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Although a wide variety of genetic and nongenetic Alzheimer’s disease (AD) risk factors have been identified, their role in onset
and/or progression of neuronal degeneration remains elusive. Systematic analysis of AD risk factors revealed that perturbations of
intraneuronal signalling pathways comprise a common mechanistic denominator in both familial and sporadic AD and that such
alterations lead to increases in Af3 oligomers (Afo) formation and phosphorylation of TAU. Conversely, Ao and TAU impact
intracellular signalling directly. This feature entails binding of Ao to membrane receptors, whereas TAU functionally interacts
with downstream transducers. Accordingly, we postulate a positive feedback mechanism in which AD risk factors or genes trigger
perturbations of intraneuronal signalling leading to enhanced Afo formation and TAU phosphorylation which in turn further
derange signalling. Ultimately intraneuronal signalling becomes deregulated to the extent that neuronal function and survival
cannot be sustained, whereas the resulting elevated levels of amyloidogenic A o and phosphorylated TAU species self-polymerizes

into the AD plaques and tangles, respectively.

1. Introduction

Alzheimer’s disease involves a gradual decline of synaptic
function which is clinically presented as dementia [1, 2]. AD
brains are defined by the presence of two different protein
aggregates: plaques and tangles. Plaques are assemblies of
extracellularly deposited A peptides predominantly com-
prising the A40 and the highly amyloidogenic Af42 pepti-
des. These peptides are the products of sequential proce-
ssing of APP (amyloid precursor protein) by BACEI1 and-
y-secretase [3]. It is generally assumed that in AD homeo-
stasis of AB40 and 42 species is altered resulting in incre-
ased formation of oligomeric A3 (Af0) and subsequent aggr-
egation into plaques. Tangles comprise intracellular asse-
mblies of hyperphosphorylated TAU, a protein which as mon-
omer—among other functions—binds to and stabilizes mic-
rotubules [4, 5]. There is high degree of consensus that in
AD kinase and/or phosphatase activities are deregula-
ted, resulting in hyperphosphorylation of TAU. TAU then
loses its ability to bind to microtubules and conseque-
ntly acquires a high propensity to oligomerise and further
aggregate in tangles [6].

Decades of AD research have culminated in a wealth
of data on virtually every aspect of AD etiology and
pathogenesis. This has led to detailed insights into the
mechanisms of AD, such as APP processing or TAU-
phosphorylation, but a coherent picture encompassing AD
pathology (i.e., cause/etiology, mechanisms of development,
structural changes of neurons, and clinical manifestations) is
still in its infancy. This review attempts to contribute to this
discussion by proposing mechanisms that may help to design
a conceptual framework of AD pathology.

2. Intraneuronal Signaling and Endocytosis
Are Dysregulated in AD Leading to
Increased Ao Formation and
TAU-Phosphorylation, which in Turn
Further Derange Signalling

2.1. AB Oligomers Impact Intraneuronal Signalling in Famil-
ial AD. Sporadic AD is often phrased as idiopathic to
emphasise that the cause of the neuronal degeneration
and symptoms is unknown. Although undoubtedly true for
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TaBLE 1: Sporadic and familial AD risk genes and nongenetic positive risk factors and possible pathogenic mechanisms [8, 132].
Risk factor Possible mechanism(s)" References™
Ap homeostasis Cellular signaling
Genetic
APP APP processing Erk1/2 (61]
PS1 Change in A40/Af42 ratio Wnt-signalling, Erk1/2, Akt, and Ca*" signaling [61, 64-66,133]
PS2 APP processing Erki1/2 [65, 134, 135]
BACE APP processing cAMP-PKA-CREB signaling [68]
ApoE4 A3 clearance Erkl1/2, JNK [136-140]
SORLA APP processing Neurotrophin signaling [137, 141, 142]
EPHAI ? Ephrin signalling (Erk1/2) [143, 144]
MS4A6A/MS4A4A ? Signalling [132]
CD2AP ? PI3K-Akt-GSK3 (podocytes) [145]
cLu AP sequestering ;zf}fﬂ;lu“erm signalling; p53-Ddkl-JNK [146-148]
B2-AR ? PKA, Erk1/2, and JNK [149,150]
CD33 Ap clearance (151]
PICALM APP processing Regulation of receptor-mediated endocytosis? (152]
BINI APP processing Ca?t dyshomeostasis [153]
ABCA7 Ap clearance ? [154]
Nongenetic
Smoking ? Erk1/2 activation by oxidative stress (155, 156]
Obesity ? ]Ch)lrgl?ilzgiiiﬁi?;s:llﬁ;tévation of MAPKSs (p38, [157-160]
Traumatic brain injury (TBI) ~ APP processing iittl,végg; ﬁo fMAPKSs (Erkl/2, p38, and JNK), [8,161]
Type II diabetes ? IMns:Il)iE’ssig;;;l’li;qﬁkc)ytokine-induced activation of [158-160, 162]
Glucocorticoid-induced activation of Erkl/2, JNK;
Stress (hormones) ? oxidative stress-induced JNK-dependent APP [163-166]
processing
Anaesthetics Activation of MAPKs (Erkl1/2, JNK) [167-170]
Impaired Ca** dyshomeostasis and signalling,
Ageing APP processing elevated cytokine signalling (“inflammaging”), [171-174]

impaired mitochondrial function with altered
redox signalling (MAPKs, PI3K/Akt)

*Not exhaustive. “* Including reviews with original research papers cited.

individual patients, epidemiological studies have revealed
several positive and negative AD risk factors which may hold
clues as to the mechanism of AD pathogenesis (Table 1).
Remarkably, these risk factors are highly diverse, consisting
of genetic, lifestyle, and environmental cues with various
degrees of disease penetrance. For instance, ApoE vari-
ants and zygosity are either protective against or strongly
increase the risk of AD [7]. Ageing, smoking, traumatic
brain injury, or metabolic diseases such as diabetes are
examples of nongenetic modifiers [8]. In rare familial cases
mutations in APP or its processing machinery comprise
highly penetrant risk factors which in itself suffices to trigger
AD.

Irrespective of their nature and origin, at a certain point
these risk factors converge to a common mechanism involv-
ing synaptic failure, A and TAU pathology, and subsequent

neuronal loss. Thus, a key question of understanding AD
is not what causes AD, as these are multifactorial and
heterogeneous among patients, but how these may converge
mechanistically to trigger AD pathology. Once understood,
principally every condition impacting this mechanism could
be considered as contributing to AD and effective therapeutic
options targeting this mechanism could be rationalised for
treating AD.

The discovery of genetic risk factors causing early onset
AD has been extremely instructive to reveal such common
mechanism since in these exceptional cases only one defined
cause, namely, altered APP processing, triggers AD providing
an relatively “simple” paradigm to investigate pathogene-
sis. From numerous studies on the mechanism of APP-
dependent neurotoxicity, a picture emerges in which Apo,
but not plaques or monomers, comprises prime candidates
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TABLE 2: Neuronal receptors impacted by Ao [19, 175] and possible effects on downstream signalling pathways.
Receptor Signal transduction pathway References”
NMDAR (NR2B subtype) Erk1/2, CamKIV [95, 176-182]
mGIluR5 (with PrP®) PKC, MAPKs (Erkl/2, p38, and JNK) [79]
nAchR (a7 subtype) Erkl/2, Akt, and JAK-STAT [183,184]
Wnt receptor ‘Wnt signalling (GSK3) [185, 186]
IR/IGF PI3K-Akt [176,187]
Amylin receptor Erkl/2, PKA [177]
RAGE p38 [188]
Neurotrophin receptors Erk1/2, Akt [45,189]

B2AR

PKA, Erk1/2, and JNK

(149, 190, 191]

*Including reviews with original research papers cited.

Risk factors Deranged signal transduction Synaptic failure Neuronal loss
ApoE 4 —> LDLR ) MAPK signalling
: Endocytosis i i
5 IR/IGE-R / « Synaptic function
ROS . nAChRs |Fyn|\ RAS 7 ppK-Akt « Differentiation Neuronal
Cytokines PI}: cl\camp « Cell cycle degeneration
Stress fho.r{noneS) —  NMDARSs |G1o PI NE-«B « Apoptosis
Braininjury = NGER | p85 DAG ~ CaMKK?2 T?
Anaesthetics 5 Cca2t Wit signalli
ABo Wnt-R : \ nt signalling » TAU phosphorylation + Tau tangles
™~ mGIuR 5 Calcineurin-NFAT » APP processing * A plaques

FIGURE 1: APP, its processing products and TAU are part of an intraneuronal signalling network required for neurogenesis, neuronal function,
and survival which go awry in AD. Afo and AD risk factors modulate receptor mediated intraneuronal signalling and endocytosis which
impacts A5 homeostasis and TAU-phosphorylation. TAU-hyperphosphorylation leads to decreased microtubule binding, somatodendritic
redistribution, and altered signalling. Apart from a modulatory role of Ao, AICD, and phosphorylated TAU on signalling, their formation is
also controlled by signalling implying a positive feedback loop which could overtime lead to a dysfunction of signalling cascades underlying
synaptic integrity and neuronal survival. High levels of Ao and hyperphosphorylated-TAU species will, due to their intrinsic amyloidogenic
propensity, ultimately aggregate into plaques and tangles. Risk factors which impact these signalling processes, either directly or indirectly
(i.e., through impacting Ao levels), will set off this cascade of events culminating in synaptotoxicity and pathology. Note that the schematic
is highly simplified and intended to depict general principles. For a more exhaustive insight into the signalling pathways impacted in AD, see
[30]. Abbreviations are as follows: LDLR: low density lipoprotein receptor; IR: insulin receptor; IGF-R: insulin-like growth factor receptor;
nACHR: nicotinic acetylcholine receptor; NMDAR: N-methyl-D-aspartate receptor; NGF-R: nerve growth factor receptor; Wnt: Wingless
Int; PrPc: cellular prion protein; RAS: rat sarcoma; cAMP: cyclic adenosine monophosphate; PI: phosphoinositides; DAG: 1,2-diacylglycerol;
mGluR5: metabotropic glutamate receptor; MAPK: mitogen-activated protein kinase; PI3K: phosphoinositide 3-kinase; NF-«B: nuclear factor
kappa-light-chain-enhancer of activated B cells; CamKK2: calcium/calmodulin-dependent protein kinase 2; and NFAT: nuclear factor of
activated T-cells.

responsible for synaptic failure, TAU-phosphorylation, and
neuronal loss [9-15]. Also the AICD, another APP processing
product, may play a role here [16-18]. A30 has been shown to
bind directly to, or modulate indirectly, numerous neuronal
receptors [19] implying that these impact synaptic signalling
cascades including MAPK, Akt, Wnt, and Rho pathways
(summarized in Table 2 with references and Figurel). It
appears that Ao acts as a nonspecific pathological receptor
ligand/agonist, both at the pre- and postsynaptic membrane.
In addition, Ao binds to membranes directly which appear
to involve GMI ganglioside and as such are thought to induce
structural and functional changes which may impact Ca**
signalling and synaptic plasticity [20, 21]. A global impact
of Afo on different signalling pathways and their respective

signalling components is consistent with the widely held view
that kinase and phosphatase activities are imbalanced early
on in the pathogenesis in diseased neurons [22], resulting
in improper hyperphosphorylation of downstream substrates
including TAU [6, 23].

Also APP processing itself is controlled by signal trans-
duction pathways. GPCR’s, like GPR3 and f32-adrenergic,
receptors mediate their effects on APP processing through
interaction with fB-arrestin and y-secretase [24, 25]. Activa-
tion of JNK3 MAPK by Afo phosphorylates APP at T668,
thereby increasing its endocytosis and subsequent processing
(26, 27]. Also, Ras-Erkl1/2 and PI3K-Akt signalling pathways
activate APP-expression [28] or PSl, a subunit of the APP
processing machinery [29]. These results suggest that Afo



increases its own formation by modulating APP processing
through these signalling pathways (Figure 1).

2.2. Signalling and Endocytosis: Intimate Partners in Crime.
Cell signalling and endocytosis are increasingly recognized
as intertwined and bidirectionally controlled processes [31-
33]. Receptor internalisation by endocytosis is a common
response upon ligand binding to desensitize cells. Inter-
nalised receptors are shuttled to early endosomes, which act
as a sorting station for recycling to the plasma membrane
or to the lysosome for degradation. Signal propagation is
not restricted to the plasma membrane but (may) con-
tinue(s) after internalisation. Endosomes marked with active
signalling pathways, referred to as signalling endosomes
[34], prolong and even intensify signalling while transported
through the cell. To illustrate this, activation of the NGF
receptor at the presynaptic membrane transiently activates
RAS-Erkl/2 signalling [31, 35]. Upon internalization, sig-
nalling is sustained as NGF-receptors remain actively cou-
pled with Erkl/2, however, in this context via RAPI, while
being transported to the nucleus in order to phosphorylate
substrates such as CREB and Erk5. Another example of a
close link between signalling and endocytosis entails Wnt
signalling. Here, internalization of activated receptors is
required to control GSK3 activity and f3-catenin stability [36,
37]. Conversely, signalling controls the endocytic pathway
itself by impacting the phospholipid turnover. Increases of
PIP3 by activation of PI3K allows (apart from Akt) membrane
recruitment of Rho and Arf GEFs and GAPs in turn modulat-
ing their respective GTPases involved in vesicular trafficking
(among other functions such as cytoskeletal rearrangement)
[38].

As discussed above, intracellular signalling is deregulated
in AD by risk factors and ABo and thus inevitably will
impact endocytosis. Indeed, sporadic AD is characterised
by an abnormal activation of the endocytic pathway, with
associated increases in PI3K and RAS signalling and Rab5
levels, and comprises early neuropathological alteration even
before A3 pathology ensues [39-41]. Consistent with its
role as a pathological receptor ligand, Afo also increases
internalisation of receptors by endocytosis [42-44]. An even
more general effect on the endocytic pathway is expected by
Ao triggered receptor-mediated activation of phospholipid
signalling through neurotrophin or insulin signalling path-
ways [45-48]. Likewise, stress-activated p38 MAPK, a kinase
activated in AD, stimulates Rab5 which leads to acceleration
of endocytosis [49].

Note that AICD, another APP processing product, acti-
vates signalling through interaction with Shc and Grb2,
adaptor proteins that link with Ras/Erkl/2 and PI3K/Akt
pathways (reviewed in [18]) and (perhaps as a consequence)
trigger endocytic dysfunction [16]. In addition, GSK3 is also
increased by AICD through inhibition of Wnt signalling
[50]. Thus, apart from Apo, other APP processing products
also impact signalling and endocytosis in AD and may
therefore, at least in part, contribute to the development of
AD pathology independently of A [17].

As BACEL1 and y-secretase are localised at endosomes,
amyloidogenic, neurotoxic processing of APP requires
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endocytosis [51-54] and is controlled by vesicular trafficking
[55]. Conditions that alter the residence time and/or levels of
APP or its processing enzymes at the endocytic compartment
impact Af3 production or clearance accordingly [55-58]. For
instance, Arf6, a small GTPase controlled by phospholipid
signalling, mediates endosomal sorting of BACEl and
thereby APP processing [59]. Or the already abovementioned
JNK-driven phosphorylation of APP at T668 facilitates its
endocytosis and processing [27]. Similarly, ApoE receptors
facilitate the internalization of APP to the endosomal
compartment [60].

Taken together, the processing of APP is controlled by
signalling pathways which impact expression and endocytic
localisation of APP and its processing machinery. Thus,
aberrant activation of pathways that increase endocytic
APP levels also allows more processing and hence elevates
APo and AICD formation. This model implies a positive
feedback loop as APP processing itself is activated by its
own products through signalling (Figurel). In this way,
subtle genetic or nongenetic AD risk factors which lead to
relatively small perturbations of signal transduction pathways
could, if unchecked, trigger over time a large buildup of
ABo/AICD and thus amplify these subtle alterations into
large derangements of signalling and associated endocytosis.

2.3. Derailed Intraneuronal Signalling Is a Common Denom-
inator in Sporadic and Familial AD. As discussed above, in
familial AD increased formation of AfBo impacts receptor-
mediated signalling. In addition, APP, its processing machin-
ery, and the AICD impact signalling independent of A
formation (reviewed in [61]). For instance, PS1, a subunit of
the y-secretase complex, cleaves numerous transmembrane
signalling receptors and transducers other than APP CTFs,
including Notch, cadherins, ErbB4, LDL receptor related
proteins, and so forth [62, 63]. In addition, PS1 and PS2
impact signalling pathways directly. Deletion of PSI and/or
PS2 activates Erkl/2 activity in cell line models, whereas
an early onset FAD mutation in PSl results in consti-
tute activation of CREB-phosphorylation which is associ-
ated with neurodegeneration [64-67] and BACEI regulates
the cAMP/PKA/CREB pathway independent of A [68].
Thus, APP and components of its processing machinery
impact neuronal signalling pathways independent of APP
processing. Hence, FAD mutations can modulate signalling
in potentially two ways: through elevated Afo formation
via abnormal APP processing and/or independently of Af
through altered interactions with signalling pathways. Per-
haps through these combined effects on signalling such
mutations represent particularly aggressive and penetrant
forms of AD.

Considering that signalling and associated endocytosis
is abnormal in FAD, it begs the question how this relates
to sporadic AD. As amyloidogenic processing of APP is
controlled by signalling and endocytosis, it is highly rel-
evant to observe that AD risk factors, although very het-
erogeneous, have common mechanistic underpinnings by
impacting intracellular signal transduction pathways (sum-
marized in Table 1). For example, ApoE4 and traumatic brain
injury, two entirely unrelated AD risk factors, both directly
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activate common signalling pathways (such as Erkl/2). In
fact, for most nongenetic AD risk factors no direct impact
on A3 homeostasis can be hypothesized but involve altered
signalling. Metabolic disorders like obesity or diabetes are
associated with high levels of cytokines which activate AD
relevant pathways in neurons. Likewise, glucocorticoids pro-
duced under conditions of chronic stress impact AD relevant
signalling cascades in their own right. AD risk factors,
such as stroke or head injury involve glutamate receptor-
mediated excitotoxicity and impact Ca** signalling in a way
which mechanistically resembles Afo-instigated activation
of Erkl/2 by NMDA receptors. Ageing, the most prominent
risk factor for AD, involves, apart from the abovementioned
risk factors, altered redox signalling as a result of age-related
decline of mitochondrial activity with concomitant increases
in ROS production.

In summary, a common denominator in both FAD
and sporadic AD comprises perturbation of intraneuronal
signalling with associated changes in the endocytic pathway.
As outlined above this may result in a vicious, self-enforcing
cycle of deranged signalling and Af production driving the
pathogenesis (Figure 1). In early onset FAD, this autocatalytic
mechanism is directly and potently impacted by mutations
in APP or its processing machinery. In late onset and
sporadic AD initial, probably relatively minor, alterations of
signalling by one or more AD risk factors may overtime
set off this mechanism which once in motion drives AD
pathogenesis.

This scenario resembles a domino system where tumbling
of the stones (deranged signalling) is both cause and effect
(autocatalytic effect), yet in order to let it happen a “risk fac-
tor” such as a sufficiently strong push, windfall, or vibration,
is required to set off the cascade. To extent the metaphor
further, FAD mutations could be seen as alterations of the
core autocatalytic mechanism itself, for instance, as thinner
domino stones, which make the system more unstable and
thus more sensitive to risk factors. The opposite may be true
for “protective” APP mutations (thicker stones, more resilient
to risk factors) like the recently discovered Icelandic mutation
which decreases APP processing [69].

From this perspective it can be envisaged that AD
risk factors comprise a patient-specific constellation which
determine the onset and progression of altered signalling
and consequently AD pathogenesis. By extension any genetic,
environmental, pharmacological, or lifestyle factor impacting
this mechanism can, depending on the direction of the effect,
be considered as a positive or negative AD risk factor.

2.4. A Signalling Function of Phosphorylated TAU Contributes
to AD Pathogenesis. Besides Af3 polymerization and deposi-
tion into plaques, hyperphosphorylation and aggregation of
TAU into intracellular tangles are other pathological features
of AD. The identification of clinical mutations in TAU leading
to FTLD strongly suggests that TAU in AD has an important
role in pathogenesis [70-72]. Consistent with this notion, in
many experimental paradigms a TAU-dependent neuronal
degeneration was observed [23]. However, a key question
remains as to the mechanism involved especially in relation
to changes in signalling and A5 homeostasis.

A study in transgenic APP mice, a model of early onset
AD without TAU-tangle formation, revealed that deletion of
the endogenous TAU mouse gene rescues cognitive decline
without impacting plaque formation [73]. These findings
position TAU as a downstream mediator required for APP-
instigated neuronal toxicity, a feature not involving a loss-
of-function (i.e., decreased microtubule stabilization), but
a gain-of-toxic function which, however, does not involve
TAU tangles [74]. Instead it was shown that TAU regulates
postsynaptic NMDAR signalling directly by a mechanism
involving recruitment of Src kinase Fyn to the PSD95-NMDA
receptor complex [75, 76]. Combined with the observation
that, like deletion of TAU, lowering of NMDAR-Erkl/2
signalling rescues APP-driven toxicity [75, 77] it appears
that in AD such TAU function potentiates NMDA receptor
signalling [76, 78]. Likewise, Ao activation of the mGIuR5
receptor through PrP® may also involve Fyn-TAU interaction
[26, 79]. In other words TAU has, besides its well-known
function in binding and stabilizing microtubules, a role in
intracellular signalling. This raises the distinct possibility that
when TAUs signalling activity goes awry it may contribute to
AD pathogenesis.

Albeit TAU’s signalling function is a somewhat neglected
feature, a far more general role of TAU in signalling (apart
from impacting NMDA receptors) can be considered. Table 3
shows numerous TAU interactors which are transducers of
receptor-mediated signalling implying that TAU can modify
their activity through these interactions. These interactors
function in a variety of pathways both pre- and postsynap-
tically. Indeed, apart from impacting postsynaptic NMDA
receptor activity, TAU activates presynaptic growth factor
signalling through interaction with Src family kinases [80-
82] or phospholipid signalling by activation of PLCy [83]
and would provide a mechanistic explanation as to the role
of TAU in neurite outgrowth [84, 85] and cell cycle reentry
(86, 87] in cell line models.

From Table3 it can also be appreciated that many
interactors through their SH3 domains bind to the proline-
rich domain (PRD) of TAU. Notably, TAU PRD is hyper-
phosphorylated in AD suggesting that these interactions
are controlled by TAU-phosphorylation (and indirectly the
relevant signalling cascades). Quantifying the TAU-SH3
interaction by surface plasmon resonance and sedimentation
assays indicated this may indeed be the case [88, 89].
Phosphorylation-mimicking mutations of TAU were shown
to increase or decrease (depending on the TAU-isoform)
the affinity to Fyn or Src SH3 domains, consistent with
the requirement of TAU-phosphorylation for regulation of
NGF-RAS-Erk1/2 signalling [80]. Moreover, clinical FTLD-
causing TAU-mutations were found to strongly increase the
affinity to SH3, that is, phenocopying the effects of hyper-
phosphorylation [88]. Thus, these mutations could directly
impact signalling, similar as in AD, which may contribute to
neuronal degeneration. In fact, it may provide an explanation
as to the mechanism of FTLD mutations in TAU which do
not impact its aggregation propensity [90] such as R406W
[91-94], which possesses an increased affinity to Fyn-SH3
of about 45 times [88]. Collectively, it seems possible that
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TABLE 3: Binding partners of TAU (modified from [4, 192]).

Binding partner Region of TAU involved Function/identity of binding partner References
B-tubulin Repeat domains Cytoskeleton (193]
F-actin Cytoskeleton (194]
ApoE3 Repeat domains Lipid carrier [195,196]
Fgr Proline-rich domain Src kinase family [89]
Fyn Proline-rich domain Src kinase family (82, 89]
Lck Proline-rich domain Src kinase family (82, 89]
cSre Proline-rich domain Src kinase family (82, 89]
Grb2 Proline-rich domain Growth factor signalling (89]
c-Abl Src kinase family (197]
p85a Proline-rich domain Regulator PI3K, phospholipid signalling [89]
PLCy Phospholipid signalling [89,198]
GSK3p N-terminal Kinase (199]
Calmodulin Repeat domain Ca”™ signalling (200, 201]
14-3-3 Proline-rich domain and repeat domain Signalling scaffold [202-204]
Annexin A2 Ca*" signalling, membrane trafficking [205]
Pinl Proline-rich domain Peptidyl-prolyl cis/trans isomerase regulates 206, 207]

phosphorylation of TAU

deregulation of signalling by hyperphosphorylated TAU con-
stitutes a toxic gain-of-function of TAU driving pathogenesis
in AD (Figure 1).

2.5. Deregulated Signalling by Ao or Other AD Risk Factors
Triggers TAU-Hyperphosphorylation. An important question
however remains as to how TAU becomes hyperphosphory-
lated in the first place. The facts that TAU is a substrate of
many of the kinases operating in the pathways modulated by
Ao (Table 2) or by AD risk factors or genes (Table 1) and
that TAU is phosphorylated by neurons challenged with Ao
or other stresses/conditions [95-98], provide a mechanistic
explanation as to TAU hyperphosphorylation in AD [5, 23,
99,100]. Once phosphorylated, TAU may impact intracellular
signalling further implying a positive feedback mechanism
such as that proposed for TAU-potentiated NGF-Erkl/2
activation [80] and/or by recruitment of Fyn to NMDA
receptors [75].

Another salient feature entails the somatodendritic redis-
tribution of TAU in diseased neurons, a prerequisite for
impacting postsynaptic signalling. This feature of TAU
is controlled by phosphorylation of microtubule binding
repeat domains which strongly reduces its affinity to micro-
tubules [101]. Hyperphosphorylation of TAU (and presum-
ably detachment from microtubules) is a prerequisite—by an
as yet unclear mechanism—to cross an axonal diffusion bar-
rier allowing TAU to invade the somatodendritic space [102].
Phosphorylation of TAU at the repeat domains, in particular
Ser262, is required to elicit Af-instigated neurotoxicity [95,
103, 104], indicating that detachment from microtubules
entails an important feature of AD pathogenesis. Moreover,
Ser262 is one of the earliest sites phosphorylated in the course
of pathogenesis [22] and its phosphorylation acts as a priming
site for further, more extensive phosphorylation at sites
that may control its signalling function [105]. These results

indicate a sequential mechanism of TAU-phosphorylation
by ABo and other AD risk factors affecting its subcellular
distribution and signalling.

Collectively TAU-phosphorylation comprises a gain-of-
toxic function driving AD pathogenesis. Activation of sig-
nalling pathways by A o and/or by other triggers (see Table 1)
leads to hyperphosphorylation of TAU which subsequently
decreases its microtubule binding and alters its somatoden-
dritic redistribution and signalling function. These effects
may be amplified by a feedback mechanism as formation of
Ao and phosphorylated TAU not only control but are also
controlled by signalling (Figure 1). The resulting deregulation
of intraneuronal signalling contribute to neurodegeneration
(see below), whereas the elevated levels of A 3o and phospho-
rylated TAU, which have a high propensity to aggregate, lead
to Af plaques and TAU tangles.

3. Considerations on the Mechanism of
Altered Signalling in Neurodegeneration

3.1. Intraneuronal Signalling Defines Fate and Function of
a Neuron for Better and for Worse. As discussed above
deregulation of signalling may drive the neuronal degen-
eration in AD. The question, however, remains as to how
mechanistically “deregulation” of pathways lead to neuronal
degeneration. Neuronal function and survival depend on a
balance between neurotrophic and neurotoxic cues setting off
signalling cascades which define the outcome ranging from
proliferation, differentiation, synaptic plasticity to apoptosis.
A classical example entails growth factor signalling which
sustains neuronal survival and can trigger differentiation or
even antagonize the effects of toxic insults, whereas neurons
without sufficient trophic support are prone to undergo apop-
tosis, as it occurs in a developing nervous system [106, 107].
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Thus, properly regulated and balanced signalling, in function
of its developmental state, defines fate and function of a
neuron [108]. Accordingly, pathological conditions, such as
in AD, which oft-balance signalling are expected to decrease
neuronal integrity.

The underlying mechanisms of how signalling leads
to altered neuronal function are poorly understood but
extensive work on Erkl/2 signalling revealed insights which
may be applicable to other neuronal signalling pathways
as well [109]. Erkl/2 signalling is particularly relevant for
AD since its aberrant activation is an important driver of
neurodegeneration [109, 110]. Erk1/2 kinases are responsive to
a wide variety of functional (learning and memory), trophic,
and pathogenic stimuli leading to different, even opposing,
outcomes including survival, proliferation, differentiation,
and neuronal cell death [110-112]. Thus, the signal as such
is not predictive of the outcome and additional layers of
control exist to determine specificity of Erkl/2 activation.
Compartmentalization is a prominent mechanism to ensure
specificity as it directs and concentrates the kinase (or some-
times the whole signalling pathway) to appropriate substrates
within the cell [113]. This remarkable feature involves several
scaffold, anchor, and retention factors which bind to Erkl/2
and often also other signalling molecules determining its
subcellular action and allowing crosstalk with other pathways
[113].

Localisation of Erkl/2 to specify its output is in part
controlled by the kinetics of the signal (reviewed in [114, 115]).
During transient activation, Erkl/2 remains predominantly
cytoplasmic promoting proliferation, whereas its sustained
activation is needed for nuclear concentration and results
in differentiation. Chronic stress causes prolonged Erkl/2
activation in the nucleus which contributes to cell death [109,
116]. Thus, the widely different outcomes of Erk1/2 signalling
depends, at least in part, on its kinetics as it dictates its
subcellular localisation and as such specifies accessibility of
substrates (reviewed in [113, 115]). In several model systems,
sustained Erkl/2 activation involves a nuclear accumulation
which is associated with detrimental outcomes [116-120]. For
instance, neurons challenged with stress trigger a persistent
nuclear retention of activated Erk1/2 and elicit proapoptotic
effects and cell death [109, 116]. Accordingly, it seems likely
that the chronic activation of Erkl/2 in AD, presumably by
Ao and possibly other risk factors (see Tables 1 and 2), leads
to an aberrant, prolonged nuclear accumulation contributing
to neuronal demise.

3.2. Diseased Neurons in AD Display Signalling Configured for
Immature Neurons. The insights obtained from the studies
on Erkl/2 revealed that spatiotemporal control of Erkl/2
signalling determines its impact on neuronal function and
survival [109] and as such provide a conceptual framework
of the underlying mechanisms as to how derailed Erk1/2
signalling contributes to neuronal degeneration in AD. We
anticipate that this concept is likely applicable to other
signalling pathways as well.

In fact hyperphosphorylation of TAU in AD can be con-
sidered a reflection of such global deregulation of signalling
in adult neurons [6] and illustrates how this may lead to

inappropriate outcomes in function of the developmental
state. As outlined above, hyperphosphorylation of TAU may
lead to increased microtubule dynamics and the potentiating
of pathways (such as Erkl/2) resulting in aberrant cell cycle
entry and apoptosis. Such functional outcomes are expected
to be detrimental in mature, postmitotic neurons of the adult
brain. However, in a developing brain hyperphosphorylated
TAU is fully appropriate as, in this context, neurons require
dynamic microtubules to mediate sufficient synaptic plastic-
ity, proliferation, and differentiation but also susceptibility
to undergo apoptosis when trophic support by target cells is
insufficient [108]. In other words, neuronal signalling in AD
involving TAU-hyperphosphorylation appears to be geared
to a situation resembling an immature brain.

Perhaps, a similar situation may apply for APP and its
processing as well, given the neurotrophic properties of APP
and its cleavage products [121]. Addition of APP to PCI2 cells
stimulates neurite outgrowth [122], whereas in transgenic
mice expression of human APP results in increased neuro-
genesis [123, 124]. Moreover, the AICD promotes signalling
associated with neurite outgrowth [18, 50], and secreted
sAPP« impacts proliferation of embryonic stem cells [125].
Remarkably, at low concentration, Af has neurotrophic
activity but only in undifferentiated neurons but is toxic
to mature neurons [126-129]. Thus, APP and its processing
products may have a role in proliferation and differentiation,
functions that are particularly relevant in a developing brain,
but, when unchecked, toxic to mature neurons.

Collectively it can be envisaged that APP, its processing
products, and TAU are part of an intraneuronal signalling
network required for neurogenesis, neuronal function, and
survival which needs to be appropriately tuned to the devel-
opmental status. Accordingly, pathological conditions or risk
factors which off-balance such signalling network to a state
resembling immature neurons will be detrimental for mature
neurons.

3.3. Considerations on Drug Discovery for Alzheimer’s Disease.
As discussed above aberrant activation of signalling cas-
cades underlies mechanistically neurodegeneration in AD. As
such it may provide a conceptual framework for successful
drug discovery as it assumes that interventions aimed at
normalizing signalling are expected to be neuroprotective,
to reduce Af levels and TAU-phosphorylation and conse-
quently plaque and tangle formation. In this way a fundamen-
tal mechanism driving pathogenesis in AD will be targeted
and thus anticipates the minimum to preserve the function of
still healthy neurons in the diseased brain and possibly may
even restore dysfunctional synaptic activity of affected, but
still living, neurons in symptomatic patients. However, given
the multitude of pathways involved and considering their
important neuronal functions, pharmacological modulation
of one, specific target safely to achieve that goal will be a
major challenge. Another confounding factor comprises the
heterogeneity of sporadic patients, presumably reflected by
the heterogeneity of risk factors each with their specific effects
on the nature and effect size of the signalling pathways.
Ap-directed therapeutic approaches to reduce Ap levels
have been and are still heavily explored and are expected to



normalize signalling, at least to some extent, and thus have
therapeutic potential. However, a possible downside may be
that in symptomatic patients TAU-hyperphosphorylation has
kicked in already to a level able to derange signalling and
neuronal function in a feed forward fashion independent
of Afo (from that point on perhaps mechanistically similar
to how clinical TAU mutations in FTLD lead to neurode-
generation). Thus, such approach would be most successful
in a preventive setup very early in the development of AD.
Another consideration is that the therapeutic intervention
itself should not inadvertently impact neuronal signalling for
the worse. For instance, inhibiting y-secretase will, on one
hand, lead to lowered Ao levels and most likely to cognitive
improvement in transgenic APP mouse models of familial
AD but on the other hand may also impact signalling path-
ways (such as increased Erkl/2 activity [65]), independent of
APP processing, which may impair a therapeutic response
in sporadic AD patients. Likewise inhibition of CDKS5, a
prominent TAU-kinase and considered an attractive drug
target for AD [130], may lead to sustained Erkl/2 activity and
consequently neuronal apoptosis [131].

Nevertheless, promising drug targets to be considered
for therapeutic intervention comprise components of sig-
nalling pathways impacted in AD [6, 130] although there
is a risk—given the overall deregulation of signalling—that
downregulation of only one kinase (or pathway) might be
too limited to result in a satisfying therapeutic response.
From this perspective, an interesting point of intervention
may comprise the convergence where receptors relay their
environmental cues to second messengers such as Ca®"
and/or small GTPases modules (Figure 1). Downregulating,
but not fully inhibiting, the activity of such relay systems may
lead to a more global normalization of signalling in AD and
thus may constitute a promising therapeutic avenue.
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