheezing
and also whether this approach can prevent atopic asthma. Given
that children who become polysensitized to allergens in infancy
are at greatest risk for persistent wheezing and reduced lung
function,5,17,44 the latter question is of great clinical importance.
Rhinoviruses
Rhinoviruses consist of more than 160 individual types that are

classified into 3 species (A, B, and C) based on viral genetics.45

Rhinoviruses are the pathogens most often associated with upper
respiratory tract infections (common colds) and can also cause
lower respiratory tract infection and wheezing illnesses.23,46,47

They are the second most common viruses associated with bron-
chiolitis and are the most common viruses detected in association
with wheezing illnesses in children by the age of 1 to 2 years.48-50

The species of rhinovirus affects virulence: rhinoviruses A and C
cause more severe illnesses in infants21,24 and are more likely to
cause lower respiratory illnesses.20,23 Cadherin-related family
member 3 (CDHR3) was recently identified as an entry factor on
airway epithelial cells for rhinovirus C.51 Interestingly, a CDHR3
polymorphism is associated with the risk for childhood asthma,
and the risk allele is associated with more CDHR3 on cell
surfaces.52 This finding suggests the possibility that rhinovirus C
infections in early life could contribute to asthma pathogenesis.
For years, it was mistakenly assumed that rhinovirus infections

were confined to the upper airway. This assumption was based on
early findings that rhinoviruses replicated best at 338C to 358C,53

and it was thought that higher temperatures in the lower airways
would preclude lower airway infection. However, temperatures in
the large and medium conducting airways are cooler than core
temperature and are ideal for rhinovirus replication.54 Further-
more, some rhinovirus types, including C-species viruses, repli-
cate equally well at 338C and 378C.55,56 Finally, rhinovirus can
be detected in sputum and bronchial biopsy specimens after
experimental inoculation of the upper airway,57-59 which is con-
current with peak symptoms and reductions in peak expiratory
flow.60 Rhinoviruses have also been detected in lower airway bi-
opsy specimens from infants with recurrent wheezing.61 These
findings provide strong evidence that rhinovirus can infect the
lower airways, especially in young children.
Rhinovirus-induced wheezing illnesses in the first 2 to 3 years

of life are closely associated with the risk of subsequent asthma.
This relationship was first recognized in long-term studies of
Finnish infants hospitalized for acute wheezing illnesses. Rhino-
virus was the predominant virus detected during wheezing
illnesses after 5 months of age. When reassessed 5 years later,
60% of children who wheezed with rhinovirus in the first 2 years
of life had asthma.62 Similar findings were obtained at subsequent



J ALLERGY CLIN IMMUNOL

MARCH 2016

662 JACKSON, GERN, AND LEMANSKE
follow-up of these children in adolescence.63 Birth cohort studies
have provided definitive evidence of a strong relationship be-
tween rhinovirus-inducedwheezing and asthma. In the Childhood
Origins of Asthma (COAST) study outpatient rhinovirus-induced
wheezing illnesses during the first year of life were a significant
predictor of recurrent wheezing through age 3 years.8 Further-
more, viral cause of wheezing illnesses differentially affected
the risk for subsequent asthma; the risk of asthma was greater
for children who wheezed with rhinovirus (odds ratio [OR],
9.8) or children who wheezed with rhinovirus and RSV (OR,
10.0) compared with that in children who wheezed only with
RSV (OR, 2.6).7 Similar findings were reported in the Childhood
Asthma Study in Perth: early-life infections with rhinovirus or
RSV were associated with an increased risk of asthma but only
in children who had aeroallergen sensitization by 2 years of
age.4 In a study conducted in The Netherlands, rhinovirus-
induced wheezing episodes were positively related to asthma
risk. This relationship was partially explained by lower lung func-
tion in infancy being a risk factor for rhinovirus wheezing.64

Finally, in a collaborative study involving 2 birth cohorts (COAST
and Copenhagen Prospective Studies on Asthma in Childhood),
the 17q21 genotype strongly influenced both the risk of
rhinovirus-induced wheezing and the probability that an infant
with rhinovirus-induced wheezing would go on to have asthma.65

Thus there are unresolved questions as to whether rhinovirus-
induced illnesses in childhood promote the development of
asthma, reveal the presence of pre-existing asthma, or both.
Bacteria and wheezing illnesses
The previous sections reviewed information linking viral

infection with wheezing illnesses and subsequent asthma.
Remarkably, the association between airway bacteria and
wheezing illnesses might be similarly robust,10 and this relation-
ship could begin quite early in life. In a Danish birth cohort study
colonization of the nasopharynx with S pneumoniae,M catarrha-
lis, and H influenzae at 1 month of age was associated with
increased incidence of recurrent wheeze and asthma in early
childhood.66

Viral infections can lead to changes in the composition of the
airway microbiome and overgrowth of respiratory pathogens, and
it is likely that both the virus and secondary changes in airway
bacteria contribute respiratory symptoms and perhaps airway
obstruction.11,67-69 These findings suggest a potential role for
antibiotic treatment for wheezing illnesses in early life; however,
the evidence base for this approach appears to be mixed. On one
hand, serious bacterial infections accompanying bronchiolitis
appear to be rare,70 and a recent meta-analysis found that antibi-
otics, such as azithromycin or ampicillin, were not efficacious for
treatment of bronchiolitis.71 On the other hand, Bacharier et al72

conducted a randomized multicenter clinical trial involving 607
preschool children with a history of recurrent wheezing illnesses
who were then treated with azithromycin or placebo at the begin-
ning of respiratory symptoms. Azithromycin treatment reduced
the risk of progression to severe lower respiratory illness (hazard
ratio, 0.64; 95% CI, 0.41-0.98; P5 .04). The mechanism of effect
could be related to either the antimicrobial or anti-inflammatory
activities of macrolide antibiotics. Additional studies are needed
tomore clearly identify childrenmost likely to respond to azithro-
mycin therapy given the risks of selecting for antibiotic-resistant
organisms and the theoretical risks of disturbing the microbiome
during infancy.
Although bacterial pathogens are positively associated with

wheezing and asthma, environmental exposure to a broad range of
bacteria might protect against wheezing illnesses. For example,
children exposed to animal sheds on farms are less likely to have
wheezing in early life, including transient wheezing of presumed
viral origin.73 These beneficial effects appear to be related to
exposure to diverse environmental microbes. Indeed, animal
models indicate that gastrointestinal administration of selected
bacteria can provide protection against signs of illness after chal-
lenge with RSV.74 Furthermore, exposures in urban environments
were related to the risk of recurrent wheeze in the Urban Environ-
ment and Childhood Asthma birth cohort study.75 Dust samples
obtained during the first year of life were analyzed for both bacte-
ria and allergen content. Infants with wheezing and atopy by age
3 years were most likely to grow up in homes with reduced expo-
sure to both microbes and specific allergens (cat, mouse, and
cockroach). These findings suggest that early-life exposures to
bacteria and perhaps animal proteins modulate immune responses
that are important determinants of respiratory illness severity.
INTERACTIONS BETWEEN ALLERGY AND

INFECTIONS
Allergic sensitization, most notably to perennial aeroallergens,

has been defined as a pivotal risk factor for the development of
asthma.1 Recently, it has become evident that both the timing of
allergic sensitization and the quantity of sensitization are impor-
tant prognostic indicators. Simpson et al5 have identified an atopy
phenotype in children they termed ‘‘multiple early sensitization.’’
In those children sensitized to multiple aeroallergens at an early
age, Simpson et al reported a remarkable increase in risk for
asthma inception, severe exacerbations leading to hospitalization,
and impaired lung function. This link between early-life sensiti-
zation to multiple allergens and increased asthma risk has been
replicated in additional cohort studies.6

This observed link between early sensitization to aeroallergens
and asthma risk is in part due to synergy between allergic
inflammation and viral infections, most commonly rhinovirus.
Indeed, children in the COAST study who were sensitized to
aeroallergens and wheezed with rhinovirus during the first 3 years
of life had the greatest risk for asthma inception.7 This led to the
question of whether viral illnesses in early life lead to allergic
sensitization or whether the converse was true. Using a longitudi-
nal multistate Markov model in the COAST study, Jackson et al2

identified a sequential relationship whereby allergic sensitization
leads to viral wheezing. This relationship was strongest for
rhinovirus-induced wheezing, and there was no evidence that
viral wheezing led to sensitization.
There is also strong evidence to implicate allergic sensitization

and exposure as a risk factor for wheezing with common cold
infections later in childhood. In emergency department studies
detection of a respiratory tract virus, most commonly rhinovirus,
with detectable allergen-specific IgE and/or the presence of
eosinophilic inflammation were all identified as risk factors for
acute wheezing episodes.25,76,77 Notably, viral infections and
allergic inflammation synergistically enhanced the risk ofwheezing,
and higher levels of allergen-specific IgE conferred the greatest risk.
This synergism might be particularly notable for patients with
rhinovirus C, in whom aeroallergen sensitization was recently



FIG 1. Interplay between FcεRI and antiviral responses. In normal airways

plasmacytoid dendritic cells (pDCs) are major sources of type I and type III

interferons in response to viral infections. These cells also have low-level

expression of FcεRI. In the context of allergy, pDCs express greater FcεRI,

which is inversely related to interferon responses. In addition, cross-linking

of FcεRI further reduces interferon responses. Consequences of suppressed

interferon responses to viral infection could include increased viral

replication, more severe illnesses with wheezing, and exacerbation of

pre-existing asthma.
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reported as a risk factor for recurrent severe exacerbations leading to
emergency department visits and hospitalization.24
MECHANISMS OF ALLERGY-VIRUS INTERACTIONS
There are multiple mechanisms by which viral infections are

thought to interact with allergic inflammation to lead to lower
respiratory airway dysfunction, wheezing, and asthma exacerba-
tions.78 First, underlying allergic inflammation can directly
enhance airway responsiveness to rhinovirus infection.79 Addi-
tionally, viral infections can damage the barrier function of the
airway epithelium, leading to enhanced absorption of aeroaller-
gens across the airway wall and enhanced inflammation, whereas
underlying allergic inflammation might also lead to enhanced
viral replication.80,81 Of interest, both rhinovirus infections60

and allergens82 can enhance airway epithelial cell production of
IL-33, a recently identified innate cytokine, which promotes
type 2 airway inflammation and remodeling. This steroid-
resistant pathway has been reported to be upregulated in children
with difficult-to-control asthma.82 Interestingly, IL-33 polymor-
phisms have been linked with intermediate and late-onset
wheezing, which are strongly linked to early-life allergic sensiti-
zation.83 Another innate epithelial cytokine, IL-25, is also
induced by rhinovirus and is likely to accentuate allergic airway
inflammation in the context of rhinovirus infections in allergic
subjects.84

Finally, there is significant evidence that children with allergic
asthma have impaired antiviral responses.85-87 Indeed, allergen
exposure and high-affinity IgE receptor cross-linking has been
shown to impair virus-induced type I and III interferon production
in peripheral blood cells (Fig 1).88,89 The result would be both
enhanced viral replication and enhanced type 2 inflammation in
the airway.90,91

Themost direct evidence to support the importance of allergen-
virus interactions in patients with virus-induced wheezing and
asthma exacerbations comes from a recent clinical trial of
omalizumab (anti-IgE) to prevent seasonal virus-induced asthma
exacerbations.92 In this trial virus-induced exacerbations were
significantly reduced by omalizumab, and this reduction coin-
cided with an enhanced type I interferon response ex vivo in
rhinovirus-stimulated mononuclear cells. Of note, those partici-
pants who had larger increases in type I interferon response
with omalizumab treatment had the greatest protection from
virus-induced exacerbations.
CONCLUSION
Two key risk factors for the development of childhood asthma

are the development of allergic sensitization in early life and
wheezing respiratory tract illnesses caused primarily by viruses
but also by bacteria either alone or as coinfections accompanying
illnesses of viral cause. Therapies directed at these 2 risk factors,
either alone or in combination, appear to be essential components
to target for development of effective strategies for the primary
prevention of asthma in children.

What do we know?

d Early-life aeroallergen sensitization and viral wheezing
illnesses are independent and synergistic risk factors for
asthma inception.

d Bacterial pathogens have recently emerged as an addi-
tional important contributor to asthma risk, either alone
or as cofactors with viral infections.

What is still unknown?

d Whether the prevention of allergic sensitization, antiviral
strategies, immunostimulants, or other strategies that
augment immune responses to airway pathogens will pre-
vent the development of asthma.
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