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Abstract. Calcifying cartilages show a restricted ex- 
pression of tissue transglutaminase. Immunostaining of 
newborn rat paw bones reveals expression only in the 
epiphyseal growth plate. Tissue transglutaminase ap- 
pears first intracellularly in the proliferation/matura- 
tion zone and remains until calcification of the tissue 
in the lower hypertrophic zone. Externalization occurs 
before mineralization. Subsequently, the enzyme is 
present in the interterritorial matrix during provisional 
calcification and in the calcified cartilage cores of 
bone trabeculae. In trachea, mineralization occurring 
with maturation in the center of the cartilage is ac- 
companied by expression of tissue transglutaminase at 
the border of the hydroxyapatite deposits. 

Transglutaminase activity also shows a restricted 
distribution in cartilage, similar to the one observed 
for tissue transglutaminase protein. Analysis of tissue 
homogenates showed that the enzyme is present in 
growth plate cartilage, but not in articular cartilage, 
and recognizes a limited set of substrate proteins. Os- 
teonectin is coexpressed with tissue transglutaminase 
both in the growth plate and in calcifying tracheal car- 
tilage and is a specific substrate for tissue trans- 
glutaminase in vitro. 

Tissue transglutaminase expression in skeletal tis- 
sues is strictly regulated, correlates with chondrocyte 
differentiation, precedes cartilage calcification, and 
could lead to cross-linking of the mineralizing matrix. 

T 
RANSGLUTAMINASE (EC 2.3.2.13) is an enzyme that 
catalyzes a Ca2§ acyl-transfer reaction in 
which new v-arnide bonds are formed between 3/-car- 

boxamide groups of peptide-bound glutamine residues and 
various primary amines (for review see Lorand and Conrad, 
1984; Greenberg et al., 1991). A glutamine residue serves 
as acyl-donor and the most common acyl-acceptors are pri- 
mary amino groups of some naturally occurring polyamines, 
like putrescine or spermidine, or e-amino groups of peptide- 
bound lysine residues. In the latter case, the reaction results 
in the formation of ~/-glutamyl-r cross-links in or be- 
tween proteins. The number of glutaminyl substrates is 
highly restricted, while the tolerance to structural differ- 
ences in acyl-acceptors is considerable. 

Transglutaminases form a large protein family (Ichinose 
et al., 1990) and have a wide distribution amongst tissues 
and body fluids. Thus, proteins modified by transglutamin- 
ases are found throughout the organism, e.g., in fibrin clots 
in hemostasis and wound healing, in cell membranes of ter- 
minally differentiated erythrocytes, in extracellular ma- 
trices, and in the cornified envelope of the epidermis (for re- 
view see Greenberg et al., 1991). In some of these tissues, 
a role for transglutaminases in the apoptotic program has 
been postulated as enzymes of this class are accumulated in 
the cytoplasm of cells undergoing terminal differentiation 
both in vivo and in vitro (for review see F6sus et al., 1991). 
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The abundant tissue transglutaminase is a monomeric 
globular protein with an Mr of ,077,000 (Ichinose et al., 
1990; Greenberg et al., 1991). It is often highly expressed 
at sites of pathologic injury where it acts together with factor 
XIIIa, the plasma transglutaminase (Weinberg et al., 1991; 
Wiebe et al., 1991). Several extracellular proteins like 
fibrin(ogen) (Achyuthan et al., 1988; Shainoff et al., 1991), 
fibronectin (F6sus et al., 1986), vitronectin (Sane et al., 
1988; Skorstengaard et al., 1990), nidogen/entactin (Aesch- 
limann and Paulsson, 1991; Aeschlimann et al., 1992), col- 
lagen type III N-propeptide (Bowness et al., 1987) and os- 
teopontin (Prince et al., 1991) have been identified as 
specific glutaminyl substrates for tissue transglutaminase. 
Together with the observed association of tissue trans- 
glutaminase expression with programmed cell death and 
pathologic injury, the cross-linking of extracellular matrix 
components indicates a physiological function of the enzyme 
in maintaining the integrity of the tissue by fixation of the 
matrix at the site of the lesion (Upchurch et al., 1991). 

During endochondral bone formation, the chondrocytes 
pass through a series of differentiation stages in which they 
undergo proliferation, a high rate of matrix synthesis, hyper- 
trophy and calcification of the hypertrophied chondrocyte 
matrix (Hunziker and Schenk, 1989, and references therein). 
They are eventually removed from cartilage through tissue 
resorption, vascularization and bone remodeling. The calci- 
fied cartilage matrix serves as a substrate for initial osteo- 
genesis. 

Cartilage contains collagen type II, a fiber forming colla- 
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gen specific for cartilage and vitreous humor. The C-propep- 
tide of type II collagen, termed chondrocalcin, is enriched 
in the epiphyseal growth plate and may play a role in cartilage 
calcification (Hinek et al., 1987). Several quantitatively mi- 
nor collagens have been detected in cartilage. One of these, 
type X collagen, was shown to be exclusively expressed by 
hypertrophic chondrocytes in tissues undergoing endochon- 
dral bone formation (Schmid and Linsenmayer, 1985). Os- 
teonectin is one of the most abundant noncollagenous pro- 
teins in bone (Termine et al., 1981a; Bolander et al., 1988), 
but may also be expressed in cartilage (Nomura et al., 1988; 
Metsiiranta et al., 1989). It contains multiple calcium bind- 
ing domains, one in the form of an EF-hand near the car- 
boxyl terminus (Engel et al., 1987; Maurer et al., 1992), and 
might thus be involved in the mineralization process. The 
protein is also widely distributed in other tissues, although 
in lower amounts (Mason et al., 1986; Dziadek et al., 1986). 

The present study addresses the distribution of tissue 
transglutaminase in skeletal tissues and the role of the en- 
zyme in physiological cross-linking of the extracellular ma- 
trix. We show a correlation between the expression of tissue 
transglutaminase protein and transglutaminase activity with 
subsequent calcification of cartilage, and identify abundant 
proteins of cartilage and bone matrix, i.e., collagen type II 
and osteonectin as glutaminyl substrates for the enzyme. 

Materials and Methods 

Protein Reagents 
Tissue transglutaminase was purified from guinea pig liver (Connellan et 
al., 1971) and osteonectin prepared from rat long bone by a modification 
of the method of Fisher et al. (1987). Native recombinant human BM-40/os- 
teonectin (Nischt et al., 1991) was kindly provided by Dr. R. Timpl, Max- 
Planck-Institute for Biochemistry (Germany). Reduction and alkylation of 
guanidine-HC1/EDTA denatured recombinant BM-40/osteonectin was done 
as described (Aeschlimann et al., 1992). Human plasma fibronectin was 
a kind gift of Dr. K. Ingham, American Red Cross. BSA and N,N- 
dimethylcasein was from Serva (Heidelberg, Germany). 

Histochemical Methods 
Antisera to guinea pig tissue transglutaminase (Aeschlimann and Paulsson, 
1991), rat osteonectin, and dansylated (hapten) Lz'mulus polyphemus 
bemocyanin (carrier; Sigma Chemical Co., St. Louis, MO) were raised in 
rabbits and affinity purified when needed (Aeschlimann and Paulsson, 
1991). Cycloheptaamylose .dansyl-chloride complex was prepared (Kino- 
shita et al., 1974) and proteins dansylated by addition of 20 mg complex 
per 10 mg protein in 1 ml of 0.1 M sodium phosphate buffer, pH 7.7. The 
mixture was stirred for 90 min in the dark and low molecular weight com- 
pounds removed by passage over a PD 10 column (Pharmacia, Uppsala, 
Sweden). The specificity of the antibodies was demonstrated in immuno- 
blots of crude extracts of the tissue of origin. 

Tissues were prepared for paraffin embedding by fixation in 4% (wt/vol) 
paraformaldehyde in PBS (8 mM sodium phosphate, pH 7.4, 0.15 M sodium 
chloride) at 4~ overnight and complete demineralization in 0.42 M EDTA, 

0.5% (wt/vol) paraformaldehyde. For cryopreservation, tissues were em- 
bedded in Tissue-Tek a (Miles, Inc., Naperville, IL) and frozen on dry ice. 

For immunohistochemistry, sections (5 /zm) were cut, mounted on 
gelatine-coated slides and dried. Paraffin-embedded sections were prepared 
for immunolabeling by deparaffinization and rehydration in 50 mM 
Tris/HC1, pH 7.4, 0.15 M NaC1 (TBS). Cryosections were used unfixed or 
after post-fixation (the expression, "post-fixation" is used to describe fixa- 
tion of tissue sections that had been adsorbed onto slides and dried) in 4% 
(wt/vol) paraformaldehyde, acetone or methanol. To increase antibody 
penetration, sections were digested for 1 h with 40 mU/ml chondroitinase 
ABC (Sigma Chemical Co.) in TBS containing 0.01% (wt/vol) BSA where 
indicated. Endogenous peroxidase was blocked by incubation in methanol 
containing 1% (vol/vol) H202 and nonspecific antibody binding by treat- 
ment with 1% (wt/vol) BSA in TBS. Sections were treated with specific anti- 
bodies, nonimmune ChromPure rabbit IgG (Jackson ImmunoResearch 
Labs, West Grove, PA) or preimmune rabbit serum for 1 h, followed by 
peroxidase-conjugated swine anti-rabbit IgG (Dakopatts, Glostrup, Den- 
mark) for 45 min. Antibodies were diluted in 1% BSA/TBS. The slides were 
developed with 3-amino-9-ethylcarbazole (Sigma Chemical Co.) /H202 
and counterstained with Mayers H~nalaun (Merck, Darmstadt, Germany). 

For detection of transglutaminase activity, unfixed BSA-treated cr),~osec- 
tions were incubated for 1 h in 0.1 M Tris/HC1, pH 8.3, 5 mM CaC12, 12 
/zM monodansylcadaverine, with or without addition of 10.8 tzg/mi of exoge- 
nous tissue transglutaminase (250/.d/section). Inhibition was done by addi- 
tion of EDTA to 25 mM. Protein-bound label was detected with anti-dansyl 
antiserum as described above. Hydroxyapatite was shown by yon Kossa's 
stain for calcium phosphate. 

Radioactive Transglutaminase Assay 
Transglutaminase-catalyzed incorporation of [1,4-3H]putrescine (24.8 Ci/ 
mmol, Amersham Corp., Amersham, UK) into putative substrate proteins 
was done for 30 rain at 37~ as described previously (Aeschiimann and 
Paulsson, 1991). 

Detection of Transglutaminase Activity in 
Cartilage Homogenates 
Articular and epiphyseal growth zone (Hinek et al., 1987) cartilage was iso- 
lated from calf tibia] and femoral bones. Cartilage (0.25 g wet tissue/rnl) 
was briefly homogenized in 0.1 M Tris/HC1, pH 8.3, containing 0.3 M 
NaC1, 50 mM CaC12, 5 mM dithiothreitol, the protease inhibitors phenyl- 
methanesulfonyl fluoride (1 raM), benzamidine HC1 (10 raM) and 6-amino- 
hexanoic acid (0.1 M) and the transglntaminase substrate (amine donor) 
monodansylcadaverine (1 raM, Serva). To one half of each homogenate 1 
nag exogenous tissue transglutaminase/g wet tissue was added and incuba- 
tion was done at 37~ for 3 h. Homogenates incubated either in the presence 
or absence of exogenous tissue transglntaminase were centrifuged at 5,000 g 
for 15 rain, the pellets washed with reaction buffer by repeated suspending 
and centrifugation, and the supernatants pooled to yield a total of 5 ml/g 
tissue of buffered salt extract. Pellets were extracted in a total of 5 ml/g tis- 
sue each of 4 M guanidine HCI/50 mM Tris/HCl, pH 6.0, containing pro- 
tease inldbitors (see above), N-ethylmaleinimide (1 raM) and EDTA (0.1 M), 
first while shaking at room temperature for 75 min and then by washing as 
above. Insoluble material was washed in 0.5 M acetic acid and digested with 
porcine pepsin (Serva, 17 mAnson U/rag; 2 mg/g tissue wet weight) in a 
total of 3 rrd/g tissue of 0.5 M acetic acid at 4~ for 14 h to solubilize type 
II collagen (Miller, 1971). 

SDS-PAGE and Immunoblotting 
SDS-PAGE (Laemmli, 1970) was done in 4-20% gradient gels. Proteins 

Figure 1. Expression of tissue transglutaminase and osteonectin in developing long bones of 4-d old rat. Serial sections (5 #m) of fixed, 
decalcified and paraffin-embedded tissue, showing a tarsal bone (A and B)  or the distal growth plate of tibia (C),  were incubated with 
antibodies to tissue transglutaminase (A and C) or osteonectin (B), developed with peroxidase-conjugated secondary antibodies (3-amino- 
9-ethylcarbazole/H202 used as peroxidase substrate solution: brown stain), and counterstained with Mayers Hiimalaun (blue stain). 
(Negative controls for immunochemical results are not shown but were submitted to the journal and available to the referees.) In B, the 
section was digested with chondroitinase ABC before incubation with the antibody. The differentiation stages of the chondrocytes were 
assigned according to the cellular morphology and are indicated on the left and below: proliferation zone (PZ), upper hypertrophic zone 
(including the maturation zone) (U/-/Z), lower hypertrophic zone (LHZ) with the zone of provisional calcification (PC-Z; cartilage calcifica- 
tion was assessed by von Kossa staining on cryosections of the same tissue), and the metaphysis (MP). Bars, 50 #m. 
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Figure 2. Tissue transglutaminase antigen in the growth plate matrix is revealed by chondroitinase ABC digestion. Unfixed cryosections 
(5 ~tm) showing the distal growth plate of tibia of a 4-d old rat were stained with antibodies to tissue transglutaminase without (A) or 
with (B) prior treatment with chondroitinase ABC. (Negative controls for immunochemical results are not shown but were submitted to 
the journal and available to the referees.) The arrows indicate the border between the lower hypertrophic zone of the growth plate and 
the metaphysis. Bar, 50 #m. 

reduced with 2-mercaptoethanol (1%, vol/vol) were detected by staining 
with Coomassie brilliant blue R or after transfer onto nitrocellulose (Towbin 
et al., 1979). Binding of primary antibody was visualized using peroxidase- 
conjugated swine anti-rabbit IgG (Dakopatts) and 4-chloro-l-naphthol as the 
chromogenic agent. 

Results 

Expression of Tissue Transglutaminase and 
Osteonectin in Long Bones 

The distribution of tissue transglutaminase was studied in the 
tarsal and metatarsal bones as well as in the distal portion 
of the tibia from 1-4-d old rats. Affinity purified antibodies 
were used in combination with immunoperoxidase staining. 
Tissue transglutaminase was found to be preferentially ex- 
pressed in the growth plate. An acceptable preservation of 
the cellular morphology and retention of the intracellular 
material was obtained in fixed, paraffin-embedded sections. 
Tissue transglutaminase is detected mainly intracellularly, 
and appears first in the proliferation/maturation zone of the 
growth plate (Fig. 1 A). Subsequently, the enzyme is selec- 
tively accumulated in the cytoplasm of the cells during the 
maturation steps. Intracellular expression of the enzyme 
ceases in the lower layers of hypertrophic chondrocytes be- 

fore calcification of the tissue (Fig. 1 C). When sections 
were digested with chondroitinase ABC to remove chondroi- 
tin/dermatan sulfate chains from the matrix, the staining pat- 
tern was similar to that without enzyme treatment. (Negative 
controls for immunohistochemical results are not shown but 
were submitted to the journal and available to the referees.) 
Some cells in the resting cartilage became positive, but much 
more weakly so than those in the growth plate. Thus, tissue 
transglutaminase might be expressed also by resting chon- 
drocytes, but if so at low levels. 

The disappearance of intracellular tissue transglutaminase 
before calcification, led us to try to demonstrate an extracel- 
lular pool by use of frozen sections. In such sections, much 
intracellular material is lost, but a better accessibility and/ 
or antigenicity of the extracellular matrix structures is 
achieved. The remaining cellular immunoreactivity for tis- 
sue transglutaminase was restricted to the collapsed growth 
plate chondrocytes (Fig. 2 A). Upon treatment with chon- 
droitinase ABC, tissue transglutaminase was revealed in the 
interterritorial cartilage matrix of growth plate and the 
calcified cartilage cores of trabeculae (Fig. 2 B). The expres- 
sion appears as a gradient in the hypertrophic zone and 
reaches maximal intensity in the zone of provisional 
calcification. The enzyme is externalized and incorporated 
into the extracellular matrix. It persists in the calcified carti- 
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[3H]putrescine into osteonectin and collagen type II. The incorpo- 
ration of [3H]putrescine into rat bone osteonectin/BM-40 (1), hu- 
man recombinant osteonectin/BM-40 (2), bovine articular collagen 
type II (pepsin fragment) (3) was compared to the incorporation 
into the reference proteins bovine milk N,N-dimethylcasein (4; 
contains one amine incorporation site), human plasma fibronectin 
(5; contains several amine incorporation sites) and BSA (6; does 
not contain any amine incorporation sites) as previously described 
(Aeschlimann and Paulsson, 1991). All values are the average of 
three to six independent measurements. The bars indicate the stan- 
dard deviation from mean values. 

lage cores of trabeculae until it is removed by bone remodel- 
ing (Fig. 2 B). Tissue transglutaminase was detectable nei- 
ther in mineralized matrix of cortical or trabecular bone nor 
in newly deposited osteoid along the trabecular surface 
(Figs. 1 A, 2, A and B). "Post-fixation" of the tissue before 
chondroitinase ABC digestion abolished the unmasking 
effect, explaining the absence of extracellular immunoreac- 
tivity in paraffin sections. 

Osteonectin is predominantly present in cortical and 
trabecular bone matrix, but is similarly to tissue trans- 
glutaminase also expressed by growth plate chondrocytes 
(Fig. 1 B). Osteonectin is seen first in the maturation/upper 
hypertrophic zone. It appears slightly later in the chondro- 
cyte differentiation program than tissue transglutaminase. 

Native Osteonectin is a Transglutaminase Substrate 

The coexpression of tissue transglutaminase and osteonectin 
in the growth plate led us to investigate whether osteonectin 
is a transglutaminase substrate. This was done by incubation 
of purified tissue transglutaminase with either osteonectin 
(also known as BM-40 [Dziadek et al., 1986] or SPARC 
[Mason et al., 1986]) purified from rat bone (Fig. 3, bar/)  
or with the recombinant human protein (Fig. 3, bar 2) in the 
presence of [3H]putrescine and Ca 2+ (Aeschlimann and 
Paulsson, 1991). Isolation of osteonectin from rat bone had 
been done by decalcification with EDTA in the presence of 
the denaturing agent guanidine HC1, and this protein prepa- 
ration was inactive in the assay. Human recombinant os- 
teonectin/BM-40 had been purified avoiding denaturing 
steps, and incorporated the radioactive amine. Treatment of 

native recombinant osteonectin with guanidine HC1 and 
EDTA led to 89-95 % loss in [3H]putrescine incorporation 
and reduction and alkylation of the denatured recombinant 
protein completely abolished incorporation. Thus, osteonec- 
tin/BM-40 has to be in the native conformation to act as a 
glutaminyl substrate for tissue transglutaminase. The fact 
that osteonectin is a substrate supports the notion that the en- 
zyme may act in the growth plate by cross-linking matrix 
proteins. 

Distribution of Transglutaminase Activity in 
Long Bones 

Transglutaminase activity was detected on unfixed cryosec- 
tions of the distal growth plate of the tibia by incubation with 
the substrate monodansylcadaverine and with Ca 2+ either in 
presence or absence of exogenous enzyme (Aeschlimann and 
Paulsson, 1991). Monodansylcadaverine that had been in- 
corporated into protein was subsequently detected by anti- 
bodies raised against the dansyl group. The distribution of 
enzyme activity in cartilage corroborated the previous local- 
ization of tissue transglutaminase protein. In the absence of 
exogenous enzyme, the activity was found only in chondro- 
cytes and matrix of the growth plate (Fig. 4 A). The activity 
gradually increases with successive steps of chondrocyte 
differentiation, but could not be detected in the calcified car- 
tilage cores of bone trabeculae, indicating that the im- 
munoreactive enzyme present in this compartment (Fig. 2 B) 
is inactive due to entrapment in hydroxyapatite. Transgluta- 
minase activity was also detected in newly deposited osteoid. 
This result, together with the demonstration that tissue 
transglutaminase antigen is absent from mineralized bone 
matrix and osteoid (Fig. 2 B), indicates that osteoblasts 
and/or bone marrow cells express a transglutaminase im- 
munochemically distinct from the tissue type enzyme. Incu- 
bation of sections with exogenous tissue transglutaminase 
gave a homogenous strong staining, showing that glutaminyl 
substrates are present throughout the cartilage (Fig. 4 B). 
This demonstrates that the confined distribution of endoge- 
nous transglutaminase activity is indeed due to a restricted 
expression of the enzyme and not of the glutaminyl substrate 
proteins. Because transglutaminase activity is strongly 
Ca2+-dependent, the specificity of the assay was demon- 
strated by inhibition with EDTA. (Negative controls for im- 
munohistochemical results are not shown but were submitted 
to the journal and available to the referees.) 

Transglutaminase Activity and Substrate 
Proteins in Homogenates of Epiphyseal Growth Plate 
and Articular Cartilage 
Homogenates of bovine epiphyseal growth plate and of bo- 
vine articular cartilage were incubated in Ca2+-containing 
buffer with the transglutaminase substrate monodansyl- 
cadaverine. Incubation was done either in the absence or 
presence of exogenous tissue transglutaminase to detect both 
intrinsic enzyme activity and substrate proteins that can be 
labeled by excess exogenous enzyme. After labeling, the 
homogenates were sequentially extracted with a buffered salt 
solution (extract I) and a guanidine HCI/EDTA solution (ex- 
tract II). The residue was digested with pepsin to solubilize 
the triple helical domains of cartilage collagens, mainly type 
II collagen (extract III). Analysis by SDS-PAGE followed by 
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Figure 4. Detection of transglutaminase activity present in sections of the distal growth plate of the tibia of 4-d old rat. Unfixed cryosections 
(5/zm) were incubated with monodansylcadaverine alone (A) or monodansylcadaverine together with purified tissue transglutaminase (B) 
in Ca2§ buffer. Protein-bound monodansylcadaverine was subsequently detected by use of anti-dansyl antiserum and 
peroxidase-conjugated secondary antibodies. (Negative controls for immunochemical results are not shown but were submitted to the jour- 
nal and available to the referees.) Bar, 50/zm. 

Coomassie-staining (Fig. 5 A) or immunoblotting with anti- 
dansyl antiserum (Fig. 5, B-D) revealed that many proteins 
of different Mr are able to incorporate the labeled amine 
when treated with exogenous tissue transglutaminase, both 
in the epiphyseal growth zone and articular cartilage (Fig. 5, 
C and D). The band patterns obtained from the two tissues 
were comparable, indicating that a similar set of proteins act 
as glutaminyl substrates for tissue transglutaminase in both 
tissues. Collagen type II was heavily labeled and appears to 
be a glutaminyl substrate in the cartilage matrix (Fig. 5, C 
and D; extract III). Similarly, in vitro incubation of collagen 
type II and tissue transglutaminase in the presence of 
[3H]putrescine and Ca 2§ led to an incorporation of the ra- 
dioactive amine into collagen type II (Fig. 3, bar 3). Tissue 
transglutaminase is itself able to act as a glutaminyl substrate 
(Birckbichler et al., 1977; Aeschlimann and Paulsson, 1991) 
and is therefore also labeled in the cartilage extracts where 
exogenous enzyme had been added (Fig. 5, C and D; extract 
I, II). 

Labeled proteins were detected in the extract from growth 
plate cartilage also without the addition of exogenous tissue 
transglutaminase (Fig. 5 B), but not in the extract from artic- 
ular cartilage (results not shown). Endogenous enzyme is ei- 
ther absent from articular cartilage or present in quantities 

not detectable with this assay. It cannot be excluded that 
some of the endogenous transglutaminase activity observed 
in the growth plate homogenate may be due to a contamina- 
tion of blood plasma derived factor XIIIa. However, the use 
of protease inhibitors directed at thrombin makes an activa- 
tion of factor XIII unlikely. The antibodies used in immuno- 
localization of tissue transglutaminase in the rat growth plate 
do not cross-react with factor XIII (Aeschlimann and Pauls- 
son, 1991). Tissue transglutaminase, which does not require 
cleavage by thrombin for activation, must therefore be pres- 
ent. The endogenous transglutaminase showed a more re- 
stricted substrate pattern (Fig. 5 B) and only a subset of 
those proteins detected by the exogenous enzyme (Fig. 5 C) 
were labeled. A predominantly labeled protein of apparent 
Mr "-30,000 was present in the growth plate but not in ar- 
ticular cartilage (Fig. 5 B; extract I, II; asterisk). Collagen 
type II was not a major glutaminyl substrate for the endoge- 
nous enzyme under the conditions used (Fig. 5 B; extract 
III). Possibly, the affinity of the enzyme for collagen type II 
might be low compared to other substrate proteins, and the 
level of endogenous enzyme in the growth plate insufficient 
to give saturation labeling. There might also be differences 
in the substrate specificity of the endogenous enzyme in 
growth plate cartilage and of liver tissue transglutaminase, 
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Figure 5. Transglutaminase activity and protein substrates present in homogenates of growth plate cartilage (e) and articular cartilage (a). 
Homogenates derived from either growth plate (A-C) or articular cartilage (D) were incubated with monodansylcadaverine either in the 
absence (A, B) or presence (C, D) of purified tissue transglutaminase, sequentially extracted with buffered salt (I), guanidine/EDTA (II), 
and finally digested with pepsin (III), and subsequently analyzed by SDS-PAGE on 4-20% gradient gels under reducing conditions. The 
gels were stained either with Coomassie brilliant blue R (A) or after electrophoretic transfer to nitrocellulose by incubation with antidansyl 
antiserum (B-D). Mr standards as well as the top and bottom of the separating gel (arrows) are indicated on the left. Bands assigned to 
collagen type II (Col I/) and tissue transglutaminase (tIG-') are indicated on the right. The prominent glutaminyl substrate protein of the 
endogenous transglutaminase (Mr ~ 30,000) is marked with an asterisk (B). 

even though the enzymes share epitopes and antibodies 
cross-react strongly. 

Tissue Transglutaminase Expression in Cartilages 
that Do Not Undergo Bone Formation and in Bones 
Formed by Intramembraneous Ossification 

Unfixed cryo-sections of 4-d old or adult rat trachea were as- 
sayed for tissue transglutaminase antigen or enzyme activity. 
The staining patterns were compared to the ones obtained 
with antibodies against osteonectin. In 4-d old rats, neither 
tissue transglutaminase nor osteonectin is expressed in the 
tracheal cartilage rings. (Negative controls for immuno- 
histochemical results are not shown but were submitted to 
the journal and available to the referees.) This is in agree- 
ment with the observation that resting chondrocytes in long 
bones do not express osteonectin nor tissue transgluta- 
minase. Surprisingly, in adult tracheal cartilage substantial 
amounts of osteonectin were found in the center of the rings 
(Fig. 6 A). This could be correlated to calcification of the 
cartilage as seen with von Kossa's stain for calcium phos- 
phate (Fig. 6 C). Mineralization starts in the center of the 

tracheal rings and proceeds outwards with increasing age of 
the animal. Moreover, tissue transglutaminase expression 
was also observed in adult trachea, either as intense spots 
corresponding to single cells or as a faint staining of the 
calcified cartilage matrix (Fig. 6 B). Careful comparison of 
the staining patterns for tissue transglutaminase and calcium 
phosphate deposits revealed that cells expressing the enzyme 
in large quantities are located at the calcification border (Fig. 
6, B and C). These cells probably follow a differentiation 
program similar to that of growth plate chondrocytes, with 
the exception that no subsequent osteogenesis takes place. 
Similar results were obtained by staining tracheal sections 
for enzyme activity. Only adult rats were positive. Endoge- 
nous activity was present in the central, but not in the periph- 
eral region of the tracheal rings. The activity was cell as- 
sociated in regions not yet calcified and extracellular in the 
calcified regions of the cartilage (results not shown). 

Similar to cortical bone and the bone matrix of trabeculae, 
the calvaria showed no expression of tissue transglutaminase 
protein (results not shown). In contrast, endogenous enzyme 
activity was present at high levels in newly deposited osteoid 
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Figure 6. Expression of tissue transglutaminase and osteonectin in 
calcified tracheal cartilage. Unfixed cryosections (5/zm) of adult rat 
trachea were stained with antibodies directed to osteonectin (A) or 
tissue transglutaminase (B) (negative controls for immunochemical 
results are not shown but were submitted to the journal and avail- 
able to the referees), or were stained for hydroxyapatite with von 

(results not shown), in agreement with the distribution in 
long bone trabeculae (Fig. 4 A). This further supports the hy- 
pothesis that osteoblasts express a different member of the 
transglutaminase family. 

Discuss ion  

In the present study we investigated the expression of tissue 
transglutaminase in skeletal tissues. We found a correlation 
between the expression of the enzyme and the terminal 
differentiation of chondrocytes, both in endochondral bone 
formation and in the calcification of tracheal cartilage occur- 
ring with maturation. 

In long bones, tissue transglutaminase expression is in- 
duced in chondrocytes in the proliferation or maturation 
zone and the protein is subsequently accumulated in the 
cytoplasm of the cells during further differentiation steps. 
Thus, tissue transglutaminase protein is highly enriched in 
hypertrophic chondrocytes, and is subsequently released in 
the zone of provisional calcification. Externalization of the 
enzyme might possibly be due to physiologically occurring 
cell death or occur by an alternative way of secretion. Con- 
ventional secretion is unlikely as tissue transglutaminase, as 
well as factor XIII, does not have a signal peptide, is not 
glycosylated and does not contain disulfide bonds (Ichinose 
et al., 1990). One possible mechanism would be release of 
membrane-bound vesicles with cytoplasm-derived contents. 
So called matrix vesicles have been described in cartilage 
and other tissues and have been implicated in calcification 
(Wu et al., 1991). It is likely that the enzyme becomes acti- 
vated at the elevated extracellular Ca 2+ concentrations en- 
countered upon externalization. Specific glutaminyl sub- 
strates for tissue transglutaminase like fibronectin (F6sus et 
al., 1986), osteopontin (Prince et al., 1991) and the N-pro- 
peptide of collagen type III (Bowness et al., 1987) are pres- 
ent in the cartilage and/or bone matrix (Heineg~rd and Old- 
berg, 1989; Keene et al., 1991). Native osteonectin/BM40 
and collagen type II, which are present in the matrix of the 
growth plate, are additional glutaminyl substrates for tissue 
transglutaminase, at least under in vitro conditions. The 
presence of specific substrates in the matrix of the growth 
plate, the observed redistribution of tissue transglutaminase 
from an intracellular pool to the cartilage matrix during 
calcification, and the demonstration that the externalized 
enzyme is active, indicates a role for the enzyme in cross- 
linking of the matrix during terminal differentiation of chon- 
drocytes. The process of accumulation and consecutive acti- 
vation of tissue transglutaminase during differentiation 
of chondrocytes resembles the well-characterized events oc- 
curring in ageing of erythrocytes and terminal differentiation 
of epidermal keratinocytes. In leaking erythrocytes, tissue 
transglutaminase cross-links integral plasma membrane pro- 
teins and cytoskeletal proteins underlying the plasma mem- 
brane to a rigid coat (Lorand and Conrad, 1984), and in 
epidermis the keratinocyte transglutaminase cross-links a 
subset of cytoplasmic proteins, e.g., involucrin and loricrin, 
to form the cornified envelope of the epidermis (Thacher and 

Kossa's stain for calcium phosphate (C). In B and C is the same 
field on serial sections shown, with arrowheads marking identical 
positions. Bar, 50 ~m. 
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Rice, 1985; Simon and Green, 1988; Hohl et al., 1991). The 
function of this sealing process might differ between tissues 
and physiological situations. It might play a role in prevent- 
ing leakage of substances influencing cell growth, prolifera- 
tion and differentiation. The sealing might also function in 
maintaining the mechanical stability of the tissue and in scar 
formation. 

In tracheal cartilage, a tissue that does not undergo proper 
osteogenesis, we observed that calcification occurs with 
maturation, as previously described by other investigators 
(Bonucci et al., 1974). Calcification starts in the center of 
the rings and proceeds towards the periphery. It was accom- 
panied by prominent expression of osteonectin as well as ex- 
pression of tissue transglutaminase, analogous to the pattern 
observed in the growth plate. Tissue transglutaminase anti- 
gen and activity was observed most prominently in the carti- 
lage surrounding the hydroxyapatite deposits, which shows 
some similarity to the hypertrophic cartilage of growth plate. 
Thus, tissue transglutaminase and osteonectin expression 
are intimately associated with hypertrophy of chondrocytes 
and calcification of cartilage tissue, but not necessarily with 
bone formation. There might be a second, immunochemi- 
cally distinct transglutaminase acting in bone, as indicated 
by the fact that in newly deposited osteoid in long bones and 
in calvaria enzyme activity was observed but tissue trans- 
glutaminase protein could not be detected. 

We observed osteonectin in hypertrophic chondrocytes of 
growth plate cartilage, in osteoblasts, in newly deposited os- 
teoid and mineralized bone matrix of long bones and cal- 
varia. This agrees with the high level of expression of the os- 
teonectin gene found in growth plate cartilage, in bone tissue 
of long bones and calvaria, and in the perichondrium and 
periosteum (Nomura et al., 1988; Metsiiranta et al., 1989). 
In situ hybridization of developing long bones revealed that 
osteoblasts and hypertrophic chondrocytes contain a high 
level of mRNA whereas resting chondrocytes do not. In 
agreement, we did not observe any staining with the anti- 
osteonectin antiserum in the resting cartilage of developing 
long bones. Osteonectin has been proposed to have affinity 
for collagen and hydroxyapatite, and a potential role in the 
mineralization process was suggested (Termine et al., 
1981b). As the major cartilage collagen as well as osteonec- 
tin and fibronectin (F6sus et al., 1986) are specific substrates 
for tissue transglutaminase, it is likely that these proteins are 
cross-linked upon release and activation of tissue trans- 
glutaminase in growth plate. It is quite possible that the 
cross-linking of the organic matrix influences the structure 
and mechanical properties of the bone formed. 
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