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Abstract

Integrated approaches for pharmacology are required for the mechanism-based predictions of 

adverse drug reactions that manifest due to concomitant intake of multiple drugs. These 

approaches require the integration and analysis of biomedical data and knowledge from multiple, 

heterogeneous sources with varying schemas, entity notations, and formats. To tackle these 

integrative challenges, the Semantic Web community has published and linked several datasets in 

the Life Sciences Linked Open Data (LSLOD) cloud using established W3C standards. We present 

the PhLeGrA platform for Linked Graph Analytics in Pharmacology in this paper. Through query 

federation, we integrate four sources from the LSLOD cloud and extract a drug–reaction network, 

composed of distinct entities. We represent this graph as a hidden conditional random field 

(HCRF), a discriminative latent variable model that is used for structured output predictions. We 

calculate the underlying probability distributions in the drug–reaction HCRF using the datasets 

from the U.S. Food and Drug Administration’s Adverse Event Reporting System. We predict the 

occurrence of 146 adverse reactions due to multiple drug intake with an AUROC statistic greater 

than 0.75. The PhLeGrA platform can be extended to incorporate other sources published using 

Semantic Web technologies, as well as to discover other types of pharmacological associations.
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1. INTRODUCTION

The “Semantic Web” vision of the World Wide Web Consortium (W3C) has provided a 

unique opportunity towards web-scale computation, seamless integration of big data and 

structured querying of multiple heterogeneous sources simultaneously. Semantic Web 

technologies can be used to develop refined approaches to address complex, biomedical 

challenges, where traditional computational methods are not scalable. However, the 

structural heterogeneity of the Semantic Web makes the task of serendipitously discovering 

implicit associations illusive. In this paper, we present the PhLeGrA platform – Linked 
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Graph Analytics in Pharmacology. The PhLeGrA platform provides an approach to tackle 

the structural heterogeneity in the biomedical Semantic Web and discover newer 

pharmacological associations.

1.1 Systems Pharmacology

Adverse drug reactions (ADR) often result in the hospitalization or serious injury of more 

than 2 million individuals in the United States, with more than 100,000 deaths annually [27]. 

Hence, ADRs are the 4th leading cause of death ahead of diabetes, AIDS, and pneumonia 

[8]. The costs of drug-related morbidity and mortality in the United States alone was 

estimated to be US$177.4 billion in 2000, and has been rising ever since [13]. A majority of 

these ADRs are caused due to polypharmacy, a situation where multiple concomitant drugs 

are administered to one patient in a short span of time to treat multiple medical conditions 

[9]. Drug–drug interactions (DDI) due to polypharmacy are potentially avoidable, if detected 

early [36].

Post-marketing surveillance is carried out to detect unanticipated DDIs and ADRs. Several 

studies, which often use the US Food and Drug Administration (FDA) Adverse Event 

Reporting System (FAERS) [16] or electronic medical records [19], have inferred new DDIs 

and the ADRs that manifest on the account of those interactions. However, these studies do 

not systematically demonstrate how the drugs interact within the biological system of the 

patient, leading to a particular adverse reaction. “Mechanism-based prediction” of DDIs and 

ADRs can provide a better understanding of the underlying biological mechanisms behind 

the DDIs [2]. Moreover, this understanding can lead clinicians to prescribe drugs that can 

cure the same medical conditions in a patient while minimizing the risk of DDIs due to 

different mechanisms of those drugs.

Newer approaches of integrative pharmacology, termed “systems pharmacology”, are 

required to attain the objective of mechanism-based prediction and evaluation of DDIs and 

ADRs [2]. These approaches rely on an exhaustive systems network. Such a network must 

possess knowledge on the drug-induced perturbations of the physiological functions in a 

biological system as well as knowledge on the underlying biological interactions (e.g. 

metabolic pathways). However, the data and knowledge to generate such a network exists in 

several databases and knowledge bases that may be fragmented across the Web. These 

sources, if available for download, may: i) use varying schemas to structure the data, ii) use 

different entity notations (e.g. Proteins referenced using HGNC [31] or KEGG [25] 

identifiers), and iii) use different formats (e.g. XML, CSV, etc.). An ad hoc integration 

approach by downloading and integrating each source independently, and performing 

manual entity reconciliation and disambiguation, is non-trivial, non-scalable and is often 

redundant for different tasks.

1.2 Semantic Web Technologies

The Semantic Web was conceived with the vision that a decentralized, distributed and 

heterogeneous data space, extending over the traditional Web, can reveal hidden associations 

that were not directly observable [5]. Any domain user can query this Web of Data, often 

called Linked Open Data cloud [6], without being concerned about the underlying 
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heterogeneity and representation. Due to the challenges of integrative bioinformatics, 

biomedical researchers have been the earliest adopters of Semantic Web technologies and 

linked data principles to create the Life Sciences Linked Open Data (LSLOD) cloud [7]. 

Semantic Web technologies include the W3C standards Resource Description Framework 

(RDF) [26] and the SPARQL graph query language [32]. Biomedical data and knowledge 

sources are converted to graphs using the triple-based RDF model. SPARQL can use specific 

expression patterns, termed triple pattern fragments (TPF), to query these RDF graphs.

Substantial work has been carried out to publish and link biomedical data and knowledge in 

the LSLOD cloud by several different efforts [10, 20]. Several sources that may be relevant 

to systems pharmacology, such as the Comparative Toxicogenomics Database [12] and 

DrugBank [38], are made available through the LSLOD cloud. However, the task of 

serendipitously discovering hidden associations from the LSLOD cloud is still non-trivial, 

and far from complete. We define the term association as a mapping between a set of inputs 
and an outcome. Hence, the indication that multiple drugs may interact to cause an adverse 

drug reaction is an association ({Drug}n → ADR).

Biomedical RDF graphs still exist either as RDF data dumps, or are exposed through 

isolated SPARQL endpoints on the web. Querying multiple isolated SPARQL endpoints 

simultaneously over the web requires a scalable SPARQL query federation method [35]. 

An example of the process of a query federation method is shown in Figure 1a. Generally, 

the method evaluates each TPF in a SPARQL query precisely and queries the relevant source 

where the TPF may exist, before reconciliation of entities and relations.

In some cases, the same relation may be expressed in different RDF graphs using different 

semantics, or using different graph patterns entirely (e.g. Figure 1b). A user who wishes to 

aggregate such relations from multiple graphs must be aware of the underlying semantics 

and the data model. One of the key principles for Linked Data is the use of HTTP-

derefenceable Uniform Resource Identifiers (URIs) for entity reconciliation. Empirically, 

we observe that most data publishers create their own URIs to represent entities. In the 

pharmacological domain, the same drug may be represented using different URIs in different 

sources and they need to be reconciled during retrieval. This is not possible through current 

query federation methods.

Using best principles to simply link all data and deploying a robust querying infrastructure is 

however not sufficient for association discovery. An analytics framework that uses the 

linked data to compute the probability of an association between two types of entities (inputs 
→ outcome) in different data sources is required. The framework needs to deal with the 

facts that, i) there may be intermediate entities on a path for which there are no observed 

data, and ii) a combination of inputs may be associated with an outcome.

In this paper, we present the PhLeGrA1 platform – Linked Graph Analyics in 

Pharmacology. The PhLeGrA platform combines graph analytics with query federation over 

1Phlegra is a spider genus of the Salticidae family, commonly termed jumping spiders.
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the LSLOD cloud to discover hidden associations between entities that have no explicit 

relations. The key contributions of this research can be described as follows:

1. We develop a pattern-based query federation method over the Web of Linked 

Data, and demonstrate the extraction of a k-partite network composed of distinct 

entities and relations from multiple sources.

2. We propose and implement a graph analytics method, based on Hidden 

Conditional Random Fields (HCRF) [33], to discover implicit associations 

between the different entities in the k-partite network.

3. We develop a provenance-enabled visualization interface that allows a user to 

search and explore the interconnecting paths between drugs and ADRs.

4. Finally, we critique on the current state of the LSLOD cloud and discuss the 

challenges encountered while mining the LSLOD cloud to discover new 

associations.

The paper is organized as follows: Section 2 gives a brief overview on biomedical projects 

that use Semantic Web technologies. Section 3 outlines the methodology used for query 

federation and graph analytics framework. Section 4 lists the set of data sources used for 

developing a prototype of the PhLeGrA platform. Section 5 presents the results of our 

prototype. Finally, in Section 6 we discuss the limitations of our approach and challenges 

faced.

All results and methods of this paper, as well as all developed visualization tools, are 

available online at: http://onto-apps.stanford.edu/phlegra.

2. RELATED WORK

Entity reconciliation in the biomedical domain is a major problem, as there is often no 

agreement on a unique representation of a given entity. Many biomedical entities are 

referred to by multiple labels, and same labels may be used to refer different entities. To 

resolve this problem, efforts such as Bio2RDF [10] and Linking Open Drug Data [20] have 

released guidelines for using x-ref attributes rather than using the same URI. Similar entities 

in different sources are mapped to each other, or all similar entities are mapped to a common 

terminology using x-ref attributes [29].

Most query federation methods do not take x-ref attributes into account, and rely only on the 

URIs of the entities. Federation engines may use an index linking all possible URIs to a 

particular string term, but such an index can be difficult to maintain [35]. Rule-based 

federation engines, on the other hand, can use a set of ‘patterns’ to determine which 

SPARQL endpoints and URIs to query for a particular class (e.g. Drug) or an entity (e.g. 

Lepirudin) [22]. However, only semi-automated methods can generate such patterns to 

query for a particular class in different sources. Generating patterns to query similar entities 

requires significant manual intervention [17], and is tedious.

There has been a lot of research to predict DDIs, or predict ADRs that manifest due to 

concomitant intake of multiple drugs, by mining spontaneous reporting systems such as 
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FAERS or electronic medical records [16, 19]. Systems pharmacology methods have also 

been explored in the context of drug-ADR association discovery or drug repurposing (use of 

existing drugs to treat new conditions) [2]. These methods generally combine databases and 

knowledge bases manually without the use of Semantic Web technologies. CauseNet 
combines four biomedical sources into a k-partite network for generating new drug 

repurposing hypotheses [28]. While this approach is similar to our approach, we argue that 

our query federation method over the LSLOD cloud will be faster, and help generate such k-

partite networks easily.

Recently, there has been some research to leverage the LSLOD cloud for discovering new 

DDIs. Tiresias processes various sources of drug-related data and knowledge as inputs and 

predicts new DDIs using large-scale similarity matching [14]. The Translational Ontology-

anchored Knowledge discovery Engine (TOKEn) evaluates induced associations between 

proteins and phenotypes, using ontological hierarchies and DrugBank [38], to find drugs for 

skin cancer [34]. However, most approaches consider binary drug pairs and not multiple 

drug interactions [4], they ignore the underlying molecular mechanisms, and they may not 

associate the adverse drug reactions with the DDIs [3].

3. METHODS

The PhLeGrA platform relies on a data model that captures all the relevant pharmacological 

relations required for developing a systems pharmacology network (Section 3.1). This data 

model is used by our query federation method (Section 3.2) to retrieve entities and relations 

from multiple sources in the LSLOD cloud and populate our k-partite network. Our 

analytics framework inspired from Hidden Conditional Random Fields performs inference 

over this k-partite network (Section 3.3). The query federation method and the graph 

analytics framework are bundled in the architecture of the PhLeGrA platform (Figure 2).

3.1 Data Model

Our data model aims to provide an abstract representation of the molecular mechanisms 

behind DDIs in the biological system of a patient. There are several underlying mechanisms 

through which two drugs can interact [21]. For example, most drugs are metabolized to their 

inactive or active forms by particular proteins2, termed enzymes. When the expression of 

these enzymes is inhibited by another drug, this can lead to increased toxicity (Figure 3a) or 

decreased effect (Figure 3b) of the former drug respectively. Inhibition of the expression of 

drug transporters (specialized proteins) can alter the absorption (Figure 3c) and elimination 

(Figure 3d) of drugs in the body. Different drugs can target the same protein resulting in 

either an additive or a negative effect (Figure 3e). A pathway is a series of actions among 

proteins in a cell that leads to changes in the cell or production of other proteins. A drug 

targeting an upstream protein can affect the activity of another drug targeting a downstream 

protein in a pathway (Figure 3f).

2We use the generic term ‘proteins’ to represent different biological concepts, such as ‘genes’, ‘proteins’, ‘enzymes’ and ‘transporters’ 
throughout this paper.
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We simplify these mechanisms to a more abstract representation. We have four different 

types of biological entities — (E1) Drug, (E2) Protein, (E3) Pathway, and (E4) 
Phenotype (adverse drug reaction). We also have five different types of biological relations 

— (R1) Drug hasTarget Protein, (R2) Drug hasEnzyme Protein, (R3) Drug 

hasTransporter Protein, (R4) Protein isPresentIn Pathway, and (R5) Pathway 
isImplicatedIn Phenotype. The entities and relations, retrieved from the LSLOD cloud, 

form a k-partite network — a network whose nodes can be partitioned into k different 

independent sets (k = 4). A visual depiction of the model is shown below, in Figure 4.

3.2 Query Federation

During query federation, SPARQL queries are decomposed into Triple Pattern Fragments 

(TPF) and each fragment is executed individually across several sources (Figure 1a). This 

decomposition of SPARQL queries can be governed through mapping rules [22]. PhLeGrA 

uses a modified TPF query engine [37] with the inputs: i) the set of SPARQL endpoints, ii) 
the data model, and iii) mapping rules.

A mapping rule, in this work, maps an entity type (e.g. E1) or a relation type (e.g. R1) in our 

data model to a graph pattern observed in an RDF graph, if the relevant element or relation 

exists in the graph. For example, DrugBank [38], a data source that contains information on 

drugs, contains entities of type E1 ( Drug) and relations of type R1 ( Drug hasTarget 
Protein). Then, the graph patterns observed in DrugBank RDF graph are mapped as 

follows:

These mapping rules are manually curated by observing the vocabularies of the LSLOD 

sources used in our prototype. These mapping rules are described using an extension of the 

Vocabulary of Interlinked Datasets (VoID) [1, 17]. They are used by our query federation 

module to populate the k-partite graph from the LSLOD sources.

The query federation module also deals with reconciliation of similar entities expressed 

using different URIs in different RDF graphs. For each entity, the module collects specific x-
ref attributes provided by the biomedical data publishers. These attributes may link similar 

entities in different graphs to each other, or may link similar entities to a unique term in a 

designated terminology. For instance, retrieving information on the drug Lepirudin and the 

protein Prothrombin from two sources requires different patterns: drugbank:DB00001 → 
kegg:D06880 and drugbank:BE0000048 → hgnc:3535 kegg:HSA_2147. In the latter case, 

the different proteins are mapped to the Hugo Gene Nomenclature Committee terms 

(HGNC) [31].
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To generate the k-partite network, the federation module queries all sources simultaneously 

in the following order:

1. Retrieves all the entities of a given type (e.g., E1), and generates new nodes in 

the k-partite network.

2. Retrieves relevant x-ref attributes for each entity.

3. Reconciles entities that are mapped to the same term in a given terminology (e.g. 

HGNC), or are mapped to each other using x-ref attributes.

4. Retrieves all relations of a given type (e.g. R1) among entities of two types (e.g., 

E1 and E2), and generates edges between the nodes in the k-partite network.

5. Detect the largest connected component (treating the network as undirected)

The nodes and edges are also annotated with a list of data sources from which they were 

retrieved for provenance.

3.3 Hidden Conditional Random Field

The primary goal of PhLeGrA is to discover associations between a set of inputs and an 

outcome, i.e. the probability an outcome (ADR) is observed considering the inputs (drugs). 

The graph analytics module in PhLeGrA (Figure 2c) takes as input the extracted k-partite 

network. As we are predicting a structured outcomes vector y using a structured inputs 
vector x, the k-partite network is represented as a conditional random field. A conditional 

random field is a type of a discriminative undirected probabilistic graphical model, 

commonly used in machine learning for structured prediction. As we assume the state of the 

intermediate entities (e.g. Protein) on the path from inputs and outcomes (the end layers in 

the k-partite network) will be unobserved, our model is actually a (k − 2)-layer hidden 

conditional random field (HCRF). An HCRF framework learns a set of unobserved 

variables, and makes no assumption on the independence of the inputs [33]. Instead of using 

a simple Bayesian directed probabilistic model, we made a decision choice towards HCRF 

to make our probabilistic model more scalable, to allow structured outcome prediction, and 

to incorporate the concept of unobserved entities.

The graph analytics module generates joint probability distributions over each edge joining 

nodes of two different entity types (e.g., E1 and E2) in the k-partite network. These 

probability distributions are learnt using an inputs–outcomes database (described in Section 
4.2).

The module takes an inputs vector x — a vector where xi = 1 if the ith drug is prescribed to a 

patient, and outputs an outcome vector, where yj = 1 if the jth adverse reaction is observed, 

or zero otherwise. In the following equations, we summarize the original algorithm for 

learning the parameters of an HCRF by Quattoni, et al. [33].
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P(y|x, θ) indicates the probability y is observed given a set of inputs x. These are calculated 

over all possible states for the observations of the hidden nodes h. Our goal is to maximize 

L(θ), where θ represents the parameters of our model. Ψ is a potential function that relies on 

the edge features of our k-partite graph — E represents the set of edges and L represent the 

set of states of the connected nodes (hj = a, hk = b) and fl is a feature vector based on the 

configuration l. We introduce a regularization term σ2 that is the variance of θ, to avoid 

overfitting.

The graph analytics module use stochastic gradient ascent to learn the parameters, by 

iterating over each entry in an inputs–outcomes database. The parameters are updated on 

each iteration by using a step rate α. The probabilities are calculated using loopy belief 

propagation.

4. DATA

4.1 Linked Open Data Sources

The Life Sciences Linked Open Data Cloud (LSLOD) contains several data sources that are 

relevant to this problem. We integrate four different data sources that are published by the 

Bio2RDF project (Version 4) [10]:

D1: DrugBank [38]: A bioinformatics data source that has comprehensive drug and 

drug target information

D2: PharmGKB [18]: A manually-curated knowledge-base that summarizes 

protein–drug–disease relations from a literature review

D3: Kyoto Encyclopedia of Genes and Genomes (KEGG) [25]: An integrated data 

source consisting of several databases, broadly categorized into biological pathways, 

proteins, and drugs
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D4: Comparative Toxicogenomics Database (CTD) [12]: An environmental 

database on chemical–protein interactions and pathway–disease relations

For the prototype, we download Bio2RDF Version 4 datasets as RDF data dumps. Each 

dump is deployed on an independent SPARQL endpoint locally, on a machine with 16GB 

RAM memory. This helps us to remove network latency and uptime of public SPARQL 

endpoints as issues for our experiments. The entities and relations that were extracted from 

each source are listed in Table 1. The SPARQL graph patterns are also presented in Table 1 

to demonstrate their difference across different sources, and emphasize the need for pattern-

based query federation.

We reconcile the Protein entities primarily using the HUGO Gene Nomenclature 

Committee (HGNC) [31] x-ref attributes, Drug entities using the Anatomical Therapeutic 

Chemical Classification [30] x-ref attributes, Pathway entities using KEGG x-ref attributes, 

and Phenotype entities using MESH terminology (Medical Subject Headings) x-ref 
attributes [11]. Two entities from different sources were also reconciled if x-ref attributes 

linked them to each other.

4.2 Inputs–Outcomes Database

During the post-marketing surveillance of drug products, the US Food and Drug 

Administration (FDA) collects reports on the adverse drug reactions observed in patients 

subjected to these drug products. The FDA Adverse Event Reporting System [15] (FAERS), 

a public data portal, publishes these reports after the anonymization of the patient data. As 

our inputs–outcomes database to learn the parameters in the model, we decided to use the 

FAERS datasets.

We downloaded the FAERS datasets, available as quarterly XML files, for three years from 

January 2013 to December 2015. Each XML file is composed of several safety reports. 

Among many features, each safety report indicates: (i) the set of adverse drug reactions 

observed in a patient (e.g., heart attack), and (ii) the set of drugs administered to the patient 

(e.g., Sildenafil). The string labels used by FAERS to denote the drugs and adverse drug 

reactions in the reports were mapped to Drug and Phenotype terms in the k-partite network 

using terminology matching methods [23] (these methods are described in more detail at 

http://onto-apps.stanford.edu). From an initial set of more than 3.2 million FAERS safety 

reports, we discarded those reports for which no Drug or Phenotype was mapped in the k-

partite network. Hence, we were left with an aggregated dataset of around 3 million reports, 

with each report represented as an entry with inputs x = {drug1, drug2, …, drugm} and y = 

{phen1, phen2, …, phenk}.

For simplicity in probabilistic inference, each entity node in the HCRF model only has two 

states : −1 and 0. Depending on the type of the entity, state 1 can indicate whether a 

Protein or a Pathway is implicated in the association, a patient is administered a particular 

Drug, or he exhibits a particular Phenotype. As FAERS datasets only indicate the drugs 

administered and the adverse reactions observed in a patient, we do not have data on 

whether a particular protein or a pathway is implicated. Hence, nodes of type Protein and 

Pathway are hidden variables.
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5. RESULTS

5.1 k-partite Network Statistics

The number of entities and relations extracted from the four Bio2RDF Version 4 data 

sources by the prototype implementation of PhLeGrA are displayed in the Figure 5. The 

query federation module uses the SPARQL patterns (listed in Table 1). Except for CTD, 

PhLeGrA was able to process a given data source and retrieve the entire set of entities and 

relations for each type in under 2 hours. PhLeGrA took ≈ 18 hours to process the entire 

CTD data source due to its size. It can be seen that the number of entities and relations for 

each type vary drastically across the data sources due to their granularity. Few error 

SPARQL patterns were discovered during this step (see Section 6.2).

The query federation module generated the k-partite network after performing entity 

reconciliation using the x-ref attributes for each entity. The largest connected component 

was detected in the k-partite network and the set of nodes that were not a part of this 

component were discarded. The final number of nodes in the k-partite network for each 

entity and relation type are shown in Figure 5.

Figure 6 depicts the source distribution of the relations of type R1 ( Drug hasTarget 
Protein). R1 relations are present in all four sources used in the prototype. It can be seen 

that a majority of these relations are unique to only one source. Hence, when generating a 

systems pharmacology network, query federation is beneficial if we wish to extract all 

possible knowledge on the drug targets. Some relations may occur in two or more sources. 

Hence, these relations need to be aggregated. The overlap plot also indicates that one source 

(CTD) may contribute, in a larger proportion, to a particular relation. This may include false-

positive relations, or noise in the source, that may affect downstream association discovery. 

Overlap plots for other entity and relation types are available at http://onto-

apps.stanford.edu/phlegra.

Using terminologies, such as ATC [30] and MESH [11], and x-ref attributes, is beneficial for 

entity reconciliation. For example, using simple entity reconciliation (reconciling entities 

with explicit x-ref links between them) the query federation module reconciled 6,043 Drug 

entities to 2,015 unique entities in the k-partite network. Using the terminologies, we were 

able to add an extra reconciliation step. The module further reconciled 1,568 Drug entities 

and 714 Phenotype entities using the ATC and MESH terminologies respectively. This 

helps generate a systems pharmacology network with unique entities only.

Current methods in SPARQL query federation do not govern the query reformulation 

process using mapping rules [35]. Assembling a systems pharmacology network using these 

methods, from four sources, would require an exhaustive SPARQL CONSTRUCT query 

[32] with several TPF expressions. Our method requires a small domain-specific data model 

(Figure 4) and reformulates the queries according to the mapping rules (Table 1) provided.

5.2 Predicting Adverse Drug Reactions

As described in Section 3.3, we generated an HCRF model from the k-partite network. We 

were able to identify 3,543 unique drugs and 3,186 unique ADRs in the FAERS datasets. 

Kamdar and Musen Page 10

Proc Int World Wide Web Conf. Author manuscript; available in PMC 2018 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://onto-apps.stanford.edu/phlegra
http://onto-apps.stanford.edu/phlegra


The graph analytics module in the PhLeGrA platform can perform probabilistic inference 

over the entire HCRF network by taking ≈ 30 seconds for each iteration.

As a proof of concept, in this paper, we will only use 100 drugs in the HCRF network to 

discover new associations ({Drug}n → ADR) efficiently. Using this small set of 100 drugs, 

the graph analytics module only takes ≈ 1 – 2 seconds on each iteration for training and ≈ 
0.5 second for prediction. To build this set, we selected the top 20 drugs with the highest 

number of occurences in the FAERS dataset, and the top 80 co-mentioned drugs. Using this 

concise set, we were able to reduce the number of Phenotype entities to only 1276. The 

number of FAERS samples reduced to ≈ 0.3 million for our set of 100 drugs.

After training the HCRF using a 5-fold cross validation approach and a step size α of 0.01, 

we evaluated the trained HCRF model to predict adverse drug reactions for a combination of 

drugs for a separate test set. As there is no established gold standard for ({Drug}n → ADR) 

associations, we created a “silver standard” test set. We held out 10,000 observations from 

FAERS and selected those observations with an (Observed/Expected) ratio greater than 2. 

We calculated the true and false positive rates and generated the receiver operating 

characteristic (ROC) curves for each Phenotype entity. We also generate a combined curve 

to check if we can predict each and every outcome using the same probabilistic threshold.

The area under the ROC curve (AUROC) statistic while using the same probabilistic 

threshold for each outcome is 0.57, which is barely above random guessing. However, the 

AUROC statistic for individual Phenotype prediction is very high for some entities, which 

include common adverse drug reactions such as liver failure, ulcers, polyuria, hypotension 

and aortic aneuryms as well as indications such as bipolar and nervous system disorders and 

myocardial ischemia. Figure 7 shows some of the Phenotype entities that had a higher 

AUROC statistic. Out of 1276 entities in the Phenotype class, 681 entities were observed in 

the test dataset. The HCRF model predicts 560 entities with an AUROC >= 0.5 and 146 of 

them with an AUROC >= 0.75.

To summarize, using the same probabilistic threshold, to predict whether an outcome (ADR) 

will result from a set of inputs (drugs), results in a weaker predictive power. However, the 

model had desirable predictive power while using event-specific thresholds for individual 

ADRs. The importance of event-specific thresholds for signal detection using spontaneous 

reporting systems such as FAERS, or electronic medical records is also highlighted 

previously [19]. The AUROCs obtained through our method compare favorably with these 

methods for the ADRs listed in Figure 7. However, our method is able to generate a 

probabilistic score for associations that involve more than two drugs. Moreover, exploring 

the probability distributions over the hidden nodes ( Protein and Pathway) may provide 

an insight in the underlying biological mechanisms.

5.3 PhLeGrA Drug–Reaction Visualizer

We developed a simple Web-based search application that allows the user to provide a set of 

Drugs and Phenotypes (which will be positive in our inputs and outcomes vector), and 

that visualizes all the possible paths that include the given drugs and the adverse outcomes. 

The k-partite network is searched iteratively by hopping across each node, and these paths 
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are buffered back to the client, and are gradually displayed. Provenance information is 

displayed on hovering over the node, to list the set of data sources that the node is present in. 

The application can be accessed at http://onto-apps.stanford.edu/phlegra.

A screenshot of this application is shown in Figure 8. The example demonstrated in this 

screenshot indicates a possible DDI between Paliperidone (Invega), a drug that is used to 

treat bipolar disorder, and Sildenafil (Viagra), a drug that is used to treat erectile 

dysfunction. We observed a higher association score for ADRs such as Hypertriglyceridemia 

and Erectile Dysfunction that indicate reduced effects of Sildenafil. It can be 

hypothesized that this might be because Paliperidone inhibits Cytochrome P450 3A4 

(CYP3A4) and other enzymes responsible for the metabolism of Sildenafil.

6. DISCUSSION

6.1 Linked Graph Analytics

In this paper, we present a systems pharmacology-based approach using Semantic Web 

technologies and query federation. We believe that generating such systems networks is 

extremely fast and easy using the methods presented here, as compared to traditional 

approaches like CauseNet [28] where data conversion, data integration and entity 

reconciliation is manual and not scalable.

We also demonstrate the benefit of query federation and entity reconciliation using a 

domain-specific data model and terminologies. Specifically, pattern-based query federation 

can be shown to bring together pharmacological knowledge existing in isolated, 

heterogeneous sources without being concerned about the underlying semantics and schema 

differences. The mapping rules still need to be assembled by the user from the SPARQL 

query patterns observed in the sources. An automated way to learn these query patterns and 

mapping rules should be explored in the future. Entity reconciliation using terminologies can 

enable seamless data and knowledge integration from these sources. It was observed that the 

LSLOD sources may sometimes not have explicit x-ref links between similar entities, when 

these entities are mapped to the same term in a terminology.

In this research, we have not incorporated more complex features of entities (e.g., molecular 

weight or structure of the drug) and the network should necessarily be k-partite (no inter-

edges between nodes in the same layer). This was for simplicity to perform approximate 

inference on the graph. However, most real world domains, including the pharmacological 

domain, will not follow this straight approach. For example, two proteins may be active in 

only particular, disparate organs and, hence, may be independent of each other. Our current 

representation (Figure 4) will not be able to take into account these constraints.

However, we will argue that the PhLeGrA platform can flexibly incorporate other data and 

knowledge sources published using Semantic Web technologies. With modifications to the 

data model and the addition of newer mapping rules, different kinds of systems networks can 

be generated. The PhLeGrA platform be configured to use other graph analytics frameworks 

over these pharmacological networks. In the future, we will evaluate the utility of the 

PhLeGrA platform for users in the pharmacological domain.
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6.2 Challenges using the LSLOD Cloud

Whereas linked data have been used for integrated information retrieval [22] and interactive 

visualization dashboards that present faceted perspectives to a knowledge base [24], they 

provide an opportunity to build complex machine learning models over multiple data 

sources. However, in the current state of the LSLOD cloud, if a user outside the Semantic 

Web research community wishes to utilize this integrated graph, it is very taxing. Most of 

the usable linked data rest as RDF data dumps in localized silos, whereas the LSLOD cloud 

is structurally broken (unavailable SPARQL endpoints, incorrect links and malformed URIs) 

and very heterogeneous (different SPARQL patterns) [37].

PhLeGrA’s query federation module relies on the set of SPARQL mappings and Endpoints 

for navigating the LSLOD cloud. As can be seen in Table 1, the LSLOD cloud is very 

heterogeneous and there is no single SPARQL graph pattern to get a simple link between a 

drug and its target protein. The entire potential of Semantic Web technologies rests on the 

idea that a naive domain user can query multiple sources regardless of the underlying 

heterogeneity in the schemas. However, simply extracting these links from two sources 

requires the end user to know the graph patterns in them. These complications increase as 

we retrieve additional features of an entity (e.g., molecular weight).

The quality of the LSLOD cloud sometimes necessitates several manual interventions during 

automated analysis. Some of the errors found empirically are listed in Table 2. These errors, 

while seemingly trivial, may affect query federation and information retrieval. These errors 

may have propagated when the representation of the identifiers in the underlying data 

sources changed, and automated RDF conversion pipelines were not able to capture them.

Hence, there are still several problems with the “Semantic Web” vision and the LSLOD 

cloud that need to be mitigated before such methods are applied to address complex, 

biomedical challenges like systems pharmacology.

7. CONCLUSION

In this research, we present the PhLeGrA platform — Linked Graph Analytics in 

Pharmacology. While Semantic Web technologies have been used to link heterogeneous 

biomedical datasets and to create the Life Sciences Linked Open Data cloud, discovering 

hidden associations from these linked datasets serendipitously is still an illusive goal. 

Through PhLeGrA, we attempt to address the the major requirements of association 

discovery from linked data — i) entity reconciliation, ii) query federation and iii) analytics. 

As a proof of concept, we demonstrate the utility of PhLeGrA to create a systems 

pharmacology network using pattern-based query federation, and to associate adverse drug 

reactions with drug–drug interactions using Hidden Conditional Random Field. Using event-

specific thresholds, we obtained an AUROC statistic of more than 0.75 for 146 reactions. We 

believe that addressing the quality, availability, and heterogeneity issues in the LSLOD cloud 

will help improve the efficiency of the entire association discovery process and increase the 

utility of linked data for the domain users.
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Figure 1. 
SPARQL Query Federation: a) Methods: Each Triple Pattern Fragment in the SPARQL 

query is evaluated for each source, before federation. b) Challenges: Different RDF graphs 

may use different semantics (e.g. drug-target and target). Different graph patterns may be 

used to depict the same relation, while capturing additional details.
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Figure 2. 
Platform for Linked Graph Analyics in Pharmacology (PhLeGrA). Using the Data Model (a) 

and mappings rules, the query federation module (b) extracts a k-partite HCRF network 

from the LSLOD Cloud. It uses an external database of inputs and outcomes to predict the 

probabilities of associations (c). A visualization interface allows the domain user to navigate 

the k-partite network (d).
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Figure 3. 
Several underlying mechanisms for drug–drug interactions. a, b) The inhibition of enzymes 

that metabolize a drug to its inactive or active state. c, d) The inhibition of transporters can 

decrease the absorption or elimination of a drug. e) Two drugs target the same protein to 

reduce the effect of one drug. f) Two drugs target proteins in the same pathway to increase 

the effect of both drugs.
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Figure 4. 
A visual depiction of the data model used for generating a k-partite network
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Figure 5. 
Number of Entities and Relations extracted from each data source
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Figure 6. 
Source distribution of R1 ( Drug hasTarget Protein) relations. It can be seen that a 

majority of the R1 relations exist in only one data source.
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Figure 7. 
The Receiver-Operating Characteristic Curves observed during the predictions of different 

adverse drug reactions (ADRs) and a combination curve for the joint prediction of ADRs 

using the same threshold. The legends indicate the labels of the ADRs as well as the Area 

under the curve statistic (AUROC) for each curve (in parentheses). It can be seen that using 

same probabilistic threshold for every ADR results in a weaker predictive power. The HCRF 

model performs remarkably well to predict individual ADRs using event-specific threshold 

(with 146 ADRs with AUROC >= 0.75)
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Figure 8. 
PhLeGrA Drug–Reaction Visualizer. Here, Paliperidone targets the enzymes of Sildenafil 

that might lead to Hypertriglyceridemia.
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Table 1

The type of entities and relations, and the SPARQL patterns, observed in each data source used in our 

prototype are listed below.

Source Entity/
Relation

SPARQL Pattern

D1 E1, E2

R1, R2, R3

D2 E1, E2, E4

R1

D3 E1, E2

E3, E4

R1, R2

R4, R5

D4 E1, E2

E3, E4

R1, R3, R4
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Table 2

Error patterns found empirically

Source Error type Expected Observed

D2 Parse Error go:0030307 go:0030307\"

D3 Incorrect URIs kegg:map00010 kegg:00010

Capitalization kegg:HSA_2147 kegg:hsa_2147

Aggregated URI kegg:HSA_1551 kegg:HSA_1576 kegg:HSA_1551 1576
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