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Abstract

Background: Declining water quality coupled with the effects of climate change are rapidly increasing coral diseases on
reefs worldwide, although links between coral diseases and environmental parameters remain poorly understood. This is
the first study to document a correlation between coral disease and water quality on an inshore reef.

Methodology/Principal Findings: The temporal dynamics of the coral disease atramentous necrosis (AN) was investigated
over two years within inshore populations of Montipora aequituberculata in the central Great Barrier Reef, in relation to
rainfall, salinity, temperature, water column chlorophyll a, suspended solids, sedimentation, dissolved organic carbon, and
particulate nitrogen, phosphorus and organic carbon. Overall, mean AN prevalence was 10-fold greater during summer wet
seasons than winter dry seasons. A 2.5-fold greater mean disease abundance was detected during the summer of 2009 (44
6 SE 6.7 diseased colonies per 25 m2), when rainfall was 1.6-fold greater than in the summer of 2008. Two water quality
parameters explained 67% of the variance in monthly disease prevalence in a Partial Least Squares regression analysis;
disease abundance was negatively correlated with salinity (R2 = 20.6) but positively correlated with water column
particulate organic carbon concentration (R2 = 0.32). Seasonal temperature patterns were also positively correlated with
disease abundance, but explained only a small portion of the variance.

Conclusions/Significance: The results suggest that rainfall and associated runoff may facilitate seasonal disease outbreaks,
potentially by reducing host fitness or by increasing pathogen virulence due to higher availability of nutrients and organic
matter. In the future, rainfall and seawater temperatures are likely to increase due to climate change which may lead to
decreased health of inshore reefs.
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Introduction

Disease has emerged as a significant threat to wildlife

populations in recent decades [e.g.1, 2]. A recent review highlights

the substantial role that environmental nutrient enrichment has

played in contributing to patterns of emerging human and wildlife

diseases and the urgent need for studies to understand linkages,

particularly in light of ongoing intensification of global nutrient

cycles [3]. The current understanding of marine diseases is poor in

comparison to knowledge of human, agricultural and terrestrial

wildlife diseases [4]. It appears that epidemiological theories

developed for terrestrial diseases may not translate well to marine

ecosystems [4,5]. For example, diseases appear to spread more

rapidly in comparatively open oceanic ecosystems [6] and marine

pathogens are more diverse taxonomically and in their life

histories [5]. Thus, marine case studies that advance understand-

ing of potential links between nutrient enrichment and marine

diseases are critical if management tools for the long-term

conservation of marine wildlife are to be effective.

Coral reefs are increasingly threatened by changes in water

quality from terrestrial runoff [7], climate change [8,9] and over-

exploitation [10,11]. Coral bleaching and disease have emerged as

dominant drivers of coral population declines on coral reefs,

particularly as oceans have warmed in the past few decades [12].

Current research supports a connection between a warming

climate and increasing incidence of disease in corals [12,13,14].

For example, warm temperatures and high coral cover have been

linked to increased abundance of white syndromes on the Great

Barrier Reef (GBR) [14] and progression rates of black band

disease were higher in the austral summer [15,16]. However, links

to most other anthropogenic disturbances are less clear [17].

Although the mechanisms are unknown, outbreaks of disease on

some coral reefs have been correlated with increases in nutrient

runoff [18,19]. In the Philippines, a higher prevalence of growth

anomalies and Porites ulcerative white spot disease was found near

a sewage outfall [20], and white pox has also been linked to sewage

inputs in the Caribbean [21]. Field experiments in the Caribbean

have demonstrated that moderate increases in dissolved inorganic
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nutrient concentrations can substantially increase the severity of

aspergillosis and yellow blotch diseases [22] and the prevalence of

aspergillosis [18]. In other studies, nutrient exposure resulted in

increased progression rates of black band disease, with nutrients

thought to reduce the coral host’s ability to counteract infection by

pathogenic micro-organisms [23]. Experiments on the impacts of

organic carbon on microbiota suggested that the mechanism may

be indirect with elevated nutrients increasing the production of

organic carbon (through primary production), which in turn leads

to an increased growth rate of microbes living in the corals’ mucus

layer and a disruption of the balance between corals and their

associated microbiota [24].

Terrestrial runoff to the inshore GBR is mainly delivered in short-

lived flood events during the 5-month summer wet season [25],

often forming distinct flood plumes in the coastal zone that

sometimes reach far out into the GBR lagoon [26]. Elevated

concentrations of nutrients, suspended sediments and pesticides,

caused by changes in land use over the past 200 years of European

settlement, are now potentially affecting the health of coastal and

inshore ecosystems [25,27–29]. In particular, sediment loads to the

GBR have increased four to five-fold in this period [30], and five to

ten-fold in some catchments [31]. Moreover, the area of the GBR

affected by sediment inputs is increasing substantially as a result of

changing land management practices, to the point where fine

terrestrial sediment is reaching mid-shelf reefs for the first time in

their geological history [30]. Sediments settling on corals may

increase disease prevalence indirectly through increased stress and

energy expenditure required to remove sediments [28], which could

make them more susceptible to infections by microbial pathogens,

and/or directly if sediments act as disease reservoirs [23].

Atramentous necrosis (AN) is one of the few coral diseases with

high prevalence values on coastal GBR reefs (B. Willis and C. Page,

pers. comm. 2008). AN was first observed in December 2001 on

Magnetic Island, an inshore reef of the Central GBR [32], although

subsequently also observed on reefs in both the northern and

southern GBR (B. Willis and C. Page, pers. comm. 2008). In March

2002, a peak in AN causing significant mortality within Magnetic

Island populations of the plate-like coral Montipora aequituberculata

was observed during a thermal mass-bleaching event [32].

However, increased prevalence of AN was documented in spring

(temperature ,24.5uC), well before typical summer temperatures

were reached [33], suggesting that temperature may not be the only

environmental factor driving the occurrence of this disease.

AN progresses through four distinct stages: Stage 1 lesions are

small (1–2 cm diameter) areas of bleached but intact tissue; Stage

2 lesions are white skeleton devoid of tissue; Stage 3 lesions are

covered with a white bacterial film; and in Stage 4, a black,

sulphurous deposit accumulates under the white film [33] likely

the result of opportunistic secondary microbial community [34].

This is the first study to investigate a possible connection

between the seasonal dynamics of a coral disease and parameters

associated with water quality on the GBR. The aims of the present

study were to (i) document seasonal dynamics of AN and nine

seasonally varying environmental parameters, and (ii) analyse

relationships between disease prevalence and these parameters to

identify potential environmental drivers of AN within populations

of the coral Montipora aequituberculata on an inshore GBR reef.

Results

(a) Dynamics of atramentous necrosis
At the two study sites (Nelly and Geoffrey Bays, Magnetic

Island), a total of 379 colonies of Montipora aequituberculata showing

signs of atramentous necrosis (AN) were tagged during the two-

year study. The mean number of diseased corals was clearly higher

in the wet season than in the dry season (Fig. 1). Highest values of

both the mean number of AN cases and new disease cases

(incidence) were measured in the end of February in both 2008

and 2009 (Fig. 2a,b), although the disease peak was four-fold

greater in 2009. In 2009, the mean (6SE) number of diseased

colonies was 4466.67 colonies per 25 m2 in Geoffrey Bay (GB)

and 4065.46 colonies per 25 m2 in Nelly Bay (NB), whereas in

Figure 1. A box plot illustrating the distribution of the mean numbers of diseased corals between two seasons. Vertical bars illustrate
standard deviations and horizontal bars medians. Black dots represent the 95 percentiles.
doi:10.1371/journal.pone.0016893.g001
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2008, 1165.51 colonies were infected per 25 m2 in NB (Fig. 2a).

The mean (6SE) incidence (i.e. number of new infections) was also

higher in 2009, with 3564.04 new infections per 25 m2 in GB and

1964.18 per 25 m2 in NB, compared to only 664.51 new cases in

NB in 2008 (Fig. 2b). Disease abundance decreased to 0–2 cases

per 150 m2 in winter and re-appeared from November onwards in

both years with 2nd and 3rd stages of AN (AN2 and AN3,

respectively) being most common between January and March

(Fig. 3).

(b) Environmental conditions at the study sites
The highest values for both mean abundance of diseased

colonies and mean disease incidence corresponded with the

highest values in all of the environmental parameters investigated

except for salinity, for which the lowest values were recorded at the

disease peak (Fig. 2 and 4). An increasing trend in environmental

parameters (decreasing for salinity) was observed preceding the

disease outbreaks in both years, with values tending to be higher in

2009 than in 2008. The summer of 2009 was the wettest in 10

years in the Townsville region, with a total rainfall of 1901.6 mm

compared to 1187 mm in 2008. A dramatic (,40%) decrease in

salinity over four weeks was observed in 2009 prior to the disease

outbreak (from 31.7 to 19.0 in NB, and from 32.3 to 20.1 in GB).

Salinity data prior to the 2008 outbreak are lacking because

measurements for this study started in February 2008. Sedimen-

tation was very seasonal, with higher values during summer rain

events, especially in 2009. Mean water temperatures increased by

only 0.3uC (to 30.5uC) in the month prior to the disease outbreak

in 2008, whereas temperatures increased by 1.7uC in the month

prior to the 2009 outbreak and reached 31.7uC. The highest value

of particulate nitrogen (PN) was observed one month prior to the

2008 outbreak, with lower and more even distribution of recorded

Figure 2. Mean number of diseased corals. (a) Mean number of corals demonstrating signs of atramentous necrosis (AN) per 25 m2 during the
two-year study. The highest numbers were found in February 2009 in Geoffrey Bay (GB). (b) Mean number of new infections (i.e. incidence) of AN per
25 m2 during the two-year survey. The highest numbers were found in February 2009 in GB. (GB = dark circles, NB = white triangles).
doi:10.1371/journal.pone.0016893.g002
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values in 2009. Particulate phosphorus (PP) showed 10-fold higher

values two weeks prior to the 2009 outbreak and particulate

organic carbon (POC) values were higher in 2009 than in 2008

(Fig. 4, Table 1).

The exploratory multivariate ordination of the nine environ-

mental parameters in a principal coordinates analysis (PCA)

showed that some of the environmental variables were highly

correlated (Fig. 5). The first principal component, PC1, was

associated with water column concentrations of PP (eigenvalue

20.402), chlorophyll-a (chl-a; 20.382), PN (20.361) and salinity

(0.341). PC2 was associated with sedimentation (0.498), maximum

temperature 14 days preceding and including the sampling date

(Tmax 14d; 0.452), maximum temperature 7 days preceding and

including the sampling date (Tmax 7d; 0.423) and POC (20.417)

(Fig. 5). Together, PC1 and PC2 explained 59.3% of the total

variation in the data.

(c) PLS regression
In the initial Partial Least Squares (PLS) regression model

containing all nine environmental variables, many of the variables

had low regression coefficients (R2) and hence were not good

predictors of the variance in the number of AN cases. These

predictors were therefore removed from the model in a stepwise

manner.

The variance associated with AN abundance in the PLS model

conducted using the combined datasets from both bays was

significantly related to salinity, POC and Tmax 7d

(F3,167 = 111.88, p,0.0001). More than 95% of the variance in

the model was found within its first component. The model

explained 67% of the variance within the first three components

(Global R2 = 0.67). Following cross-validation, the model for both

bays still explained 63% of the variation (predicted Global

R2 = 0.63). When the model was broken down to regression

coefficients, AN abundance was negatively correlated with salinity

(R2 = 20.6) and positively correlated with POC (R2 = 0.32) and

Tmax 7d (R2 = 0.08) (Table 2). The Durbin-Watson statistic was

1.39 indicating that there was no autocorrelation in the data set.

Discussion

As coastal human populations continue to increase, nutrients,

terrigenous silt, pollutants and even pathogens themselves can be

released to nearshore waters [35]. While the link between

anthropogenic stress and disease susceptibility is currently poorly

understood, it is thought that coral disease is facilitated by a

decrease in water quality [22]. Evidence of this exists from the

Caribbean [22,23,36] and the Philippines [20] and suggests that

anthropogenic stressors and coral disease are linked in complex

ways [35].

The present study documents a direct correlation between

temporal coral disease dynamics and environmental parameters

associated with water quality. The summer outbreaks of

atramentous necrosis corresponded to minima in seawater salinity

but maxima in all other water quality parameters investigated.

The disease was strongly and negatively correlated with salinity

and positively correlated with seawater concentrations of partic-

ulate organic carbon (POC).

The more pronounced AN outbreak in the summer of 2009

than in 2008 may be attributed to a greater terrestrial runoff

caused by higher rainfall and higher values for environmental

parameters (lower for salinity) preceding the outbreak in 2009.

This may have lead to increased stress on corals that may have

reduced their immune responses, and/or increased virulence of

pathogen(s) causing the disease. Decreased resistance of the host

coral caused by adverse environmental conditions may also

increase opportunistic diseases [37]. Intense wet seasons may

become more common in the future since strong rainfall events are

a likely scenario associated with climate change [38]. Rainfall may

be more variable from month to month, with longer dry spells and

possibly with an increased frequency of disturbance events such as

flooding rains and cyclones [39–42] which may lead to drastic

changes in inshore salinity levels.

While black band disease prevalence showed no relationship

with salinity in the Caribbean [43], the results of the present study

indicate that low salinity promoted AN outbreaks. In 2009, salinity

  

Figure 3. Disease stages in time. Disease stages in time per 150 m2 (AN1 = first stage of atramentous necrosis (AN) characterised by a small (1–
2 cm diameter) initial area of bleached but intact tissue; AN2 = a lesion of white skeleton devoid of tissue; AN3 = lesions covered with a white
bacterial film and a black, sulphurous-smelling deposit, subsequently accumulating under the white film; S = disease progression stopped). The third
stage was most common during the summer disease peak whereas the disease stopped in winter.
doi:10.1371/journal.pone.0016893.g003
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decreased in one month rapidly from above 30 to 20 in GB and to

19 in NB. Salinity measurements only commenced during the

2008 disease peak once this parameter was identified as a likely

driver of AN, therefore lower salinity values may have occurred in

the preceding weeks. Low salinity adversely affects corals [44] by

harming coral fertilization [45], by affecting the processes of

photosystem II [46] and, in extreme cases, by causing a

breakdown in coral-zooxanthellae symbiosis leading to coral

bleaching [47].

The role of POC in coral infections has not been investigated

previously; however, dissolved organic carbon (DOC) has been

linked to coral disease [24,48]. High levels of DOC increased the

growth rates of microbes and DOC was more detrimental to coral

health than nutrients (nitrate, phosphate, ammonia) [24]. The

authors suggested that there was a disruption in the balance

between the coral and its associated microbes, subsequently

shifting the microbial consortia resulting in disease. DOC

compounds released by macroalgae were found to increase

microbial activity [48]. These findings suggest that increasing

DOC levels associated with inputs of sewage and organic waste

from coastal development could contribute to the high incidence

of disease on highly polluted reefs [24]. In the present study, the

higher summer dissolved organic carbon (DOC) values could have

facilitated AN infections by increasing the growth rates of

microbes. High values of DOC and POC at the study sites were

likely associated with increased pelagic and benthic primary

production in the water after increased nutrient inputs following

heavy rainfall and runoff [49,50].

In the future, a combination of sea-level rise and an increase in

rainfall due to climate change [38] could synergistically alter

runoff and salinity in coastal ecosystems [51]. The duration and

intensity of the rainy season will be important factors in

determining the stress caused to corals since a long duration

could lead to chronic stress. Previous studies have concluded that

chronic stressors may be more harmful to corals than acute

stressors but their impact will depend on the period of exposure to

those stressors [52]. With the increasing probability of strong

rainfall events leading to increased runoff in the future, both low

salinity and high POC levels may lead to serious impacts on

inshore reefs. It is likely that most inshore reefs of the GBR are

heavily impacted by runoff during the wet season and that other

reefs with high Montipora cover may experience similar outbreaks

of AN like the ones on Magnetic Island. To date, no studies of how

runoff impacts other coral diseases and other coral genera have

been undertaken on the GBR and investigating this should be a

priority in coral disease research.

Previous studies have identified clear seasonal patterns related

particularly to warm temperatures for other coral diseases,

including white syndrome (WS) [14,53], black band disease

(BBD) [16], and ulcerative white spots [54] on the GBR, and

aspergillosis [13], white pox [21] and BBD [43] in the Caribbean.

Earlier studies on AN [32] documented an outbreak on reefs

around Magnetic Island when the water temperature was higher

than 31.5uC. In the present study, the water temperature was

31.7uC during the outbreak of 2009. In the month preceding the

outbreaks (Fig. 4, Table 1), temperature increased more in 2009

Figure 4. Temporal patterns in environmental variables. Temporal patterns in (a) salinity and rainfall, (b) daily mean sea water temperature
combining temperatures from both bays, (c) ash-free dry weight of sediment (AFDW), (d) suspended solids (SS), (e) dissolved organic carbon (DOC), (f)
chlorophyll a (chl-a), (g) particulate organic carbon (POC), (h) particulate nitrogen (PN), and (i) particulate phosphorus (PP) during the two-year study
in Nelly and Geoffrey Bays. Values represent means of two samples at each study site. (NB = dark circles, GB = white circles).
doi:10.1371/journal.pone.0016893.g004

Table 1. Values for environmental parameters in 2008 and 2009.

Environmental parameter
1 month prior to
dis. peak 2008

2 wks prior to
dis. peak 2008

Disease peak
2008

1 month prior to
dis. peak 2009

2 wks prior to
dis. peak 2009

Disease peak
2009

NB GB NB GB NB GB NB GB NB GB NB GB

Salinity 33.1 31.7 32.2 20.8 28.3 19.0 20.1

Temp (6C) 30.2 29.9 30.5 29.8 28.5 31.7

Rainfall (mm) Dec-Apr 1187.0 1901.6

Sedimentation
(ash-free dry weight mg
cm22 day21)

0.4 0.2 1.0 0.7 0.6 1.4 1.0 1.8 0.8

Suspended solids
(mg L21)

1.6 2.0 1.3 2.1 4.3 2.4 3.0 3.7 3.8 4.5 2.4

Dissolved Organic Carbon
(mM C)

70.2 74.5 85.1 196.4 116.09 101.7 103.4 106.5 126.5 146.1 156.2

Chlorophyll-a
(mg L21)

0.4 0.4 0.6 0.4 1.6 0.3 0.7 3.4 1.1 1.1 1.3

Particulate Organic
Carbon (mM C)

14.4 12.4 17.2 14.8 26.9 18.5 21.8 39.8 22.2

Particulate Nitrogen
(mM N)

8.5 7.0 7.5 0.8 1.6 1.4 1.7 3.79 2.07 2.5 1.8

Particulate Phosphorus
(mM P)

0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1

Values for the ten environmental parameters measured one month and two weeks prior to and during the disease outbreaks of 2008 and 2009. Values represent means
of two samples at each study site (NB = Nelly Bay, GB = Geoffrey Bay).
doi:10.1371/journal.pone.0016893.t001
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than in 2008, which may also have contributed to the larger

number of recorded disease cases in 2009.

It is important to recognize that ecological responses to multiple

interacting environmental variables are highly dynamic and rarely

linear across both space and time with natural processes

characterized by thresholds and limiting functions [55,56].

Temperature, although not showing a strong correlation in the

PLS regression, is still likely to contribute to disease abundance but

the response may not be linear. The PCA analysis revealed that

maximum temperature 7 (Tmax 7d) and 14 days (Tmax 14d)

preceding and including sampling dates explained some of the

variability in disease abundance (Fig. 4). Temperature preceding

the outbreak may be important in AN dynamics as the PLS

regression based on the whole dataset revealed that, although

having a low regression coefficient, Tmax 7d was the third most

significant environmental variable after salinity and POC (Table 2).

The rate of temperature change is potentially important in AN

dynamics and merits further investigations [57]. Further studies

should also measure the duration of warm and cold periods that

may impact AN dynamics to better understand the role of

temperature in AN dynamics. Periods of hot and cold seawater, or

hot and cold ‘snaps’, had an effect on patterns of white syndromes

(WS) on the GBR, with most outbreaks occurring after mild

winters and during hot summers [58].

In the present study, the highest water column nutrient

concentrations were measured during the wet season. This agrees

with previous studies that found that most water quality

parameters other than salinity are higher during the wet season

in the inshore GBR lagoon, when water quality conditions can

change abruptly and nutrient concentrations increase dramatically

for short periods following major disturbance events (cyclonic

mixing, river flood plumes) [59]. Flood plumes are the main

delivery mechanism for nutrients (in dissolved and particulate

form) and suspended sediments to GBR coastal waters, with

concentrations 10 to 400 times higher than in non-flood conditions

[60,61]. The coastal zone of the Burdekin region, where Magnetic

Island is located, had the highest values of PN, PP and SS and

second highest for chl-a of the whole GBR [62]. The Burdekin

River exports very large amounts of sediment and associated

nutrients during large floods [25] and significantly affects the water

quality of Magnetic Island [63–65], together with local runoff from

the island itself and from smaller rivers in the vicinity.

Sediments may not only be a cause of physical stress to corals

but may also act as a pathogen reservoir [23]. For example,

significantly higher sedimentation rates were found on sites with

black band disease than on sites with no signs of disease in the

Caribbean [23]. The highest sedimentation rates were found

during the summer in the present study when AN abundance was

high. By stressing corals, sediments may make the corals more

susceptible to infections by microbial pathogens and may also act

as disease reservoirs [23]. Fine sediment often settles on Magnetic

Island reefs during periods of calm weather, and can result in

smothering and tissue mortality of corals if the sediment is not re-

suspended during rough weather or removed by the coral itself

[28,66,67]. It is possible that the sediments act as pathogen

reservoirs on Magnetic Island, however this was beyond the scope

of the present study.

Coastal areas are globally under increasing pressure by human

population growth, intensifying land use, urban and industrial

development. However, previous studies on terrestrial influences

on coral disease prevalence in the Indo-Pacific have not included

direct measurements of water quality [20,68]. Our study highlights

a previously unrecognized adverse effect of land runoff on the

health of key reef-building corals: the promotion of coral disease.

The findings of this study are of wide importance because

improving water quality in areas affected by runoff is one of the

few management options that will enhance reef resilience in the

face of climate change [9,69].

Figure 5. PCA of environmental variables. Principal coordinates
analysis (PCA) of the nine measured environmental variables. Vector
overlays represent multiple correlations between ordination axes and
environmental parameters. PC1 is associated with particulate phos-
phorus (PP) and nitrogen (PN), chlorophyll-a (chl-a) and salinity whereas
PC2 is associated mainly with sedimentation (Sed), maximum temper-
ature 14 days preceding and including the sampling date (Tmax 14d)
maximum temperature 7 days preceding and including the sampling
date (Tmax 7d) and particulate organic carbon (POC). Together PCA1
and PCA2 axes capture 59.3% of the total variation of numbers of coral
colonies with AN.
doi:10.1371/journal.pone.0016893.g005

Table 2. Results of the PLS regression for the whole data set.

ANOVA Model Selection and Validation Disease Predictors

All data P-value F D.F. Component Global R2 Predicted Global R2 Salinity POC Tmax 7d

PLS ANOVA ,0.0001 111.88 167 1 0.65 0.62 20.6

PLS Model 2 0.67 0.63 0.32

3 0.67 0.63 0.08

Results of the final model for the combined data set of AN versus the most important disease predictors: salinity, particulate organic carbon (POC) and maximum
temperature 7 days preceding and including the sampling date (Tmax 7d). The PLS model was highly significant with its first three components explaining 74% of the
variation. Following cross-validation the model still explained 36% of the variation.
doi:10.1371/journal.pone.0016893.t002
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Methods

A research permit for this study was provided by the Great

Barrier Reef Marine Park Authority (GBRMPA).

(a) Study site and assessment of disease dynamics
The study sites were located in two adjacent bays, Nelly Bay and

Geoffrey Bay, on the south-eastern side of Magnetic Island (19uS,

147uE), which is situated within the inner shelf region of the Great

Barrier Reef. Both bays have fringing coral reefs and are similar in

shape, physical structure, and hydrodynamic setting [70]. The

study was conducted between December 2007 and December

2009. Sampling was conducted every 2 weeks in the austral

summer (Nov-Apr) and once a month in the winter (May-Oct).

Increased sampling frequency in summer was based on the

hypothesis that AN increases with warm water temperatures

[32,33]. Disease dynamics were assessed in three permanent

565 m quadrats at 3–5 m depth at each site. Coral colonies

demonstrating signs of AN [33] were tagged with numbered

plastic tags attached to cable ties. Visual surveys were able to

clearly distinguish the four stages in the development of AN lesions

described above, although the last two stages were combined

because they generally occur simultaneously. Thus, in the present

study, the disease stages were referred to as: AN1 ( = stage 1), AN2

( = stage 2), AN3 ( = stages 3 and 4), and S ( = disease progression

stopped).

The diseased corals were all colonies of Montipora aequituberculata,

which was the most prevalent species of Montipora in the quadrats.

New disease cases (disease incidence) were counted and tagged in

each plot during each survey. New AN infections, in addition to

both lesion progression and cessation, were monitored on

individual colonies to elucidate spatiotemporal patterns in disease

dynamics. Due to logistical constraints, Geoffrey Bay was not

sampled in February 2008.

(b) Environmental parameters
At each sampling occasion, two replicate water samples were

collected in 1-L plastic bottles 1 m above the coral and on opposite

sides of the quadrats for the analysis of concentrations of: dissolved

organic carbon (DOC), chlorophyll a (chl-a), particulate organic

carbon (POC), particulate nitrogen (PN), particulate phosphorus

(PP) and suspended solids (SS). Due to logistical reasons, only two

replicate water samples were used. Three physical variables were

also measured, i.e. salinity, temperature and sedimentation.

DOC samples were filtered immediately through a 0.45 mm

syringe filter (Sartorius MiniSart N) into acid-washed, screw-cap

plastic test tubes. Samples were acidified by adding 100 ml of AR-

grade hydrochloric acid (32%) and stored at 4uC until analysis.

The concentrations were measured by high temperature combus-

tion (680uC), using a Shimadzu Total Organic Carbon TOC-

5000A carbon analyser. Prior to analysis, CO2 remaining in the

sample water was removed by sparging with O2 carrier gas [71].

For the chl-a analysis, a 100 ml sub-sample was filtered

immediately onto a 25 mm pre-combusted glass fibre filter

(Whatman GF/F). Filters were wrapped in pre-combusted

aluminium foil envelopes and stored at 218uC until analysis.

Chl-a concentrations were measured fluorometrically using a

Turner Designs 10AU fluorometer after grinding the filters in 90%

acetone [72].

For analyses of POC, PN and PP, sub-samples of 250 ml were

filtered onto 25 mm pre-combusted glass fibre filters (Whatman

GF/F) and stored at 218uC. PN was determined by high

temperature combustion using an ANTEK 9000 NS Nitrogen

Analyser [26]. PP was determined spectrophotometrically as

inorganic P (PO4, [73] after digestion in 5% potassium persulphate

[72]. POC was determined by high temperature combustion

(950uC) using a Shimadzu Total Organic Carbon TOC-V carbon

analyser fitted with a Solid Sample Module SSM-5000A after

acidification with concentrated phosphoric acid [71]. Inorganic C

on the filters (e.g. CaCO3) was removed by acidification of the

sample with 2M hydrochloric acid, the filter introduced into the

sample oven (950uC), purged of atmospheric CO2 and the

remaining organic carbon combusted in an oxygen stream and

quantified by an infrared gas analyser.

Sub-samples for suspended solids (SS) were collected by filtering

1000 mL of water onto pre-weighed, 0.4 mm, polycarbonate filters

(47 mm diameter, GE Water & Process Technologies), and SS

concentrations were determined gravimetrically from the weight

difference between loaded and unloaded filters after drying

overnight at 60uC [71].

Salinity was measured at each sampling occasion with a hand-

held refractometer (r2 Mini, Reichert GmbH, Germany). Tem-

perature was measured using a temperature logger (ODYSSEY

data recording systems, Christchurch, New Zealand) attached

underneath a sediment trap in both Nelly and Geoffrey bays. It

was retrieved and downloaded approximately every 2 months.

Temperature data from sensors were combined with data collected

by the Australian Institute of Marine Science (AIMS) sea surface

temperature monitoring program in the same two bays (data

available at http://www.aims.gov.au). Maximum temperatures

were calculated for the periods of 7 and 14 days up to and

including the sampling date.

Two sediment traps (40 cm high with a diameter of 10 cm) were

deployed 10 m apart close to the permanent 565 m quadrats at

each site. Traps were collected at every second sampling occasion

in the winter and on each occasion in the summer. After decanting

the seawater, the sediment was carefully transferred from the trap

into a polycarbonate sample jar using a wash bottle with seawater.

Salt in the samples was removed by adding distilled water, gently

mixing the sediment and discarding the supernatant after the

sediment had settled for a short time. This was repeated three

times. Sediment samples were dried at 60uC for at least 3 days

prior to determining their dry weight. The ash-free dry weight

(AFDW) of the sediment was determined after combusting the

sample at 450uC in a muffle furnace for 24 hours. The AFDW was

used as a coarse measure of the organic content of the sediment.

Rainfall data for Townsville were obtained from the Australian

Bureau of Meteorology web site (http://www.bom.gov.au).

(c) Statistical analyses
Relationships between environmental parameters measured at

the field sites were explored using a principal coordinates analysis

(PCA) in PRIMER version 6.1.10 [75]. PCA results were

summarized in a bi-plot containing the distribution of environ-

mental parameters in two-dimensional space and their correlations

with the PCA axes.

To investigate potential relationships between environmental

parameters and AN prevalence in more detail, a Partial Least

Squares (PLS) regression model was developed in Minitab. This

technique is an extension of multiple regression analysis, in which

the effects of linear combinations of several predictors on a

response variable (or multiple response variables) are analyzed in a

stepwise manner to remove descriptive variables that do not

contribute to the model. PLS regression is particularly suited to

cases in which the matrix of predictors has more variables than

observations, or when there is multi-collinearity among variables

[76]. This technique was first used in analytical chemistry and has

been applied to analyses of ecological data since the late 1990s
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[76] and in recent publications [77]. Monthly disease prevalence

data were analysed against maximum temperatures for the periods

of 7 and 14 days up to and including the sampling date, assuming

a time lag in the corals’ response to changing environmental

parameters. When observations were missing for temperature,

sedimentation, POC, PN, PP, chl-a, DOC and SS, mean values of

data before and after the missing data point were used to fill data

gaps to be able to run the PLS regression. The PLS analysis

calculates an analysis of variance table analogous to conventional

multiple regression analysis, providing an overall assessment of the

probability of statistical significance of the calculated PLS model.

The PLS analysis also calculated a predicted residual sum of

squares (PRESS) following cross-validation. This allowed for the

calculation of a predicted Global R2 value in addition to a

conventional Global R2, hence determining the predictive power

of the observed relationship. A predicted Global R2 value lower

than the conventional Global R2 indicates that the model is

dependent upon only a few observations and does not have good

predictive power.
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