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Abstract

Phellinus is a kind of fungus and known as one of the elemental components in drugs to

avoid cancer. With the purpose of finding optimized culture conditions for Phellinus produc-

tion in the lab, plenty of experiments focusing on single factor were operated and large scale

of experimental data was generated. In previous work, we used regression analysis and GA

Gene-set based Genetic Algorithm (GA) to predict the production, but the data we used

depended on experimental experience and only little part of the data was used. In this work

we use the values of parameters involved in culture conditions, including inoculum size, PH

value, initial liquid volume, temperature, seed age, fermentation time and rotation speed, to

establish a high yield and a low yield classification model. Subsequently, a prediction model

of BP neural network is established for high yield data set. GA is used to find the best culture

conditions. The forecast accuracy rate more than 90% and the yield we got have a slight

increase than the real yield.

1 Introduction

Phellinus is a kind of fungus having great medicinal value, since it is known as one of the ele-

mental components in drugs avoiding cancers [1, 2]. Phellinus flavonoids is one of the most

popular parasitifer of Phellinus in nature [3]. The research on Phellinus focuses on polysaccha-

rides, proteoglycans medicinal mechanism, composition, etc., which are mostly extracted from

the fruiting bodies of Phellinus flavonoids [4]. Phellinus rarely exists in the wild environment

[5]. Cultivating Phellinus in the lab becomes a promising research branch. With mycelial

growth by liquid fermentation, the fermentation broth flavonoids, polysaccharides, alkaloids

and other active substances can be produced. These products have high level physical activity,

short fermentation period and mass productions, thus providing a possible way of producing

Phellinus in the lab [6]. In recent years, updated machine learning approaches [7, 8] have been

developed and applied in biological data processing.

From the understanding of the wild conditions of Phellinus, it is found that PH value, tem-

perature and fermentation time have an effect on the productions. As well, in general bio-
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chemical experiments, we need to consider the inoculum size, initial liquid volume, seed age

and rotation speed [9, 10]. In the laboratory, plenty of experiments have been designed and

operated for maximizing the Phellinus production.

Artificial algorithms and models have been used in the bio-process, particularly for the opti-

mization of culture conditions. In [11], artificial neural networks (ANN) is used to optimize

the extraction process of azalea Flavonoids. Neural networks combined with evolutionary

algorithms have been used to optimize the experimental environment. For example, neural

network and particle swarm optimization method is used for finding optimized culture condi-

tions to maximize the Production of Pleuromutilin from Pleurotus Mutilus in [12]. The con-

cept of classification is to learn a classification function on the basis of existing data or to

construct a classification model (that is, what we usually call classifier). The function or model

can map data records in the database to a given category. It can be applied to data prediction

[13, 14]. Recently, many significant artificial intelligent algorithms and data processing strate-

gies has been applied on data mining, such as a self-adaptive artificial bee colony algorithm

based on global best for global optimization [15], the public auditing protocol with novel

dynamic structure for cloud data [16], privacy-preserving smart semantic search method for

conceptual graphs over encrypted outsourced data [17], a privacy-preserving and copy-deter-

rence content for image data processing with retrieval scheme in cloud computing [18] and

machine learning method have been applied for experimental condition design, see. e.g. a

secure and dynamic multi-keyword ranked search scheme over encrypted cloud data [19].

Genetic Algorithm (GA) derives from the computer simulation study of biological system

[20], which has been widely used function optimization, combinatorial optimization, job shop

scheduling problems [21], complex network clustering, pattern mining [22–24]. However,

there are still some disadvantages, the most obvious disadvantages are the low efficiency and

easy to fall into local optimum [25, 26].

In our previous paper in [27], we use the data collected during these experiments and take

the statistical methods to establish a mathematical model in order to forecast the Flavonoid

yield. Flavonoid yield is the most important product of Phellinus. With the purpose of finding

the best Phellinus culture environment, the mathematical model was used as the fitness func-

tion for the GA and the result was developed. The result we got shows closely correspondence

to the conclusion given by biologist. But during this process, the data we chosen to establish

the mathematical model mainly rely on the prior knowledge of biologists. So we only use a lit-

tle part of the whole data set. So we miss some information. Besides, the method does not

work well in some areas where a priori knowledge lacked. In addition, the regression or BP

neural network model established on all data sets can not get a accurate result. Therefore, in

this paper, we use the classification algorithm for the whole sample set and achieve a good clas-

sification accuracy. On the basis of the high yield data set, the BP neural network and GA are

used to optimize the yield. Finally, we find a better result than our previous work and the real

data. This method can be used more extensively in biological experiments.

2 Data collected and data classification

2.1 Data collected

In this section, biological experiments are performed for finding optimal value of certain single

factor.

In Table 1, experiments are operated for collecting data. In rows 1-14, it is associated with

experiments with PH values ranging from 1 to 14, where the temperature is fixed to 28˚C, Ini-

tial volume is set to be 100ml, the Rotation speed is 140r/m and seed age is 8 days. Rows 15 to
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20 are 6 experiments with Initial volume ranges from 40ml to 140ml, where PH value is set to

be 6, the best one obtained from experiments with PH values ranging from 1 to 14.

In Table 2, experiments with Including inoculum ranging from 2% to 16% and Tempera-

ture ranging from 25˚C to 40˚C are performed. That the situations on experiments with Fer-

mentation time ranging from 1 to 12 hours are shown in Table 3. From the total 45

experiments, we collect data of culture conditions for production of Phellinus. Different cul-

ture conditions have a fundamental influence on the production of Phellinus. However, the

optimized culture conditions remain unknown.

Table 1. Experiments with PH values ranging from 1 to 14 and initial volume ranges from 40ml to 140ml.

PH Temp Initial volume Rotation speed Including inoculum seed age Fermentation time Phellinus yield (μg/ml) class

1 28˚C 100ml 140 5% 8 8 45.929 0

2 28˚C 100ml 140 5% 8 8 35.077 0

3 28˚C 100ml 140 5% 8 8 45.654 0

4 28˚C 100ml 140 5% 8 8 534.39 0

5 28˚C 100ml 140 5% 8 8 702.81 0

6 28˚C 100ml 140 5% 8 8 1467.7 1

7 28˚C 100ml 140 5% 8 8 189.20 0

8 28˚C 100ml 140 5% 8 8 91.049 0

9 28˚C 100ml 140 5% 8 8 60.841 0

10 28˚C 100ml 140 5% 8 8 57.225 0

11 28˚C 100ml 140 5% 8 8 43.238 0

12 28˚C 100ml 140 5% 8 8 36.288 0

13 28˚C 100ml 140 5% 8 8 20.943 0

14 28˚C 100ml 140 5% 8 8 22.306 0

6 28˚C 40ml 140 5% 8 8 508.495 0

6 28˚C 60ml 140 5% 8 8 900.662 0

6 28˚C 80ml 140 5% 8 8 1273.594 1

6 28˚C 100ml 140 5% 8 8 1153.937 0

6 28˚C 120ml 140 5% 8 8 1123.330 0

6 28˚C 140ml 140 5% 8 8 1088.064 0

https://doi.org/10.1371/journal.pone.0185444.t001

Table 2. Experiments with including inoculum ranging from 2% to 16% and temperature ranging from 25˚C to 40˚C.

PH Temp Initial volume Rotation speed Including inoculum seed age Fermentation time Phellinus yield (μg/ml) class

6 28˚C 100ml 140 2% 8 8 546.609 0

6 28˚C 100ml 140 4% 8 8 606.345 0

6 28˚C 100ml 140 6% 8 8 1320.794 1

6 28˚C 100ml 140 8% 8 8 1447.519 1

6 28˚C 100ml 140 10% 8 8 1841.729 1

6 28˚C 100ml 140 12% 8 8 1631.990 1

6 28˚C 100ml 140 14% 8 8 481.1172 0

6 28˚C 100ml 140 16% 8 8 449.5187 0

6 25˚C 40ml 140 10% 8 8 1145.669 0

6 30˚C 60ml 140 10% 8 8 1506.055 1

6 35˚C 80ml 140 10% 8 8 1374.982 1

6 40˚C 100ml 140 10% 8 8 875.341 0

https://doi.org/10.1371/journal.pone.0185444.t002
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2.2 Data classification

In this section, we consider to divide the data set into high yield data set and low yield data set

two parts. In our previous work, we found that the data collected from biological experiment

has similarity and the gradient is limited. The conventional prediction method is difficult to

achieve good results in the whole data set. So we use the method of classification, only focus on

some important data, and increase the sample difference in the classified data set. There are

two factors that must be considered. The fist one, we need to keep the balance between two

data sets [28]. Larger imbalances can lead to more deviations in our classifiers. For example,

we have one set of high yield data and 99 sets of low yield data, it is clear that the prediction of

low yield data can reach 99% without learning, but the classifiers may not reach 99%. This is

the imbalance caused by the data. Even the accuracy of the model is high, the model is certainly

not good in the prediction of high yield data and not the model we want. If we use this model,

our classifier can not find the high yield factors and provide a training data set for BP neural

network to establish a prediction model. The second one, the high yield data set and low yield

data set must cover all single factor experimental conditions.

Now we have two classification strategies. The first one, we take the median of flavonoid

production as the classification boundary (in our experiment is 1100μg/ml) and we have the

same number of high-yield collections and low-yield collections. We have done a number of

experiments to prove that the classification effect is acceptable. We can see the classification

results in Table 4. But we realized that this classification method will lead to a single factor test

of a class completely classified as high yield or low production set. In our experiment, all data

belong to the seed age factor will be divided into high yield data set. Seed age for our classifier

is no longer a decision-making factor which will lead to a large prediction error. We can see it

in Table 5.

Table 3. Experiments with fermentation time ranging from 1 to 12 hours.

PH Temp Initial volume Rotation speed Including inoculum seed age Fermentation time Phellinus yield (μg/ml) class

6 28˚C 100ml 150 2% 8 1 56.606 0

6 28˚C 100ml 150 4% 8 2 83.435 0

6 28˚C 100ml 150 6% 8 3 303.984 0

6 28˚C 100ml 150 8% 8 4 449.919 0

6 28˚C 100ml 150 10% 8 5 777.331 0

6 28˚C 100ml 150 12% 8 6 1103.987 0

6 28˚C 100ml 150 14% 8 7 1619.554 1

6 28˚C 100ml 150 16% 8 8 1597.995 1

6 28˚C 100ml 150 10% 8 9 1546.336 1

6 28˚C 100ml 150 10% 8 10 1502.487 1

6 28˚C 100ml 150 10% 8 11 1489.364 1

6 28˚C 100ml 150 10% 8 12 1465.664 1

https://doi.org/10.1371/journal.pone.0185444.t003

Table 4. 1100μg/ml boundary classification accuracy (logical regression).

Type 0 1 The correct percentage

0 20 6 76.9

1 3 11 88

total 82.4

https://doi.org/10.1371/journal.pone.0185444.t004
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Another strategy is to select a boundary in each set of univariate experimental data to keep

the data for each single factor experiment in two different classes, while keeping the number of

elements in the two categories as close as possible. In combination with the above conditions,

we chose the flavonoid yield equal to 1273 μg/ml as our boundary condition. Under this

boundary condition, we obtain 20 sets of high yield data and 30 sets low yield data, which

include the conditions of each group of single factor experiments. We can see the classification

results in Table 6.

3 Methods

Our experiment is mainly composed of three parts. The first part, the high-yielding data set is

determined by the classification model, and then BP neural network is used to forecast. Finally,

the parameters of BP neural network and the threshold are used as fitness function to find the

optimal yield with GA.

3.1 Classification model

From the above boundary we determine the high yield and low yield of two data sets, the high

yield is set to be 1 and the low yield is set to be 0. We use two classifiers to identify the classifi-

cation effect, logical regression and BP neural network classifier. we use the SMOTE algorithm

to improve the data set [29]. The idea of the SMOTE algorithm is to synthesize new samples of

minority class (the high yield class). The synthetic strategy is to choose A’s nearest neighbor B

for each sample of minority class, and then random select a new sample as a minority class

sample between A and B [30]. This hybrid computational method, which combines with SVM

and AGA, has the intelligent learning ability and can overcome the limitation of large-scale

biotic experiments [31–36].

(1) for each sample X in a minority classes, the distance of all samples is computed from the

Euclidean distance as the criterion, and the k nearest neighbor is obtained.

(2) according to the sample imbalance ratio, a sampling ratio is set to determine the sam-

pling rate N. For each minority class sample x, several samples are selected randomly from

their K neighbors, assuming that the nearest neighbor is xn.

Table 5. Experiments with seed age ranging from 4 to 10 hours.

PH Temp Initial volume Rotation speed Including inoculum seed age Fermentation time Phellinus yield (μg/ml) class

6 28˚C 100ml 150 2% 4 1 1272.384 0

6 28˚C 100ml 150 4% 5 2 1453.231 1

6 28˚C 100ml 150 6% 6 3 1428.025 1

6 28˚C 100ml 150 8% 7 4 1477.273 1

6 28˚C 100ml 150 10% 8 5 2164.513 1

6 28˚C 100ml 150 12% 9 6 2127.726 1

6 28˚C 100ml 150 14% 10 7 1741.498 1

https://doi.org/10.1371/journal.pone.0185444.t005

Table 6. 1273μg/ml boundary classification accuracy (logical regression).

Type 0 1 The correct percentage

0 21 10 67.7

1 4 16 80

total 72.5

https://doi.org/10.1371/journal.pone.0185444.t006
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(3) for each randomly selected neighbor xn, a new sample is constructed according to the

following formula xm = x + rand(0,1) � (xn − x). The xm is the new sample.

Compared with other data expansion methods, SMOTE algorithm generates new data

instead of directly copying minority class samples. This can increase sample differences within

class. We know that biological experiments set up certain experimental gradients to carry out a

set of experiments. And the variation of adjacent experimental gradient data is usually linear.

For example, if the PH value is 5, and corresponding yield is 300, the PH is 6, and corresponding

yield is 1000, the PH is 7, and corresponding yield is 500. We usually think that when PH is 5.5,

the yield is between 300 and 1000. If we set the classification boundaries yield is 300, then PH is

5.5 and can be divided into a few samples. In this way, we increase the sensitivity of the classifier

to some experimental conditions and improve the accuracy of classification. We don’t use these

new generated samples for production forecasting because we are not sure of their exact yields.

In each of our experiments, each experiment gradient was set as a unit to compare the dis-

tance between each experiment. Since the number of samples we divide into two categories is

different, there is no doubt that classification results are better for most sets. In addition, the

overall number of samples is small and the classification effect fluctuates greatly. SMOTE algo-

rithm is used to increase the sample size of the minority class, which is more balanced in the

overall distribution of the data, while increasing the number of samples as a whole, reducing

volatility. We can see that the classification effect has been improved by SMOTE algorithm in

Tables 7 and 8.

The correct percentage = z;

The predicted yield = y;

The active yield = x;

z = |(y−x)/x|;

In this section, we establish a reliable classification model that can classify high yield and

low yield data and then predict the yield in the next step if the experimental conditions belong

to high yield data set.

3.2 BP neural network

BP (Back Propagation) neural network was developed by Rumelhart and McClelland in 1986.

BP is a multi-layer feed forward neural network trained by error back propagation algorithm

and it is the most widely used neural network [37].

The basic BP algorithm includes the forward propagation of the signal and the reverse

propagation of the error. We calculate the error output from the input to the output direction,

Table 7. 1273μg/ml boundary classification accuracy after SMOTE (logical regression).

Type 0 1 The correct percentage

0 21 10 67.7

1 3 27 90

total 79.7

https://doi.org/10.1371/journal.pone.0185444.t007

Table 8. Comparison of the effects of SMOTE algorithm processing and data processing without

SMOTE algorithm.

Type without SMOTE with SMOTE

logical regression 72.5 79.7

BP 80 87

https://doi.org/10.1371/journal.pone.0185444.t008
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and adjust the weight and threshold from the output to the input direction. After training, the

trained neural network that can be similar to the sample input information, the minimum out-

put error is used to deal with the non-linear conversion of information [38, 39].

Each time we randomly selected 16 sets of data as a training set, the establishment of a

experimental conditions and output corresponding to the forecast model. 4 sets of data as a

test set, used to verify the reliability of modeling. Repeat seven experiments. We can see the

result in Table 9. After repeated tests, the number of intermediate layer nodes is determine to

be 9. Each hidden layer transfer function is set to be “tansig”, “logsig”, “tansig”. The training

function is set to be “trainlm”. Each time 15 sets of data are selected for modeling. Five sets of

data are selected to verify. Times of training is set to be 1000, training convergence error is set

to be 0.00001. The results of repeat seven experiments as follows. The average error is 133.53,

the percentage of error is 8.7%. The error value is shown in Fig 1 and percentage of error is

shown in Fig 2. We can judge that our model has achieved a good result.

The Forecast yield is the yield calculated by the BP neural network under the same experi-

mental conditions.

The actual yield = x;

The Forecast yield = y;

Table 9. Experimental results.

Type Actual yield Forecast yield error Percentage of error

1 1447.519173 1587.9 140.3808272 9.7%

2 1374.982592 1273.6 101.382592 7.3%

3 1502.487 1632 129.513 8.62%

4 1453.230569 1274.9 178.3305688 12.27%

5 1506.05569 1453.0896 52.9660896 3.52%

6 1489.364 1420.734 68.63 4.61%

7 2127.725793 2103.7928 23.9329928 1.12%

8 1453.230569 1423.2688 29.9617688 2.06%

9 1467.790541 1321.5 146.2905408 9.97%

10 1273.594991 1320.8 47.2050088 3.71%

11 1447.519173 1360.8 86.7191728 5.99%

12 1841.729358 1380.6 461.1293584 25.04%

13 1374.982592 1592.9 217.917408 15.85%

14 1619.554 1473.6 145.954 9.01%

15 1597.995 1586.4 11.595 0.73%

16 1502.487 1394.3 108.187 7.20%

17 1506.05569 1454.8 51.2556896 3.40%

18 1465.664 1278.7 186.964 12.76%

19 1477.273482 1376.9 100.3734816 6.79%

20 1631.990382 1368.2 263.7903824 16.16%

21 1447.519173 1300.50 147.0191728 10.16%

22 1597.995 1560.90 37.095 2.32%

23 1320.794994 1317.00 3.7949936 0.29%

24 1453.230569 1699.80 246.5694312 16.97%

25 1841.729358 1571.40 270.3293584 14.86%

26 1489.364 1315.70 173.664 11.66%

27 1320.794994 1274.00 46.7949936 3.54%

28 1546.336 1285.30 261.036 16.88%

https://doi.org/10.1371/journal.pone.0185444.t009
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error = z
z = |x−y|

The percentage of error = z/x
In this section, we build a prediction model for high yield data sets and verify its reliability.

3.3 GA process

In this part we use the established model and GA to optimize the yield.

Genetic algorithm is a kind of randomized search method which is based on the evolution

of biological circles [40]. It was first proposed by Professor J. Holland of the United States in

Fig 1. The difference between the real value and the predicted value.

https://doi.org/10.1371/journal.pone.0185444.g001

Fig 2. Percentage of error.

https://doi.org/10.1371/journal.pone.0185444.g002
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1975 [41]. Its main feature is that it directly operates on structural objects without the existence

of derivative and function continuity; with inherent implicit parallelism and better global opti-

mization. GA use probabilistic optimization method, it can automatically obtain and guide the

optimization of the search space [42]. These properties of genetic algorithms have been widely

used in the fields of combinatorial optimization, machine learning, signal processing, adaptive

control and artificial life. It is the modern key technology in intelligent computing [43]. The

GA process is in Fig 3.

The parameters for setting the GA algorithm are as follows: population size is set to be 300,

chromosome size is set to be 6, generation size is set to be 1000, cross rate is set to be 1, mutate

rate is set to be 0.01. The mutation rate and cross rate affect the number of iterations and itera-

tions of the GA process. Because the number of iterations we set is much more than the actual

number of iterations required. So after many tests, the mutation rate is set to be minimum

value and cross rate is set to be maximum value. This is the ideal condition of the genetic algo-

rithm. The encoding mechanism is real-number encoding. The hidden threshold of BP neural

network is extracted as the fitness function of GA algorithm. After about 30 to 500 iterations

the GA process returns the best individual. The training process is in Fig 4. Repeat the test

seven times and result as follow in Table 10. We can see that the yield we got have a slight

increase than the real yield.

In this section, we use the weight threshold of BP neural network as the optimization object,

and use the GA algorithm to find the optimal experimental conditions.

4 Conclusion

In this work, we firstly classify the collected data sets and establish a classification model. Clas-

sification accuracy rate can reach more than 80%. We use our selected high-yielding data set

for modeling. Forecast accuracy rate more than 90%. Finally, the weight threshold of BP neural

network is used as the fitness function of GA to optimize the yield. So we have established a set

of mulberry flavonoids production forecast and optimization process. When the biologist give

us a new set of experimental conditions, we first use the classification model to verify whether

these conditions are high-yield conditions. If these conditions are high-yield conditions, we

use the established BP neural network to predict the yield. In the comparison results, it is

believed that PH value is credible 6 and the temperature is also within the appropriate temper-

ature range 28˚C to 30˚C. Taking into account environmental factors in the laboratory, the ini-

tial volume, rotation speed and including inoculum we predicted are also reliable. The seed

age is 7 or 8 closing to the original data 8. The fermentation time predicted rang from 8 to 11

more than the original data 8. However, iit can be explained in terms of biological experi-

ments. When the fermentation time reaches a certain limit after the mulberry community to

reach the limit, this time the output depends mainly on the supply of nutrients, so the data we

get is acceptable. The average Phellinus yield we predicted is 2159.9μg/ml more than the origi-

nal data 2127μg/ml. Data experimental results show that predicted optimal values of the

parameters have accordance with biological experimental results, which indicate that our

method has a good predictability for culture conditions optimization.

For further research, neural-like computing models, e.g., spiking neural P systems [44] can

be used for optimization of Welan gum production. As well, some recently developed data

processing and mining methods, such as the speculative approach to spatial-temporal effi-

ciency for multi-objective optimization in cloud data and computing [45], privacy-preserving

smart similarity search methods in simhash over encrypted data in cloud computing [45], k-

degree anonymity with vertex and edge modification algorithm [46], kernel quaternion princi-

pal component analysis for object recognition [47], might be used for Optimization to the
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Fig 3. GA process.

https://doi.org/10.1371/journal.pone.0185444.g003
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Phellinus Experimental Environment. In the aspect of data preparation, decision tree [48] can

be used to deal with the missing attribute value of some samples in dataset.
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