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Abstract
1.	 Thermal imaging technology is a developing field in wildlife management. Most 

thermal imaging work in wildlife science has been limited to larger ungulates and 
surface-dwelling mammals. Little work has been undertaken on the use of thermal 
imagers to detect fossorial animals and/or their burrows. Survey methods such 
as white-light spotlighting can fail to detect the presence of burrows (and there-
fore the animals within), particularly in areas where vegetation obscures burrows. 
Thermal imagers offer an opportunity to detect the radiant heat from these bur-
rows, and therefore the presence of the animal, particularly in vegetated areas. 
Thermal imaging technology has become increasingly available through the provi-
sion of smaller, more cost-effective units. Their integration with drone technology 
provides opportunities for researchers and land managers to utilize this technol-
ogy in their research/management practices.

2.	 We investigated the ability of both consumer (<AUD$20,000) and professional 
imagers (>AUD$65,000) mounted on drones to detect rabbit burrows (warrens) 
and entrances in the landscape as compared to visual assessment.

3.	 Thermal imagery and visual inspection detected active rabbit warrens when veg-
etation was scarce. The presence of vegetation was a significant factor in detect-
ing entrances (p < .001, α = 0.05). The consumer imager did not detect as many 
warren entrances as either the professional imager or visual inspection (p = .009, 
α  =  0.05). Active warren entrances obscured by vegetation could not be accu-
rately identified on exported imagery from the consumer imager and several false-
positive detections occurred when reviewing this footage.

4.	 We suggest that the exportable frame rate (Hz) was the key factor in image quality 
and subsequent false-positive detections. This feature should be considered when 
selecting imagers and suggest that a minimum export rate of 30 Hz is required. 
Thermal imagers are a useful additional tool to aid in identification of entrances 
for active warrens and professional imagers detected more warrens and entrances 
than either consumer imagers or visual inspection.
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1  | INTRODUC TION

Since its development, thermal imaging technology has been used in 
a wide range of applications (see (Vollmer & Möllmann, 2018) for a 
full review of the use of thermal imaging across study areas). Thermal 
imaging technologies have been increasingly used in wildlife surveys 
from the 1960s (see (Croon et  al.,  1968; Parker & Driscoll,  1972)) 
although their widespread use has been limited due to the cost of 
the equipment and a lack of exposure of this type of equipment to 
biologists. The majority of wildlife survey work undertaken with 
thermal technology was in the detection of large wild animals such 
as pigs and ungulates using fixed or rotary-wing aerial survey tech-
niques (and occasionally comparing these results to visual surveys 
over the same area) (Focardi et  al.,  2001; Havens & Sharp,  1998; 
Parker & Driscoll, 1972). More recently, thermal surveys have been 
undertaken on larger surface-dwelling or arboreal species (Corcoran 
et  al.,  2019; Spaan et  al.,  2019). Limited work has been done on 
abundance estimates of smaller animals and the detection of fos-
sorial animals and/or their burrows with thermal imagers (Boonstra 
et al., 1994). Burrows of fossorial animals can be difficult to detect 
during ground surveys, particularly where vegetation is present. 
Additionally, those burrows that can be found often give little and 
subjective indication as to whether these burrows are occupied.

The detection of occupied burrows is particularly important when 
the burrowing animal is a pest, such as rabbits (Oryctolagus cuniculus) 
in Australia. Rabbits are a significant agricultural and environmental 
pest and are listed as a key threatening process (Commonwealth of 
Australia, 2016). Rabbits have been estimated to cause > AUD$206 
million per annum in agricultural losses (Gong et al., 2009). Additionally, 
it was estimated that private and public landholders spend approxi-
mately AUD$6 million per annum controlling rabbits. They are listed 
as a direct threat for 321 species of Australian plants and animals 
and 75 endangered ecological communities (Commonwealth of 
Australia, 2016). The most effective long-term method of controlling 
rabbits is the removal of their harbor. Usually, this means the destruc-
tion of their burrow (hereafter referred to as a warren) through rip-
ping programs; however, the success of ripping programs is greatly 
influenced by the presence of surrounding active warrens (McPhee & 
Butler,  2010). Reopening of ripped warrens can occur if any nearby 
warrens remain intact; therefore, it is essential that all warrens and 
warren entrances within the treatment area are located. Where rabbit 
numbers are high (>5 rabbits/Ha), warrens can be easy to locate due 
to the lack of vegetative cover. However, where numbers are lower, or 
nonpalatable plants are abundant, warren entrances can be obscured 
and difficult to find.

Thermal imagers may provide a way to detect these obscured 
rabbit warrens. Boonstra et al.  (1994) used thermal imagers to dif-
ferentiate between occupied and unoccupied arctic ground squirrel 
(Urocitellus parryii) burrows (where the location of the burrow was 

known). They also identified that the presence of dense vegetation 
was a limiting factor in thermal surveys. Technological development 
of thermal imagers has progressed rapidly over the last 10 years, and 
there is a proliferation of thermal imagers available for consumers. 
Therefore, it was time to re-evaluate thermal imagers for the detec-
tion of animal burrows. We investigated whether consumer thermal 
imagers could be used as a tool to assist land managers with identi-
fying rabbit warrens, particularly if obscured by vegetation. Here, 
we investigate the use of thermal imagers to (a) determine whether 
active and inactive rabbit warrens could be detected with a thermal 
imager and (if so) (b) to evaluate the efficacy of consumer imagers to 
professional imagers and visual inspection.

2  | MATERIAL S AND METHODS

2.1 | Site locations

The evaluation took place in two parts over three properties in New 
South Wales, Australia. Part 1 was undertaken on two private prop-
erties in the Central Tablelands in November 2017. Part 2 occurred 
on public land in the Central West in June 2018. We classified the 
rabbit populations at each of these locations as very high (>10 rab-
bits/Ha), high (>5  rabbits/Ha), medium (2–5  rabbits/Ha), and low 
(<2 rabbits/Ha) using standard white-light spotlight counts (Mitchell 
and Balogh 2007). For Part 1, one property was overgrazed and had 
little-to-no vegetation and a very high population of rabbits. The 
other property was a disused stock paddock that contained stands 
of blackberry (Rubus fruticosus species aggregate) on the gully lines 
and was overrun with serrated tussock (Nassella trichotoma). This 
property had a low rabbit population. Rabbit warrens on these two 
properties had an average depth of 600–800 mm (based on infor-
mation from previous excavation and control programs) and we sur-
veyed five warrens at each property. For Part 2, the land was part of 
the national traveling stock route (authorized thoroughfare for the 
walking of domestic livestock from one location to another across 
Australia) and at the time of the survey consisted of open sandy 
country with stands of Old Man Saltbush (Atriplex nummularia). The 
average rabbit warren depth was 1,500–2,500 mm (based on infor-
mation from previous excavation and control programs), and the rab-
bit population was classified as very high. We surveyed a 6.11 Ha 
portion of the area. Warren depths were determined through exca-
vation undertaken during previous control programs.

2.2 | Equipment used

We used three uncooled microbolometer arrays (Table 1) of vary-
ing sensor size and cost. The Jenoptik VarioCAM® HD (hereafter 
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referred to as the “Jenoptik”) professional thermal imager was used 
to evaluate part 1, with the FLIR Zenmuse XT640 and Sierra-Olympic 
VayuHD used in part 2 (hereafter referred to as the “Zenmuse” and 
“Vayu,” respectively). The Zenmuse came as an integrated system 
with the DJI Inspire 1 drone; however, both the Jenoptik and the 
Vayu were heavier nonintegrated imagers. Both of these imagers 
required mounting to a Ronin MX gimbal (https://www.dji.com/
au/ronin​-mx) for image stabilization. The Jenoptik was mounted 
to a DJI S1000  +  drone (https://www.dji.com/au/sprea​ding-wings​
-s1000/​spec) and the Vayu mounted to a DJI Matrice 600 drone 
(https://www.dji.com/au/matri​ce600/​info#specs). All video was 
collected and processed as “white-hot” grayscale imagery. The UAV 
Operator held a Remote Operators Certificate (ReOC) for the appro-
priate weight class of the UAV and with an instrument (Exemption 
from the regulations issued by the Civil Aviation Safety Authority) 
to operate at night. The pilot was qualified and approved for night 
operations under the operator's ReOC Operations Manual.

2.3 | Warren surveys

Determining which warren entrances belong to which warrens can 
be challenging in high-density rabbit populations. For the purposes 
of this research, an entrance was part of the same warren if it was 
within 5 m of another entrance. When an entrance was detected that 
was more than 5 m away from another entrance, this was deemed to 
be part of a new warren. Single entrances that were >5 m away from 
other entrances were considered a single-entrance warren. Warrens 
were regarded as active when one or more entrance had signs of 
use. This includes a lack of vegetation growing in the entrance, the 
presence of freshly excavated soil, fresh scat and/or the presence 
of rabbit footprints. Warrens where all entrances were covered in 
either debris (leaves and sticks), with cobwebs and with hard crusted 
soil were considered inactive. No further validation (e.g., excavation 
or trapping) was undertaken to confirm warren activity status.

All thermal imager surveys were conducted in the morning before 
first light to maximize the temperature differential between warren 
entrances and the surrounding terrain. All sites were visually inspected 
for rabbit warrens (active and inactive) on foot during the day (prior 

to the thermal survey), and all identified warrens were mapped with 
their GPS locations recorded. The ground and aerial surveys were in-
dependent, that is, the thermal imager transects were designed prior 
to visual inspection. In Part 1, we determined whether active rabbit 
warrens could be detected with a thermal imager. We flew the drone 
with the Jenoptik imager directly to the warren locations. In Part 
2, we compared a professional imager (Vayu) to a consumer imager 
(Zenmuse). We established parallel flight transects to allow complete 
coverage of the area being investigated and to mimic the actual survey 
method that should be employed to search for warrens. We under-
took visual counts of warrens and warren entrances in Part 2. Visual 
counts were undertaken upon arrival and before the drone flights. 
Parallel line transects approximately 10 m apart were walked, and all 
warrens and associated entrances were recorded. Once imagery from 
the drone flights was processed (see below), we undertook an addi-
tional visual inspection on foot to confirm entrances identified from 
the thermal imagery and to identify any false positives or negatives.

Prior to undertaking the surveys, we flew each imager at various 
flight heights and speeds to determine optimum picture quality. For 
the survey, the Zenmuse was flown at 3 m/s at 10 m above ground 
level (AGL). This resulted in a swath width of 15.6 m and a resolu-
tion of 1.4 pixels/cm. The Vayu was flown at 5  m/s at 40  m AGL 
resulting in a swath width of 39.8 m and a resolution of 2 pixels/cm. 
Transect spacing for each imager for the survey was determined by 
the swath width. Transects spacing for the Zenmuse was 11 m re-
sulting in a transect overlap of 2.3 m either side of the image. Sixteen 
transects were required to cover the area taking two flights to com-
plete. Transect spacing for the Vayu was 22 m resulting in a transect 
overlap of 8.5  m. Eight transects were required to cover the area 
which took one flight to complete. For both the Zenmuse and the 
Vayu, the imager was pointed 90 degrees to the horizontal during 
the surveys. During the surveys proper the drone was not stopped 
over entrances or warrens for confirmation of detection.

We downloaded the footage from the thermal imagers to an 
external hard drive and reviewed the footage from this drive using 
VLC media player 3.0.8. We recorded observations in a custom-built 
Microsoft Excel (Microsoft Corporation,  2018) workbook which 
utilized the drone's tracklog to georeference observation locations. 
This file was then exported as a KML file and viewed in Google Earth 

TA B L E  1   The three thermal imagers (uncooled microbolometer arrays) used during the study

Imager Drone
Hz 
(view)

Hz 
(export)

Sensor (w × h) 
mm

Image (w × h) 
px Pixel pitch Cost ($AUD)

FLIR Zenmuse XT 640 DJI Inspire 1 30 <9 12.38 × 9.68 640 × 512 17 μm ~AUD$20K 
(integrated)

Jenoptik VarioCAM® 
HD

DJI S1000+ 30 30 17.4 × 13.5 1,024 × 800 17 μm ~AUD$80K 
(imager only)

Sierra-Olympic 
VayuHD

DJI M600 30 30 24 × 14.5 1,920 × 1,200 12 μm ~AUD$170K 
(imager only)

Note: The Jenoptik VarioCAM® HD was used to evaluate whether rabbit warrens could be detected by a thermal imager. The FLIR Zenmuse XT640 
and Sierra-Olympic VayuHD were used to compare consumer products with high-end professional products. The FLIR Zenmuse XT640 came as an 
integrated system with the DJI Inspire I drone. (Hz = frame rate).

https://www.dji.com/au/ronin-mx
https://www.dji.com/au/ronin-mx
https://www.dji.com/au/spreading-wings-s1000/spec
https://www.dji.com/au/spreading-wings-s1000/spec
https://www.dji.com/au/matrice600/info#specs
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Pro (Google Earth Pro, 2019) to aid in comparison between thermal 
imager and visual inspection detections.

Where transect imagery overlapped, double observations of 
warren entrances were removed from the worksheet before analysis. 
If a warren complex was identified on one transect, and additional 
warren entrances were identified on the immediate next transect in 
the same location, then a determination was made on whether these 
entrances belonged to the same warren or constituted a new war-
ren. This ensured warren counts were not over-estimated.

Warrens were classified by the amount of vegetation present 
that was likely to obscure entrances. Warrens with no vegetation 
present were classified as “open”, warrens obscured by vegetation 
(e.g., entrances were beneath shrubs) were classified as “vegetated” 
and warrens that had entrances in the open and obscured by vegeta-
tion were classified as “mixed”. These classifications also applied to 
the entrances associated with that warren for analysis (i.e., individual 
entrances in “mixed” warrens were not further classified into “open” 
or “vegetated” categories for analysis).

2.4 | Statistical analysis

We used the lme4 (Bates et  al.,  2015) and lmerTest (Kuznetsova 
et al., 2017) packages in R (R Core Team, 2019) to test for any dif-
ference in entrance count associated with imager. We used a mixed 
model with Poisson likelihood to account for the nested structure 
of imagers within warrens and the contrast of vegetation class be-
tween distinct warren sets. The package emmeans (Lenth, 2019) was 
used to inspect the mean entrance count under each vegetation and 
imager class. Additionally, we plotted difference between estimates 
versus average of the estimates to check for any patterning in case 
agreement depended on magnitude of observation as suggested by 
Altman and Bland (1983). To address any disagreement in terms of 
the presence or absence of entrances detected, the three pairings of 
methods (visual vs. Vayu, visual vs. Zenmuse and Vayu vs. Zenmuse) 
were examined by classifying entrance counts as equal to or greater 
than zero and forming two-way tables (Table 2).

Ratios of the table cells to the marginal totals can then be used 
to quantify:

Agreement: The proportion of warrens where the imagers agree 
on presence or absence of warrens.

False Nil: The proportion of warrens where imager “1” detected 
entrances but imager “2” detected zero entrances.

False Presence: The proportion of warrens where imager “1” de-
tected zero entrances but imager “2” detected at least 1 entrance.

Note that the word “false” here is a value judgment given the ar-
bitrary decision of which imager to designate as “1”. However, use of 
“visual” as the baseline to compare the performance of the thermal 
imagers seems justifiable. For all analysis, the significance level was 
set at 0.05.

3  | RESULTS

3.1 | Part 1 - Detecting rabbit warrens

Active rabbit warrens were detected via thermal imagery in both 
high-density and low-density areas (Figure  1) using the Jenoptik. 
Rabbit warren entrances were detected under vegetation, including 
under blackberry (Figure 1) and where they were obscured by ser-
rated tussock. No inactive rabbit warrens were detected by any of 
the thermal imagers during this study.

3.2 | Part 2 - Evaluation of imagers and visual 
inspections

Vegetation was a significant factor in the detection of rabbit warrens 
(p = <.001). There were 22 warrens present within the survey area. 
All warrens identified by visual assessment (n = 14) were identified 
in the imagery from the Vayu. Three warrens identified by visual 
assessment were not identified in the Zenmuse footage. However, 
both the Zenmuse and the Vayu detected more rabbit warrens and 
entrances than visual inspection (Table  3, Figure  2a). A pairs plot 
shows the correlation between counts under each imager over all 
vegetation classes (1:1 lines added to show agreement, Figure  3). 
The methods seem broadly in agreement.

The Zenmuse detected significantly more entrances than both 
visual inspection and the Vayu (p =.049). Several entrances and war-
rens detected using the Zenmuse were later visually identified as 
false positives (n = 21 entrances, n = 19 warrens) (Figure 2c). The 
Vayu detected active warrens beneath vegetation and detected 
more warrens than visual inspection (Figure  2b, Table  3) with no 
false positives. Only 10 of the 22 warrens were detected by all 
three methods (Vayu, visual, and Zenmuse), and 14 of the 22 were 

a + d

a + b + c + d

b

b + d

c

a + c

TA B L E  2   Two-way table used to quantify agreement (proportion 
of warrens where the imagers agree on presence or absence 
of warrens), False Nil (the proportion of warrens where imager 
“1” detected entrances but imager “2” detected zero entrances) 
and False Presence (the proportion of warrens where imager 
“1” detected zero entrances but imager “2” detected at least 1 
entrance)

Imager 1 Nil Imager 1 Present

Imager 2 Nil a b

Imager 2 Present c d
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F I G U R E  1   Active rabbit warrens detected by a thermal imager (Jenoptik VarioCAM® HD) in (left) a high-density area with little 
vegetation and (right) a low-density area with extensive stands of serrated tussock and blackberry. Blue circles highlight some of the rabbit 
warren entrances. Rectangular objects (left image) are cage traps placed at warren entrances for another study; however, these cage traps 
provided confirmation that we were observing rabbit warren entrances

Imager/Detection type

Number detected

Entrances Warrens

O M V Total O M V Total

Visual 34 31 22 87 3 6 5 14

Vayu 50 45 22 117 4 8 10 22

Zenmuse 39 28 22 89 7 6 20 33

Bold value is a tally of entrances and warrens detected by each method.

TA B L E  3   The number of warrens and 
entrances detected by each inspection 
method (Visual, Vayu, and Zenmuse) in 
each habitat type (O = open, M = mixed, 
V = vegetated)

F I G U R E  2   The locations of warrens 
detected by (a) visual assessment, (b) with 
the Vayu, (c) with the Zenmuse, and (d) a 
comparison of all detections from all three 
methods (with the false positives from the 
Zenmuse circled in white). The Zenmuse 
had a high rate of false-positive imagery

(a) (b)

(c) (d)
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detected by both the Vayu and visual inspection. Two warrens were 
detected by thermal imager (both types) that were not detected by 
visual inspection with an additional four warrens (three single and 
one four-entrance warren) only detected by the Vayu (see Appendix 
S1).

Inspection of the mean entrance count under each vegetation 
and imager class (Table  4) revealed that, on average, both imager 
types and visual inspection detected almost the same number of 
entrances in open and vegetated areas. In mixed areas, the Vayu 
detected, on average, one more entrance per warren than visual in-
spection and up to twice as many entrances per warren than the 
Zenmuse.

Although the imagers were in agreement with respect to average 
entrance count over the survey, it is clear from Figure 3 that there 
is a degree of disagreement in terms of the presence or absence of 
entrances detected. Output from the contingency tables (Table 5) 
shows that the visual and Vayu had agreement on the presence 
or absence of entrances on 83% of warrens, noting that the Vayu 
detected entrances where the visual had not on 27% of warrens 
(Table 6). The Zenmuse was in poor agreement with the visual (27%) 
and Vayu (34%), and it seems the Zenmuse was particularly prone 
to detecting warrens that were “false positives” when compared to 
visual (85%) and Vayu (100%) (Table 6).

4  | DISCUSSION

We believe this is the first study of its kind to show that thermal 
imagers can be used in systematic surveys to detect previously 
unknown burrows of fossorial animals. All three thermal imagers 
tested could detect active rabbit warrens. Both professional imagers 

F I G U R E  3   Pairs plots showing the correlation between counts under each imager or detection type (visual inspection, Vayu and 
Zenmuse) over all vegetation classes. 1:1 lines are added to show agreement and white noise added to each point in order to reveal 
overlapping points

TA B L E  4   Mean entrance count for each imager/detection type 
under each vegetation type

Vegetation Imager Rate SE LCL UCL

Open Visual 2.027 0.897 0.851 4.828

Vayu 2.445 1.068 1.038 5.757

Zenmuse 2.325 1.019 0.985 5.491

Vegetated Visual 0.528 0.164 0.287 0.973

Vayu 0.505 0.159 0.273 0.936

Zenmuse 0.505 0.159 0.273 0.936

Mixed Visual 2.776 1.057 1.317 5.854

Vayu 4.030 1.480 1.962 8.276

Zenmuse 2.507 0.966 1.179 5.334

Note: Confidence level used: 0.95. Intervals are back transformed from 
the log scale.

TA B L E  5   Contingency tables for the three pairings of methods 
(visual vs. Vayu, visual vs. Zenmuse, and Vayu vs. Zenmuse) using 
classification of entrance counts as equal to or greater than zero

Visual nil Visual present

Vayu Nil 19 0

Vayu Present 7 15

Zenmuse Nil 4 4

Zenmuse Present 22 11

Vayu nil Vayu Present

Zenmuse Nil 0 8

Zenmuse Present 19 14
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could detect active rabbit warrens that were either obscured by, or 
under, vegetation, including blackberry bushes. The Vayu detected 
five more warrens in vegetated areas, three more warrens, and 14 
more warren entrances in mixed vegetation and 16 more entrances 
in open areas than visual inspection. The Zenmuse initially appeared 
to detect more warrens than any other method, particularly in vege-
tated areas; however, inspection of these detections revealed a high 
number of false positives.

The Vayu, Zenmuse, and visual inspection detected the same 
number of entrances in vegetated habitat (Table 3), but the Vayu de-
tected twice as many warrens, particularly single-entrance warrens. 
Single entrance warrens may indicate a breeding stop or can be the 
start of a new warren. Either way, these single entrance warrens are 
important features to manage during a control program. Previous 
studies have reported difficulty in detecting animals with thermal 
imagery in areas of high canopy cover (Gooday et al. 2018; Mulero-
Pázmány et  al.,  2014), although not all studies report such issues 
(Witczuk et al., 2018, Lethbridge et al., 2019). While we were not fo-
cused on detecting the actual animal during this survey, high-density 
rabbit populations emit a substantial amount of heat from warrens 
which was detected by the professional imagers, even when war-
rens were under vegetation. The professional imagers also had far 
superior exported imagery resulting in no false-positive detections 
of rabbit warren entrances during postsurvey processing. We sus-
pect that it is the exportable frame rate (Hz) that contributed to the 
poor performance of the Zenmuse, and potentially to the difficulty 
in detecting animals in vegetation in previous studies. For our study, 
the lower-quality imagery made it difficult to distinguish between 

single warren entrances and other hot material such as rocks, which 
effectively looked like “hot blobs”. These “hot blobs” had little defini-
tion which made identification difficult. Similar issues have been re-
ported previously (Gooday et al. 2018; Lethbridge et al., 2019). The 
viewing rate of the data stream from the imager (30 Hz) was enough 
to see rabbit warrens as the drone was flying, yet the exported video 
file at <9 Hz resulted in poor-quality blurred imagery that was un-
suitable for postsurvey analysis. Given that this technology is likely 
to be used to survey an area and have the imagery postprocessed 
and geotagged so that warrens can be mapped and subsequently re-
moved, the lower export frame rate of <9 Hz of these imagers is in-
sufficient for the task. These issues did not exist for the professional 
imagers which both had an export frame rate of 30 Hz. Consumers 
may be able to overcome the low export frame rate through the ad-
dition of an external high-speed recorder to record the datastream 
from the imager at the viewing frame rate. This will add additional 
cost to the setup (AUD$1200-1800), but this cost is insignificant 
compared to that of professional imagers.

Detecting active warrens and entrances gave no indication of the 
number of animals' present. The use of thermal imagers to estimate 
rabbit abundance in these scenarios is unreliable and not recom-
mended. This technique provides presence data only. It is unknown 
how many rabbits are required to generate a heat signature at an 
entrance. Boonstra et al. (1994) and Hubbs et al. (2000) used ther-
mal imaging to estimate the average number of hot entrances per 
arctic ground squirrel and then estimated abundance. Theoretically, 
the same should be possible for rabbits. However, factors such as 
warren size (number of entrances), warren depth, and even soil 
type are likely to influence the thermal signatures from entrances. 
Additionally, how many rabbits are required to generate a heat signa-
ture in a variety of these conditions needs to be understood. Further 
research should include the removal of all rabbits from warrens of 
varying depths in varying soil types to determine the minimum num-
ber of rabbits required to emit a detectable heat signature.

Thermal imaging technology is becoming more widely available 
but is still a costly technique. However, the cost of missing warren 
entrances in a ripping program may be greater. The opportunity 
for rabbits to reopen warrens through missed entrances has the 
potential to negate tens-of-thousands of dollars of work on a local 
scale and millions of dollars on the national scale. Australians spend 
approximately AUD$6 million per year on rabbit control programs 
(Gong et  al.,  2009), and many programs include warren ripping. 
Warren ripping can cost anywhere from AUD$50-$250/Ha, de-
pending on the size of the equipment used, the level of infestation 
and the soil type (and therefore warren depth). For our survey area 
in western NSW, we estimated that ripping would cost AUD$250/
Ha given the very high rabbit population and an average warren 
depth of 1.5–2.5  m (resulting in the need for larger equipment to 
ensure an effective ripping program). This results in a ripping cost of 
AUD$1,527.50 for this 6.11 Ha. Ripping programs tend not to hap-
pen in isolation and are often part of a multitool approach with asso-
ciated poisoning programs (approx. AUD$50/Ha) at a minimum. This 
brings the cost of initial control for these 6.11 Ha to AUD$1,833. 

TA B L E  6   Outputs from contingency tables for the three pairings 
of methods (visual vs. Vayu, visual vs. Zenmuse, and Vayu vs. 
Zenmuse) quantifying agreement (proportion of warrens where 
the imagers agree on presence or absence of warrens), False Nil 
(the proportion of warrens where imager “1” detected entrances 
but imager “2” detected zero entrances), and False Presence (The 
proportion of warrens where imager “1” detected zero entrances 
but imager “2” detected at least 1 entrance) between the methods

x n Mean LCL UCL

Visual versus 
Vayu

Agreement 34 41 0.83 0.68 0.93

False Nil 0 15 0.00 0.00 0.22

False Presence 7 26 0.27 0.12 0.48

Visual versus 
Zenmuse

Agreement 15 41 0.37 0.22 0.53

False Nil 4 15 0.27 0.08 0.55

False Presence 22 26 0.85 0.65 0.96

Vayu versus 
Zenmuse

Agreement 14 41 0.34 0.20 0.51

False Nil 8 22 0.36 0.17 0.59

False Presence 19 19 1.00 0.82 1.00
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Rabbits from surrounding areas can quickly reinvade and repopu-
late these 6.11 Ha if all the warrens and entrances are not detected 
(McPhee & Butler, 2010). The professional imager detected 30 more 
entrances and eight more warrens overall than visual inspection or 
the corrected consumer imager. If warren ripping was undertaken at 
this site using the visual or corrected consumer imager data alone, 
then up to eight warrens could have been missed, rendering the 
control program ineffective. Repeated across warrens on average 
small holdings (30–100 Ha), the cost of missed warrens/entrances 
and having to repeat control programs soon becomes considerable.

While this research focuses on the detection of active rabbit 
warrens and their entrances, the inadequacies of the exported im-
agery from the consumer imager will be important in other areas of 
thermal research. We expect that professional-grade thermal imag-
ers will not be widely used in many wildlife research projects sim-
ply due to their cost. However, as consumer-grade thermal imaging 
equipment becomes increasingly available, there is an opportunity 
to incorporate thermal imagery more cost-effectively into ecol-
ogy research projects. More information needs to be gathered on 
how these consumer-grade thermal imagers perform in detecting a 
range of wildlife species. Specifically, how the low exportable frame 
rate affects postflight image processing and the occurrence of “hot 
blobs” and species identification. This will become increasingly im-
portant as the field moves toward the use of automated detection 
algorithms in footage review.

5  | CONCLUSIONS

Thermal imaging technology provides an efficient method for de-
tecting rabbit warrens and entrances in all vegetation types (open, 
vegetated, and mixed), surpassing visual inspection alone. Improved 
detection of warrens and their entrances can lead to more effec-
tive control programs, ensuring all warrens and entrances within an 
area are identified. This should lead to reduced control costs over 
time due to decreased rates of reopening. Both consumer and pro-
fessional thermal imagers can be used; however, consumer imagers 
should be supplemented with additional technology due to their 
poor exportable frame rate. Low exportable frame rates produce 
noisy and blurred imagery. This causes hot spots to look like indis-
tinguishable white blobs which ultimately results in a high number of 
false-positive detections.
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