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Abstract Aspirin intake has been shown to lead to significant protection against colorectal 
cancer, for example with an up to twofold reduction in colorectal adenoma incidence rates at higher 
doses. The mechanisms contributing to protection are not yet fully understood. While aspirin is 
an anti-inflammatory drug and can thus influence the tumor microenvironment, in vitro and in vivo 
experiments have recently shown that aspirin can also have a direct effect on cellular kinetics and 
fitness. It reduces the rate of tumor cell division and increases the rate of cell death. The question 
arises whether such changes in cellular fitness are sufficient to significantly contribute to the epide-
miologically observed protection. To investigate this, we constructed a class of mathematical models 
of in vivo evolution of advanced adenomas, parameterized it with available estimates, and calcu-
lated population level incidence. Fitting the predictions to age incidence data revealed that only a 
model that included colonic crypt competition can account for the observed age-incidence curve. 
This model was then used to predict modified incidence patterns if cellular kinetics were altered as a 
result of aspirin treatment. We found that changes in cellular fitness that were within the experimen-
tally observed ranges could reduce advanced adenoma incidence by a sufficient amount to account 
for age incidence data in aspirin-treated patient cohorts. While the mechanisms that contribute to 
the protective effect of aspirin are likely complex and multi-factorial, our study demonstrates that 
direct aspirin-induced changes of tumor cell fitness can significantly contribute to epidemiologically 
observed reduced incidence patterns.

Editor's evaluation
This work develops a multistage/component mathematical model to analyze advanced colorectal 
adenomas and the impact that aspirin therapy has on adenoma formation rates. This study will be 
interesting to the cancer evolution community and in particular those interested in colorectal cancer 
incidence. While the model is mainly focused on aspirin chemoprevention, the model could be 
adapted to test other putative preventative agents, and thus could have a broad impact.
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Introduction
Colorectal cancer currently affects about 5% of the population in the USA and is a major cause of 
cancer-related deaths (Siegel et al., 2020). Prevention of colorectal cancer is an important goal in 
the quest to reduce morbidity and mortality. In this respect, long-term aspirin use has been shown 
to be effective (Chan et al., 2012; Thun et al., 1991). Aspirin is a non-steroidal anti-inflammatory 
drug (NSAID) and is a cyclo-oxygenase (COX)–2 inhibitor (Goel et al., 2003). The CAPP2 trial Burn 
et al., 2011 demonstrated that the intake of 600 mg of aspirin per day for 2 years resulted in a 63% 
reduction in colorectal cancer incidence in Lynch Syndrome patients. Interestingly, observation of the 
protective effect of aspirin required a follow-up time of more than 55 months (Burn et al., 2011). In a 
range of studies, aspirin has also been shown to reduce incidence of sporadic colorectal cancer (Thun 
et al., 1991; Tougeron et al., 2014; Friis et al., 2015; Lochhead and Chan, 2016; Chan et al., 2007; 
Drew et al., 2016; Chan et al., 2005; Rothwell, 2013), and of adenomas (Sandler et al., 2003; Chan 
et al., 2004), which are a precursor of cancer. This was evident both in observational studies and in 
randomized controlled trials, which are reviewed for example in Lochhead and Chan, 2016; Drew 
et al., 2016. These studies report a reduction in cancer or adenoma incidence of the order of 10–50% 
in aspirin-treated compared to placebo groups, depending on the exact dose and frequency of aspirin 
intake. While some studies failed to detect significant protective effects of aspirin, larger studies with 
higher aspirin doses and longer treatment times yielded significant results.

The mechanisms underlying the protective effect of aspirin are likely complex and multi-factorial. 
Inflammation is a possible driver of colorectal carcinogenesis (Itzkowitz and Yio, 2004), and aspirin 
can reduce the extent of inflammation in the cellular microenvironment, which might contribute to a 
reduced development of disease. Other microenvironmental effects, such as the composition of the 
colorectal microbiome (Prizment et al., 2020; Brennan et al., 2021; Zhao et al., 2020), have also 
been shown to determine the degree of protection provided by aspirin. Our previous in vitro and in 
vivo work, however, has shown that physiologically relevant aspirin concentrations can have a direct 
effect on tumor cells, reducing their rate of proliferation and increasing their death rate (Shimura 
et al., 2020; Zumwalt et al., 2017). This not only results in reduced tumor growth, but can also lead 
to a lower probability that newly generated tumor cells successfully give rise to clonal expansion, thus 
increasing the likelihood that these initially transformed cells go extinct (Wodarz et al., 2017). This 
effect might contribute to the reduced incidence of colorectal cancer as a result of aspirin intake.

While these direct effects of aspirin on tumor cell division and death rates have been documented 
by us in vitro and in vivo (Shimura et al., 2020; Zumwalt et al., 2017), and occurred under physio-
logically realistic doses, it is unclear to what extent these changes in cellular kinetics can potentially 
alter disease incidence. To evaluate this quantitatively, a mathematical modeling framework needs 
to be developed that predicts epidemiological incidence data based on cellular processes. There is 
a rich history of such approaches in the cancer literature in different contexts (Fisher and Hollomon, 
1951; Nordling, 1953; Armitage and Doll, 1954; Luebeck and Moolgavkar, 2002; Meza et al., 
2008; Moolgavkar, 1978; Hornsby et al., 2007), which has allowed researchers to gain fundamental 
insights into carcinogenic processes based on the interpretation of age-incidence data. Here, we 
describe a mathematical model of advanced adenoma formation and parameterize it by fitting epide-
miological predictions to incidence data that document advanced adenoma occurrence as a func-
tion of age. We then use this model to test whether aspirin-mediated changes in cellular kinetics, 
as documented by our experiments, can result in reductions in advanced adenoma incidence that 
are comparable to those observed in aspirin-treated patient cohorts. We find that the magnitude of 
changes in the kinetics of transformed cell populations that we observed experimentally can result in 
a pronounced reduction of advanced adenoma incidence, and that the epidemiologically observed 
incidence reductions (between 10% and 50%) can be explained by our model. This indicates that the 
direct effects of aspirin on dividing cells can in principle explain a significant amount of the chemo-
protective effect exerted by this drug. We note, however, that while this is a clear result that emerges 
from this mathematical modeling effort, other mechanisms of aspirin not included in this model (such 
as anti-inflammatory effects [Sostres et al., 2014] or modulation of the microbiome [Prizment et al., 
2020; Brennan et al., 2021; Zhao et al., 2020]) are likely to also contribute to the observed protec-
tive effect.

We start by describing a mathematical model of advanced adenoma formation and show that when 
parameterized with experimentally obtained estimates, it can account for epidemiologically observed 
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age-incidence curves, only as long as inter-crypt competition is explicitly included. We then use this 
model to simulate the effect of aspirin on the incidence of advanced adenomas in human populations, 
and compare model predictions to epidemiological data.

Results
Computational modeling
In order to quantify the effects of aspirin on colorectal cancer initiation and progression, we have 
designed a mathematical model that is rooted in the process of multistep carcinogenesis (Luebeck 
and Moolgavkar, 2002; Hornsby et al., 2007; Fearon, 2011; Ashley, 1969). Its assumptions are 
similar in principle to those in a recent study (Paterson et al., 2020), with important differences that 
are discussed below. There are two early molecular events that we postulate (without assuming their 
temporal order): (1) An inactivation of the APC gene, or a related event that affects the functioning 
of the beta-catenin/WNT signaling pathway, and (2) an activation of the KRAS oncogene (or another 
gain-of-function mutation). For simplicity, we will be referring to these mutations as APC- and KRAS-
mutations, keeping in mind that the model still applies in the presence of a pair of another loss-of-
function and a gain-of-function mutation (further discussed below). The inactivation of the APC tumor 
suppressor gene is a classic example of a loss-of-function mutation, which implies two molecular 
events, corresponding to the inactivation of the two copies of the gene. The associated mutation 
rate is therefore assumed to be u = 10–7 per cell division. The activation of the KRAS oncogene, on 
the other hand, is a gain-of-function event, whose mutation rate is about two orders of magnitude 
lower (μ = 10–9 per cell division). The associated selection-mutation diagram is shown in Figure 1 
and contains six different cell populations, denoted as types 1 through 6. The populations occu-
pying the top row (types 1–3) are characterized by an unmutated KRAS oncogene; the populations 

Figure 1. A schematic illustrating the mathematical model. The six cell types are denoted by circles, the mutation rates that give rise to different types 
are marked by the straight arrows. Type 6 (late adenoma) is marked in red. Crypt conversion rates are indicated by circular arrows and crypt fission by 
multiple circles.

https://doi.org/10.7554/eLife.71953
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of the bottom row (types 4–6) all have the KRAS mutation activated. Moving from left to right on this 
diagram, the number of inactivated copies of the APC gene increases from 0 to 2, such that popula-
tions of types 1 and 4 are APC+/+, populations of types 2 and 5 are both APC+/-, and populations of 
types 3 and 6 are APC-/-.

These different populations correspond to different stages in the pathway towards colorectal 
cancer. The presence of the APC-/- genotype has been related to the appearance of early adenomas 
(type 3) (Armaghany et al., 2012). Cells that have not inactivated APC but are characterized by KRAS 
activation (types 4 and 5) have been linked to aberrant crypt foci (Pretlow and Pretlow, 2005; Jass, 
2006). The combination of both types of mutations (type 6) is thought to correlate with the growth 
of advanced adenomas (Armaghany et al., 2012). As in the previous study (Paterson et al., 2020), 
we assume flexibility regarding the order with which the different mutations can occur. Hence, it is 
assumed that the initial mutation can occur either in APC or in KRAS. It is, however, controversial 
whether adenoma formation can indeed be initiated by a mutation in KRAS. Some studies indicate 
that an initial mutation in KRAS leads to the formation of non-dysplastic polyps, which could represent 
an evolutionary dead end for neoplasias (Jen et al., 1994; Chan et al., 2003). On the other hand, it 
has been suggested that an initial KRAS mutation might be able to drive the initiation of colorectal 
carcinogenesis (Jass, 2006; Pretlow and Pretlow, 2005), based on mutation frequencies in aberrant 
crypt foci and adenomas. The assumed flexibility in the evolutionary pathway of the model accommo-
dates these conflicting notions.

While the model assumptions about the pathways to adenoma formation are clearly defined in our 
model, it is important to point out that there are uncertainties in those assumptions, and that there 
is heterogeneity in the types of mutations that can lead to colorectal carcinogenesis. For example, 
it has been reported that among non-hypermutated colorectal tumors, KRAS was mutated in only 
about 43% of patient samples (Network, 2012), indicating the importance of a variety of evolutionary 
pathways. Our model, however, does not depend on the identity of particular mutations, but assumes 
the occurrence of mutation types; these are the inactivation of a tumor suppressor gene (which is 
a loss-of-function mutation, e.g. APC-/-), and a gain-of-function mutation, which can be in KRAS or 
an alternative gene. Our model predictions hold as long as the evolutionary pathway to advanced 
adenomas involves these two types of mutational events, regardless of their identity. We note that 
our model does not apply to potential cases of advanced adenomas that might develop via pathways 
characterized by a different number or different types of initiating events.

We model the population dynamics of the colon by using a colonic crypt as a basic unit, which 
is similar in concept to recently published work (Paterson et al., 2020). Our model is related to 
many previous theoretical investigations of the cell population dynamics of crypts (Komarova et al., 
2002; Komarova et al., 2003; Nowak et al., 2002; Shahriyari and Komarova, 2013; Shahriyari 
et  al., 2016), where stem cells (SC) were assumed to acquire random mutations in a constant-
population turnover (birth and death) process, and selection happened at the level of individual 
stem cells. Once it was discovered that there were very few stem cells per crypt (Nicholson et al., 
2018; Humphries and Wright, 2008), it became clear that the evolutionary dynamics can be conve-
niently described at the level of crypts, because crypts are likely to be homogeneous with respect 
to the driver mutations. The rate at which a crypt changes its mutational status from i to j, denoted 
by Rij, depends on the population size (the number of stem cells per crypt), the mutation rate, and 
the relative fitness of the invading cell type compared to the resident cell type (Komarova et al., 
2003; Nowak et al., 2002). The latter can be calculated from the cell displacement data reported 
in the literature. Cell types APC+/-, APC-/-, and KRAS + all have a selective advantage compared 
to the wild type, which we assume results in an increase of the SC division rate (see Section 2 of 
Appendix 1 for details).

Our model keeps track of crypts of different types (denoted as ni for each type i). Modified crypts of 
types APC-/- and KRAS + have been reported to undergo crypt fission; in other words, while the total 
population of a single crypt remains constant (even though it is populated by SCs that are fitter than 
the wild-type SCs), the crypt can undergo a doubling, thus increasing the total number of such modi-
fied crypts. The fission rates of different crypt types have been reported in the literature (Paterson 
et al., 2020; Nicholson et al., 2018; Humphries et al., 2013; Baker et al., 2014) and are denoted 
by γi; we further denote by δ the death rate of crypts, see Birtwell et al., 2020 for the role of crypt 
turn-over. We model these dynamics by using the following system of ordinary differential equations:

https://doi.org/10.7554/eLife.71953
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	﻿‍

ṅ1 = −(R12 + R14)n1,

ṅ2 = R23n1 − (R23 + R25)n2,

ṅ3 = R23n2 − R36n3 + γ3n3

(
1 − n3+n4+n5

KA

)
− δn3

ṅ4 = R14n1 − R45n4 + γ4n4

(
1 − n3+n4+n5

KR

)
− δn4

ṅ5 = R25n2 − R45n4 − R56n5 + γ5n5

(
1 − n3+n4+n5

KR

)
− δn5,

‍�

where on the left hand side we have the rate of change for the population of crypts of each type, 
and the terms with the carrying capacity (KA for KRAS- crypts and KR for KRAS+ crypts) represent 
competition among modified crypts that undergo crypt fission; in reference (Paterson et al., 2020) 
no crypt competition was included, such that KR = KA = ∞ in that model. The initial conditions for the 
system above are given by n1(0) = Ncrypt, ni(0) = 0, 1 < i ≤ 5, that is, initially all Ncrypt crypts are wild type. 
Parameter values are presented in Appendix 1—table 2.

The probability to have produced a single crypt of type 6 (the APC-/-KRAS+ phenotype) by time t is 
denoted by P(t) and is approximated by the following equation Chou and Wang, 2015,

	﻿‍ Ṗ = (R56n5 + R36n3)(1 − P), P(0) = 0‍�

 

We further assume that crypts of type 6 engage in a fission-death dynamics (with the corresponding 
rates γ6 and δ6). At the time of detection, an advanced adenoma is characterized by a certain size, N. If 
ΔT denotes the expected time for the crypt population, n6, to grow to the size of detection, then the 
value P(t-ΔT) calculated above approximates the mathematical expression for the age-incidence curve 
for advanced adenoma. These approximations were checked against stochastic (Gillespie) simulations 
recording the incidence of size N colonies of type 6 crypts, yielding excellent agreement (see Section 
5 of Appendix 1 for details).

Fitting the adenoma incidence curve
Until recently, most of the parameters associated with cellular dynamics in colonic crypts were unknown, 
but presently many of the rates have been estimated with a high degree of confidence (Paterson 
et al., 2020), which makes it possible to parameterize the model and use it to answer questions about 
the process of crypt transformation and the dynamics of cancer initiation. Using the published data on 
the mutation rates, the total number of crypts, the number of SCs per crypt, and the relative fitness 
of different cell types (see Appendix 1—table 2), we first attempted to fit the model in the absence 
of crypt competition (KR = KA = ∞), by varying the SC division rate within the physiological range and 
finding the best fitting value for crypt fission rates. The best fitting parameter combinations always 
corresponded to zero crypt fission rates. Non-zero crypt fission rates resulted in a much steeper rise 
in the adenoma incidence compared to that reported in Brenner et al., 2014. A similar result was 
obtained when we used different values for fitness differences (the exhaustive parameter search and a 
model selection procedure are described in Section 3 of Appendix 1). Finally, using the reported crypt 
fission rates (Appendix 1—table 2) we were not able to find a SC division rate within the biologically 
applicable range that would give the correct shape of the advanced adenoma incidence curve. The 
conclusion is that an unlimited exponential expansion of crypts by fission gives an unrealistically steep 
rise in incidence. This problem did not occur in reference (Paterson et al., 2020) because fitting of 
the age-specific incidence of CRC was not attempted, and instead, only the total life-time risk of CRC 
was compared to the model prediction.

Including crypt competition in the model has resolved this issue. We fixed the carrying capacity 
of type 3–5 crypts (parameters KR and KA) to values much smaller than the initial number of healthy 
crypts, Ncrypt, to ensure the presence of significant competition among the partially transformed crypts. 
Using this model, we were able to fit the data for a wide range of the SC division rates, with the non-
zero best-fitting crypt fission rates that have the correct order of magnitude. Additionally, fixing the 
crypt fission rates to their reported values, we were able to find very well-fitting incidence curves for 
a wide range of SC division rates (r1), with the carrying capacity parameters ranging between about 
100 and about 5000.

https://doi.org/10.7554/eLife.71953
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For the model that includes crypt competition, it was possible to find nearly equally good fits for 
a range of biologically plausible parameter values, see Figure 2. The amount of data in the advanced 
adenoma incidence curve does not allow finding unique values for all the parameters, but instead 
it allows using many of the parameters fixed to their experimentally obtained values, and just fine-
tuning the small number of remaining parameters whose value is unknown (such as KA and KR) or only 
its range is known (such as the SC division rate). When using the parameterized model to study the 
role of aspirin, instead of selecting the best fitting parameter set, we included a number of parameter 
sets from the best fitting parameter ranges, to see how this variability influences the result.

Pathways to adenoma
Next, we asked what is the most likely pathway that leads to the creation of the type 6 (advanced 
adenoma). It is possible that crypts of type 6 could be created by a KRAS mutation in a crypt of type 
3 (we called this ‘APC path’), or by an APC mutation in a crypt of type 5 (‘KRAS path’), see panel (a) of 
Figure 3. We found, consistent with (Paterson et al., 2020), that the likelihood of each of these two 
pathways is determined by the crypt fission rates, and not by mutation rates or crypt conversion rates 
(Figure 3(d)); in addition, it is sensitive of the carrying capacity parameters, KA and KR. This is demon-
strated in Figure 3 by examining the best fitting parameter sets of Figure 2(b). They naturally fall 
into two groups (circled in yellow and green): for the former group, the best fitting carrying capacity 
satisfy KA >KR, and for the latter group this inequality is reversed (see Figure 3(b)). We consider the 
former group biologically relevant, not only because it yields a smaller fitting error, but also because 
it corresponds to the type (APC-/-,KRAS-) crypts having a larger carrying capacity, which is consistent 
with this type being a more advanced stage.

The model allows for the calculation of the probabilities to develop an advanced adenoma through 
the APC-/- and KRAS pathways, functions PAPC(t) and PKRAS(t). Panel (c) of Figure 3 plots these quan-
tities as functions of age (t) for the two groups of parameters. We observe that for the biologically 
relevant group where the carrying capacity associated with type 3 (APC-/-,KRAS-) is larger, the pathway 
through the inactivation of the APC gene is predominant. This is consistent with the conclusions of 
reference (Paterson et al., 2020). We also generated probability distributions of the numbers of type 
3 and type 5 crypts at the time when the first type 6 crypt is generated (Appendix 1—figures 12 and 
13). We observe that in the model, the number of type 3 (APC-/-,KRAS-) crypts is in the hundreds while 
type 5 (APC-/+,KRAS+) crypts are relatively rare. This might further argue against the importance of 
KRAS as an initiating event in disease evolution.

Figure 2. Fitting the nonlinear model to late adenoma incidence data. (a) The fitting error as a function of r1, for the best fitting pairs (γ3 and γ4) with 
KA = KR = 1000; see Figure 2—source data 1. (b) The fitting error as a function of r1, for the best fitting values of (KA,KR). Two groups of fits are marked 
with yellow and green ovals for the analysis of pathways, Figure 3. See Figure 2—source data 2. (c) The best fitting curves corresponding to increasing 
SC division rates, r1, are plotted together with the epidemiological data (the values of r1 are taken from the Region of low error, panel (b)). In all panels, 
δ=δ6=0.05 yrs–1, γ6 = 1.01 yrs–1, expansion of n6 to N = 102 crypts, and the rest of the parameters are as in Appendix 1—table 2. The code for panels 
(a–c) is provided, see Source code 1.

The online version of this article includes the following source data for figure 2:

Source data 1. Data for Figure 2a.

Source data 2. Data for Figure 2b.

https://doi.org/10.7554/eLife.71953
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The effect of aspirin
We asked, given that a variety of parameter values could lead to the same incidence curve, can we 
still say anything about the possible role of aspirin in cancer prevention/delay? To model the effect 
of aspirin on the relevant kinetic parameters, we used a variety of sources. One type of data was 
obtained by us in our earlier studies, where the effect of aspirin was quantified by measuring cells’ 
kinetic parameters with and without aspirin treatment, in vitro and in xenografts (Shimura et al., 2020; 
Zumwalt et al., 2017). In other work, it has also been demonstrated that a related non-steroidal anti-
inflammatory drug, sulindac, inhibited the fission of APC-deficient crypts and thus reduced adenoma 
numbers in mice.

It is, however, unclear which exact cell populations aspirin might affect in vivo. Therefore, we imple-
mented the effect of aspirin in the epidemiological model by testing different sets of assumptions: 
(a) aspirin affects the fitness of cells within crypts (intra-crypt dynamics), and it may or may not affect 
crypt turnover dynamics through crypt fission and death rates (inter-crypt dynamics); (b) the fitness of 
type 6 cells is reduced, and the fitness of type 2–5 cells may or may not be reduced as well. In other 
words, only the most transformed cell type (that is, the most modified cell type that combines both 
the APC-/- mutation and the KRAS + mutation) is affected by aspirin, or all mutated cells, that is types 
2—6, are affected. Different combinations of these assumptions have been explored, as summarized 
in Figure 4(a).

Figure 3. Pathways to adenoma. (a) A schematic representation of the two pathways. (b) For the two groups of fits in Figure 2(b), the pairs (KA,KR) 
are shown. The two groups are characterized by KA >KR and KA <KR, respectively. See Figure 3—source data 1. (c) The probabilities PAPC and PKRAS are 
plotted as functions of time for these two groups of fits. (d) The proportion of the APC-path is shown as a function of the crypt fission rates, γ3 and 
γ4=γ5. Expansion to 102 type-6 crypts is assumed (see Appendix 1—figure 10 for expansion to105 type-6 crypts); the rest of the parameters are as in 
Appendix 1—table 2. The code for panels (b–c) is provided, see Source code 1.

The online version of this article includes the following source data for figure 3:

Source data 1. Date for Figure 3b.

https://doi.org/10.7554/eLife.71953
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The effect of aspirin on cellular kinetics is modeled by using results of our xenograft experiments 
(Shimura et al., 2020), where we documented a dose-dependent reduction in the cell division rate 
(fold difference Fr <1) and an increase in the cell death rate (fold difference Fd >1), see Table 1. The 
relationship between the experimentally used aspirin doses in mice (Shimura et al., 2020) and the 
number of aspirin pills per weeks in humans (Nair and Jacob, 2016) is also given in Table 1. The 
strongest dose we used in study (Shimura et al., 2020) roughly translates to 1–2 standard aspirin pills 

Figure 4. The effect of aspirin on the advanced adenoma incidence curve. (a) Modeling assumptions and references to figures that present the results. 
(b) A schematic showing the timing of the model with aspirin treatment. (c) Predicted advanced adenoma incidence in the absence of aspirin treatment 
(thin black lines are the fitted curves and black dots are incidence data); and under aspirin treatment where the drug affects both inter- and intra-crypt 
dynamics of types 2 to –6 (yellow line). Each panel corresponds to aspirin treatment administered during one decade (20–30 years, 30–40 years, etc). The 
treatment period is shaded light green. See Figure 4—source data 1. (d) Relative incidence of advanced adenoma, where strong (yellow, the same as 
in panel (c)), medium (brown) and light (blue) aspirin treatment dose was used (Table 1). Treatment is applied for different decades (as marked under 
the bars), and the relative risk is evaluated at the end of the treatment decade (zero follow-up time). See Figure 4—source data 2. Parameter set #2 
(Appendix 1—tables 1–3) was used. 2.5 × 105 and 5 × 105 independent simulations were used for each condition in panels (c) and (d) respectively. The 
code for panels (c–d) is provided, see Source code 2 (Mathematica). See also Source code 3 (Fortran), a stochastic simulation that produces simulated 
late adenoma incidence.

The online version of this article includes the following source data for figure 4:

Source data 1. Data for Figure 4c.

Source data 2. Data for Figure 4d.

Table 1. Aspirin doses in xenograft experiments, the equivalent human dose and the resulting 
changes in kinetic rates.

Dose in xeno- grafts 
(mg/kg)

Equivalent dose in humans (325 cm 
pills per week)

Fold difference in 
division rate, Fr

Fold difference Un 
death rate, Fd

Fitness 
factor

15 1.8 0.9 1.5 0.86

50 6.1 0.75 1.75 0.70

100 12.2 0.5 2.0 0.45

https://doi.org/10.7554/eLife.71953
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a day for humans, which is the second strongest dose considered in Chan et al., 2004 (6–14 pills per 
week), see Section 6 of Appendix 1. When aspirin is applied in our model, we assumed the following:

Effect on the intra-crypt dynamics
For the purposes of our model, it is the combined effect of aspirin on cell division and death rates 
that changes the cells' relative fitness and decreases the probability of crypt conversion. To translate 
this information into the fold decrease in SC fitness, we note that, while the fold-reduction in division 
rate could be directly implemented, an increase in death rate is less straightforward. This is because 
in contrast to cell lines, with SCs, cell removal can occur through a combination of apoptosis and loss 
through differentiation, which might be the dominant component in the colorectal tissue. Therefore, 
if the rate of SC apoptosis is increased, say, two-fold in the presence of aspirin, this does not trans-
late to a two-fold reduction in SC fitness. In the extreme scenario of zero SC death in the absence of 
aspirin, a two-fold increase in this parameter will not lead to a change in SC fitness. To calculate the 
fitness factor, we assumed that the removal rate of SCs, d, is comprised of 90% differentiation and 
10% apoptosis, and that it is the latter that is affected by aspirin. If in the absence of aspirin, cellular 
fitness is given by the ratio r/d, then in the presence of aspirin this changes to ‍r/d × Fr/(0.9 + 0.1Fd),‍ 
which gives the fitness factor in Table 1. This factor enters into the crypt conversion rate, see Section 2 
of Appendix 1. In particular, if only type 6 is affected, then rates R36 and R56 will experience a reduction. 
If types 2 to –6 are affected, then all conversion rates will be reduced.

Effect of inter-crypt dynamicsf
In addition to affecting cellular fitness within the crypts, it is also logical to assume that aspirin reduces 
crypt fission rates and increases crypt death rates (the bottom row of the table in Figure 4(a)). This 
is supported by data (Fischer et al., 2014), and the rationale behind this assumption is that crypt 
fission is ultimately connected with divisions of individual cells, and crypt death is associated with 
cell death. Therefore, we assume that under aspirin treatment, ‍γi → Fr → γi‍ and ‍δ → Fdδ‍ (that is, the 
fold-differences apply to the crypt fission and death rates). Again, this could affect the most modified 
crypts only (type 6), thus reducing the rate γ6 and increasing the death rate δ 6; alternatively, this could 
affect to all type 2 to –6 crypts, thus reducing all the crypt fission rates and increasing all the crypt 
death rates.

The delaying effect of aspirin was studied by using stochastic (Gillespie) simulations, where the 
models were run according to the schematic in Figure 4(b). In particular, model parameters were 
switched from their (best fitted, aspirin-free) values to their modified values for the duration of 
treatment from Tstart to Tend. Simulations were stopped when the colony of type-6 crypts grew to its 
detection size (or when T = 80 was reached). Many simulation runs were aggregated to derive the 
age-incidence curve for advanced adenoma. Figure 4(c) presents typical simulation results for the 
models where aspirin affects both intra-crypt (conversion) and inter-crypt (crypt fission and death) 
dynamics for all the mutated cell types. The thin black lines represent the incidence curve in the 
absence of treatment, as was obtained by fitting the advanced adenoma data from Brenner et al., 
2014 (black dots). The yellow curves represent the predicted age-incidence for individuals who were 
undergoing aspirin treatment during the time-window (of 10 years) in different decades of their lives 
(see the green shading in each panel representing treatment). Panel (d) of Figure 4 shows the relative 
risk of advanced adenoma for patients that received aspirin treatment during different decades of 
their lives. This is calculated at the time-point that is referred as ‘Relative risk assessment time’ in panel 
(b), and corresponds to a zero follow up time in this case. The yellow bars correspond to the prediction 
for individuals treated with a relatively strong dose of aspirin (roughly 6–14 pills a week) for 10 years. 
We have further performed simulations to obtain model predictions pertaining to lower aspirin doses 
(Table 1), which we referred to as medium (about 6 pills a week, brown bars in Figure 4(d)), and light 
(less than two pills a week, blue bars in Figure 4(d)).

We can compare the predicted relative adenoma risk with the data reported in the literature, see 
e.g. (Chan et al., 2004; Cole et al., 2009; Cao et al., 2016; Drew et al., 2016). In particular, the 
dose-dependence of colorectal adenoma was studied (Chan et al., 2004), and it was shown that the 
relative risk for adenoma was 0.80 for women who used 0.5–1.5 standard (325 mg) tablets per week, 
0.74 for those who used 2–5 tablets per week, 0.72 for those who used 6–14 tablets per week, and 
0.49 for those who used more than 14 tablets per week. Comparing this with the relative advanced 

https://doi.org/10.7554/eLife.71953
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adenoma risk plot in Figure  4(d), we can see that the model predictions are consistent with the 
observed bounds: for the aspirin dose that corresponds to 6–14 tablets per week (referred to as high 
dose, Figure 4(d)), the predicted relative risk ranges between about 0.35 and 0.80, depending on the 
age when aspirin was administered. Consistently with (Chan et al., 2004), we found that the effect 
of aspirin decreases with smaller doses, resulting in the relative risk for intermediate doses varying 
roughly in the 0.6–0.9 range (brown bars in Figure 4(d)), while for the light dose it varied in the 0.8–0.9 
range (blue bars in Figure 4(d)).

Note that in our simulations for different scenarios, we observed remarkable quantitative consis-
tency of results over a very wide range of parameters where uncertainties exist. For example, in 
Appendix 1—figure 14, we compared two markedly different assumptions on the numbers of type-6 
crypts that constitute advanced adenoma at detection (Lang et al., 2020; Sun et al., 2014; Kim et al., 
2007; Tsai and Strum, 2011; Jones et al., 2008; Kang and Shibata, 2013; Dewanji et al., 2011), 
with the results remaining very similar.

While in Figure 4(c and d) we assume that aspirin treatment lasts 10 years, in Appendix 1—figure 
18 we investigated the effect of a shorter duration of aspirin treatment for the high dose regime and 
found the relative risk closer to 0.80. One conclusion that follows from this and other simulations 
(see Appendix 1, section 6) is that the extent of the aspirin-induced reduction in the adenoma risk, 
resulting from the mechanisms studied here, is consistent with the reported risk reduction at least for 
a subset of the parameter combinations. Therefore, this mechanism cannot be rejected based on the 
predicted advanced adenoma incidence reduction.

Next, we examined how changing model assumptions about the effect of aspirin alter these results. 
While the simulations of Figure 4 assume that both inter- and intra-crypt dynamics are affected by 
aspirin, Appendix  1—figure 15 only includes aspirin’s effect on intra-crypt dynamics. Under this 
assumption, even the strongest aspirin dose did not result in the magnitude of the effect reported 
in Chan et al., 2004: the reduction in advanced adenoma risk was within a few percent only. This 
suggests that including aspirin’s effect on inter-crypt (fission/death) dynamics is essential to explain 
the data, which makes intuitive sense because crypt dynamics are thought to be drivers of disease 
development.

We also investigated the consequence of the assumption that aspirin only affects the most trans-
formed (type 6) cells (Appendix 1—figure 16), and found that while the effect is reduced compared 
to the full model of Figure 4, one still observes a significant decrease in advanced adenoma risk. 
Interestingly, if assessment time follows treatment immediately (zero follow-up time) then there is 
almost no difference between the prediction of the model where only type 6 is affected compared to 
that where crypts 2—6 are affected (Appendix 1—figure 17). Increasing the follow-up time, however, 
reveals an increase of the difference between the two model predictions. For example, with a 15 years 
follow-up time, the model where all types 2—6 are affected shows the relative risk of about 0.6, while 
the model with only type 6 affected yields a relative risk of about 0.8. The reason for this is the lag-
phase that exists between the generation of the first type-6 crypt and its growth to detection (which 
in our simulations takes between about 5 and 11 years).

There are several further patterns that emerge. We observe that risk reduction clearly depends on 
the age of the patients when aspirin was administered. As we see in Figure 4(d), the relative risk can 
be as low as about 0.4 for patients that started treatment at age 20 and assessed at age 30, compared 
to a more modest reduction to relative risk of 0.8 for patients receiving treatment later in life (see 
additional discussion below). Further, we will mention that aspirin-induced risk reduction, as predicted 
by this model, does not disappear even decades after aspirin treatment stopped (Figure 4(b)).

Finally, we comment on another aspect of our model that is different from several other models 
used in the field (including Luebeck and Moolgavkar, 2002; Meza et al., 2008; Paterson et al., 
2020). When predicting the age-incidence curve that results from the microscopic dynamics of 
selection and mutations, we explicitly included the growth of the most modified crypt type to its 
detectable size. While stopping the simulations once the first type-6 crypt is produced leads to qual-
itatively similar results, the inclusion of a relatively slow growth of the adenoma significantly changed 
numerical values of the fitted parameters. It appears that including this stage in the simulations helps 
improve the quantitative contribution (rather than a proof-of-principle) of this style of mathematical 
modeling.

https://doi.org/10.7554/eLife.71953
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Discussion
We used mathematical modeling approaches to test the hypothesis that the changes in tumor cell 
kinetics observed during aspirin treatment in vitro and in vivo can translate into a protective effect on a 
population level that is consistent with epidemiological observations for late adenoma. This was done 
by first constructing a mathematical model of in vivo carcinogenesis describing evolutionary events 
leading up to the late adenoma stage. This model was then used to calculate expected population 
incidence as a function of age. Many of the model parameters have recently been estimated experi-
mentally, which provides a solid basis for this modeling effort. Remaining parameters were estimated 
by fitting the incidence prediction to epidemiological data on late adenoma detection. A linear model 
that did not include inter-crypt competition was rejected because its best fits corresponded to zero 
crypt fission rates, and the more (statistically) powerful model was adopted instead, where individual 
mutated crypts experienced both fission and nonlinear competition dynamics. This parameterized 
model was used as a basis to explore how changes in the kinetics / fitness of cells, brought about by 
aspirin, can modify the predicted incidence of late adenomas.

Our previous in vitro and in vivo work (Shimura et al., 2020; Zumwalt et al., 2017) indicated that 
aspirin reduces the rate of colorectal tumor cell division and increases the rate of tumor cell death 
in a dose-dependent way, by up to twofold. In the current modeling study, three different exper-
imental aspirin doses (converted to human aspirin intake) were explored, for which we previously 
measured their effect on the kinetic parameters. The mathematical analysis demonstrated that param-
eter changes of a magnitude that lies within our experimentally observed range can lead to signifi-
cant reductions in predicted late adenoma incidence, which are consistent with the epidemiologically 
observed reductions (ranging between 10–50%, Chan et al., 2004). The model identified dose, treat-
ment duration, and the age at which treatment was started as important determinants of protection 
in this context. We can conclude that the aspirin-induced changes in cellular fitness that we observed 
experimentally can in principle explain a significant portion of the protective effect observed on the 
population level.

This does of course not preclude alternative mechanisms that can further contribute to the protec-
tive effect. It is very likely that a reduction in the level of inflammation within the microenvironment of 
the cells can reduce the incidence of colorectal cancer, because inflammation has been identified as a 
driver of this disease (Itzkowitz and Yio, 2004). Moreover, other microenvironmental factors, such as 
the composition of the colorectal microbiome, have been shown to influence the ability of aspirin to 
reduce tumor growth (Prizment et al., 2020; Brennan et al., 2021; Zhao et al., 2020). This is there-
fore also likely to play a role in explaining the epidemiological data. Quantification of these further 
complexities in future work will allow us to introduce these additional aspects into the modeling 
framework, which would result in a refinement of predictions.

As with most mathematical modeling studies, there are uncertainties in assumptions that need 
to be kept in mind. Our experiments (Shimura et al., 2020; Zumwalt et al., 2017) were performed 
with tumor cell lines, both in vitro and in mouse xenografts. While the xenografts capture a higher 
degree of biological complexity than in vitro experiments, cellular processes in the human colon 
are even more complex. Colorectal tissues and tumors are characterized by stronger cell hierar-
chies than our experimental system, including stem, transit amplifying, and terminally differenti-
ated cells. Our analysis was presented under the assumption that colorectal stem cells initiate and 
maintain tumor growth. While our experimental system did not specifically focus on stem cells, 
other studies indicate that the effect of aspirin on the kinetics of stem cells in particular is similar 
(Chen et al., 2018), thus justifying model assumptions. Another uncertainty concerns the cell type 
in which the tumor originates, and the exact identity of the cell compartment that maintains tumor 
growth. While we concentrated our model description around stem cells as the cell of origin that 
drives disease, the model defines this population as having the ability to self-renew thus main-
taining the expansion of the tumor. Hence, this cell population in the model could also correspond 
to compartments downstream in the differentiation pathway, such as transit amplifying cells, given 
the marked plasticity within the intestinal epithelium. The model is thus in principle consistent with 
hypotheses that colorectal cancer might have a different cell of origin (Huels and Sansom, 2015). 
Interestingly, it has been shown that aspirin had a negative impact on colon organoids derived from 
non-neoplastic issues, and that aspirin particularly reduced the rapidly cycling transit amplifying cell 
population (Devall et al., 2021).

https://doi.org/10.7554/eLife.71953
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Another point of uncertainty concerns the identity of the cell populations that are affected by 
aspirin. To address this, we made several assumptions, and results remained robust. We first assumed 
that aspirin influences all mutated cell populations (type 2–6). Results, however, remained fairly similar 
in an alternative model, where only type 6  cells (characterized by APC-/- and KRAS + mutations) 
were affected by aspirin, although in this case the effect of aspirin is weaker, which is not surprising 
given that a smaller cell population loses fitness. More crucial was the assumption that aspirin influ-
ences not only the cell dynamics themselves, but also the crypt fission dynamics, reducing the rate at 
which crypts divide and/or increasing crypt death rate. While this is supported by data (Fischer et al., 
2014), further experimental investigation into the exact mechanism by which aspirin affects inter-crypt 
dynamics is needed to back up our modeling assumptions.

An important component of all of this work is the underlying mathematical model of in vivo 
adenoma formation. The assumptions about the genetic events that occur during adenoma formation 
are consistent with our current understanding of adenoma evolution (Fearon, 2011), and a similar 
model that also includes evolutionary events beyond adenomas has recently been published (Paterson 
et al., 2020). While the model description in our and the previously published study (Paterson et al., 
2020) was focused on APC-/- and KRAS + mutations as initial events, the same evolutionary dynamics 
would occur if the identity of mutations were different, as long as the evolutionary pathway involves 
the inactivation of a tumor suppressor gene and the activation of an oncogene, as specified in the 
model description.

An important difference between our and the previous model concerns assumptions about crypt 
fission dynamics. The previous study (Paterson et al., 2020) assumed that crypt fission can occur 
without density-dependent effects. Using experimentally available parameter estimates, this model 
could account for the life-time risk of colorectal cancer. When applying a similar model to late adenoma 
age incidence data, however, we could not obtain a good fit for the age-incidence curve, and the 
best fit was in fact obtained in the absence of any crypt fission. In the absence of inter-crypt compe-
tition (that is, with unlimited crypt fission), the predicted adenoma incidence rose too sharply with 
age compared to epidemiological data. When introducing density-dependence into the crypt fission 
process, however, late adenoma age incidence data could be readily fit, and so we used this model 
assumption to go forward. Indeed, it is likely that density-dependent effects play a role in crypt fission, 
because this process is probably influenced by signaling factors that become limiting as the number of 
crypts increases. It would be important to verify this assumption experimentally in future work.

Finally, it is interesting to discuss the results of the ASPREE trial (McNeil et  al., 2018; McNeil 
et al., 2021) in the context of the work presented here. This trial investigated the effect of aspirin 
treatment in a cohort of older individuals, 70 years or older without cardiovascular disease, dementia, 
or disability. It was found that cancer incidence was not significantly changed by aspirin, but that 
the aspirin-treated group experienced a higher rate of cancer-induced mortality. The absence of a 
significant effect of aspirin on cancer incidence in this study is consistent with our model predictions. 
Our mathematical analysis demonstrated that the effect of aspirin treatment on cancer incidence 
diminished when treatment was initiated in older ages. Our modeling approach, however, cannot 
make predictions about cancer-induced mortality, because it describes the evolutionary process up 
to the stage of advanced adenoma only. Our previous work (Wodarz et al., 2017), however, offers an 
interpretation of these data. Because of their advanced age, it is likely that a certain fraction of the 
ASPREE participants already harbored tumors that had not been detected yet due to the absence of 
overt clinical symptoms. In fact, a previous history of cancer was not an exclusion criterion in the trial. 
As the established tumors continue to grow during aspirin treatment, they likely do so with altered 
kinetics (reduced division rates and increased death rates, leading to a higher turnover). This means 
that by the time the tumor has reached a given size (e.g. at which it becomes clinically detectable), 
it will have undergone more cell divisions under aspirin treatment compared to the placebo group. 
Hence, the tumor will on average have accumulated more mutations once this detectable tumor size 
is reached. This in turn means that the aspirin-treated tumor might be more virulent and less respon-
sive to therapies, resulting in more deaths. The theoretically derived notion that upon detection, an 
aspirin-treated tumor is more evolved than a tumor that grows without aspirin (Wodarz et al., 2017) 
is supported by the ASPREE analysis, which found that aspirin-treated patients were more likely to 
have metastasized cancers and stage 4 cancers compared to the placebo group (McNeil et al., 2018; 
McNeil et al., 2021).

https://doi.org/10.7554/eLife.71953
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In conclusion, this modeling analysis suggests that a direct impact of aspirin on the kinetics and 
fitness of mutated cells can significantly reduce the incidence of colorectal adenomas, with a magni-
tude that is consistent with epidemiological data. This highlights the importance of investigating this 
effect of aspirin experimentally in more detail, especially under experimental conditions that approx-
imate cell dynamics in the human colorectal tissue with greater accuracy.

Materials and methods
The adenoma incidence data
In order to study the incidence of advanced adenoma, we used the data reported in Brenner et al., 
2014 for the age-ranges 55–59, 60–64, 65–69, 70–74, and 75–79. While this study provides incidence 
data for nonadvanced adenoma, advanced adenoma, and colorectal cancer (CRC), we focused only 
on the combined incidence of advanced adenoma and cancer. This assumes that individuals that have 
developed CRC have most likely already developed an advanced adenoma by the age of testing, and 
further that nonadvanced adenoma likely refers to fewer mutational steps compared to our type 6, 
where both the APC gene is fully inactivated and the KRAS gene is mutated. The paper reports data 
separately for males and females; for our purposes we combined the two values to study the average, 
since the model is not sufficiently detailed to distinguish between the sexes.

Mathematical modeling
The mathematical model describes stochastic dynamics of colonic crypts. There are six types of crypts 
that are included in the model, which differ by their mutational status. The number of crypts of each 
type is denoted by ni, where i = 1 corresponds to the wild-type crypts, i = 2 to type APC+/-, i = 3 to 
APC-/-, i = 4 to KRAS+, i = 5 to KRAS+APC+/-, and i = 6 to KRAS+APC-/- (the most modified type asso-
ciated with advanced adenoma). The model contains the processes of crypt conversion (whereby a 
mutation in a stem cell can fixate in a given crypt thus changing its mutational status), as well as crypt 
fission/death processes. Inter-crypt competition is included by way of nonlinear (logistic) terms. Given 
the initial condition (wild-type crypts only) and model parameters, the model outputs the probability 
to observe, by time t, a specified population of type-6 crypts (n6 = N), which is assumed to be asso-
ciated with advanced adenoma detection. This represents a numerically generated age-incidence 
curve. The expected behavior was described by a system of ordinary differential equations (ODEs), 
and the prediction was fitted to the advanced adenoma incidence reported in Brenner et al., 2014. 
While the model was parameterized by using the rates found in literature and describing the kinetics 
in humans, a subset of parameters are unknown (or only their ranges are known); these parameters 
were estimated by the fitting procedure.

Using the parameterized model that is consistent with the advanced adenoma incidence, we incor-
porated the effect of aspirin by adjusting the kinetic parameters of cells (division and death rates of 
cells, which describes the effect of aspirin on intra-crypt dynamics), as well as kinetic rates of crypts 
(crypt fission and death rates, which describes the effect of aspirin on inter-crypt dynamics). This was 
done by using experimentally measured factors. Fully stochastic (Gillespie) simulations were used to 
quantify the predicted advanced adenoma incidence curves for patients that used different doses and 
durations of aspirin treatment. For further details of the modeling, see Appendix 1.
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Appendix 1
Mathematical formulation of a crypt-based model of adenoma initiation
Let us enumerate the types in the way presented in Table Appendix 1—table 1.

Appendix 1—table 1. Enumeration of the different genotypes.

Mutations in APC Mutations in KRAS Type number

0 0 1

1 0 2

2 0 3

0 1 4

1 1 5

2 1 6

Then we can denote by ni with ‍1 ≤ i ≤ 6‍ the number of crypts of type ‍‍. Suppose ‍Rij‍ is the 
conversion rate from crypt type ‍‍ to type ‍j‍, and ‍γi‍ the growth rate (by crypt fission) of crypts of type 
‍‍. We have the following equations:

	﻿‍ ṅ1 = −(R12 + R14)n1,‍� (1)

	﻿‍ ṅ2 = R12n1 − (R23 + R25)n2 + γ2n2,‍� (2)

	﻿‍ ṅ3 = R23n2 − R36n3 + γ3n3,‍� (3)

	﻿‍ ṅ4 = R14n1 − R45n4 + γ4n4,‍� (4)

	﻿‍ ṅ5 = R25n2 + R45n4 − R56n5 + γ5n5,‍� (5)

with the initial conditions

	﻿‍ n1(0) = Ncrypt, ni(0) = 0, 1 ≤ i ≤ 5.‍� (6)

In the ODEs above, we have ignored the process of stochastic tunneling such that the crypts can 
only convert one step at a time. It is further possible to ignore the negative (outgoing) rates, which 
simplifies this linear system to the following:

	﻿‍ ṅ1 = 0,‍� (7)

	﻿‍ ṅ1 = R12n1 + γ2n2,‍� (8)

	﻿‍ ṅ3 = R23n2 + γ3n3,‍� (9)

	﻿‍ ṅ4 = R14n1 + γ4n4,‍� (10)

	﻿‍ ṅ5 = R25n2 + R45n4 + γ5n5.‍� (11)

https://doi.org/10.7554/eLife.71953
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The probability ‍P(t)‍ that by time ‍t‍ at least one crypt of type 6 has been created (using the mean-
field approximation from Cole et al., 2009) is given by the solution of the equation

	﻿‍ Ṗ = (R56n5 + R36n3)(1 − P), P(0) = 0,‍� (12)

see also section 5.1. The solution can be obtained exactly and is given by

	﻿‍ P = 1 − exp
{
−Ncrypt(S45R1→4→5→6 + S25R1→2→5→6 + S23R1→2→3→6)

}
,‍� (13)

where the quantities ‍Sij‍ correspond to the paths ‍1 → i → j → 6‍,

	﻿‍ R1→i→j→6 = R1iRijRj6,‍� (14)

see Appendix 1—figure 1. They can be written down by using the following function:

	﻿‍ g(x) = ext−1−xt
x2 > 0.‍� (15)

Appendix 1—figure 1. Three pathways to adenoma.

We have

	﻿‍ g(0) = t2
2 , g′(x) ≡ ∂g

∂x = 2+tx+etx(tx−2)
x3 > 0,‍�

that is, this function increases monotonically in ‍x‍. We have

	﻿‍ Sij = g(γi)−g(γj)
γi−γj

.‍�

Note that expressions ‍Sij‍ have a singularity if any of the quantities ‍γi‍, ‍γj‍ is zero and/or if ‍γi = γj‍. 
For example, if both growth rates are zero (‍γi = γj = 0‍), we have

	﻿‍ Sij = t3
6 .‍�

In our context it is reasonable to assume that ‍γ2 = 0‍, that is, APC+/- crypts do not divide, and 
that ‍γ4 = γ5‍, that is, APC+/+ and APC+/- crypts with an additional KRAS mutation divide at the same 
rate. In the ‍γi = γj‍ case, taking the limit as ‍γj → γi‍, we obtain

	﻿‍ S45 = g′(γ4), S25 = g(γ4)−t2/2
γ4

, S23 = g(γ3)−t2/2
γ3

.‍� (16)

It is convenient to view S25 as a function of ‍γ4‍, ‍S25 = F(γ4)‍, where

	﻿‍
F(x) = 1

x3

(
ext −

(
1 + xt + (xt)2

2

))
= 1

x3

∑∞
i=3

(xt)i

i! ,
‍�

then ‍S23 = F(γ3)‍, and ‍F(x)‍ is an increasing function of ‍x‍. That is, if ‍γ4 > γ3‍ then ‍S25 > S23‍, and if 

‍γ4 < γ3‍ then ‍S25 < S23‍. We further note that ‍S45 = F̃(γ4)‍ with

	﻿‍ F̃(x) = 1
x3

(
ext(tx − 2) + tx + 2

)
= 1

x3

∑∞
i=3

(xt)i(i−2)
i! > F(x).‍�

To summarize, we can see that ‍S45 > S25‍, and S23 is greater (smaller) than S25 if ‍γ3‍ is greater 
(smaller) than ‍γ4‍.

Model parameters
Here we define parameters that appear in this model. We will make the following assumptions (see 
also Table Appendix 1—table 2):

https://doi.org/10.7554/eLife.71953
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•	 The mutation rate between types is given as follows: ‍u1→2 = u4→5 = 2u‍ (inactivation of the 
first copy of the APC gene, that is, any of the two copies); ‍u2→3 = u5→6 = u‍ (inactivation of 
the remaining copy of the APC gene); ‍u1→4 = u2→5 = u3→6 = µ‍ (activation of the KRAS gene).

The fitness of cells with APC+\−, APC−/−, and KRAS+ phenotypes relative to the wild 
type cells was determined using the cell replacement data from Komarova et al., 2002. In 
particular, we assumed that for any phenotype,

	﻿‍ Fj ≡
rjd1
djr1

= Pr(j)
1−Pr(j) , j ∈ 2, 3, 4‍�

where ‍Pr(j)‍ is the probability of replacement of the wild type by type ‍j‍ found in Komarova 
et al., 2002. Using this formula, we obtain the values given in Table Appendix 1—table 2. 
Then the fitness of other types is multiplicative: ‍F5 = F4F2, F6 = F3F4‍.

•	 The death rates are assumed the same among the types, such that the division rates of cells 
satisfy‍ri = Fir1, 1 < i ≤ 6.‍

•	 Wild-type crypts and those with only a single copy of APC gene mutated do not proliferate 
(‍γ1 = γ2 = 0‍).

•	 Crypts with a KRAS mutation and APC+/+ and APC+/- phenotypes proliferate at the same 
rate, ‍γ4 = γ5‍.

•	 All the parameters are specified in Table Appendix 1—table 2.
The conversion rates are given by

	﻿‍ Rij = riKui→jρij,‍� (17)

where ri is the division of type ‍‍, ‍ui→j‍ is the mutation rate from type ‍‍ to type ‍j‍, and ‍ρij‍ is the 
probability that one cell of type ‍j‍ becomes fixated in a compartment of size ‍K ‍ with the host type ‍‍. 
To calculate this probability, let us denote by di the death rate of type ‍‍. Then we have

	﻿‍
ρij =

1−
ridj
rjdi

1−
( ridj

rjdi

)K ,
‍�

(18)

where ‍
ridj
rjdi ‍ is the inverse of the relative fitness of type ‍j‍ with respect to type ‍‍.

Appendix 1—table 2. Parameters, notations, and their values.

Parameter Notation
Value/
Range

Number of crypts ‍Ncrypt‍ 107

Number of SCs per crypt K 7

Rate of inactivation of APC 
(per cell division) u 10-7

Rate of inactivation of APC 
(per cell division) μ 10-9

Division rate of WT SCs (per 
year) r1 (18,365)

Relative fitness of APC +/- 
cells ‍F2 = FAPC+/−‍1.6

Relative fitness of APC-/- cells ‍F3 = FAPC−/−‍3.76

Relative fitness of KRAS+ cells ‍F4 = FKRAS‍ 3.54

Division rate of APC-/- crypts 
(per year) ‍γ3‍ 0.2

Division rate of KRAS+ crypts 
(per year) ‍γ4‍ 0.07

Fitting the linear model to advanced adenoma incidence data
The linear model of the adenoma incidence is given by equations (13,14,15,16,17,18).

https://doi.org/10.7554/eLife.71953
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In order to fit this model to the data, we fix parameters ‍Ncrypt, K, u,µ‍, and vary the remaining 
parameters. This is done in stages. We first fix the fitness parameters ‍F2, F3, F4‍ to their values in table 
(Appendix 1—table 2) and vary the remaining parameters ‍r1, γ3, γ4‍ to find the global minimum of 
the error between the model and the data, see Appendix 1—figure 2a-c. Then we take other select 
values for the relative fitness parameters to show that the results remain qualitatively similar (not 
shown). Next, we describe the results of fitting and the patterns that were observed.

Appendix 1—figure 2. Model fitting to the incidence data. (a) The best fitting curves corresponding to increasing 
SC division rates, r1, are plotted together with the epidemiological data. (b) The best fitting parameters ‍γ3‍ and 

‍γ4‍ are shown for each value of r1. (c) The fitting error as a function of r1. The relative fitness values are fixed to 

‍FAPC+/− = 1.6, FAPC−/− = 3.76, FKRAS = 3.54‍. The rest of the parameters are as in Table Appendix 1—table 2.

To find the global minimum of the error, we varied parameter r1 (the division rate of the wild 
type SCs) between once a day and once every 20 days (which corresponds to the division rate of 
365 yrs-1 and 18 yrs-1). For each value of r1, the error was minimized in the 2-dimensional parameter 
space ‍(γ3, γ4)‍, and a unique minimum was always found. The best fits corresponding to a subset of 
these division rates are plotted in Appendix 1—figure 2(a), with the best fitting values of ‍γ3‍ and 

‍γ4‍ shown in panel (b) for each r1. We can see that as r1 increases, that is, SCs are assumed t divide 
faster, the best fitting crypt division rates decrease (that is, crypt fission proceeds at a slower rate). 
For r1 greater than about 250 yrs-1 (that is, divisions once every day and a half or faster), the best 
fitting crypt fission rates are zero. This parameter combination (division rate of about every 1.5 days 
and zero crypt fission) corresponds to the minimal error of fitting (panel (c)). This is evident from 
the shape of the best fitting incidence curves, ‍P(t)‍, corresponding to different r1 values (panel (a)). 
For low rates of SC division, the fission rates are relatively high, resulting in an curve ‍P(t)‍ that has a 
steep rise, yielding a large fitting error and a qualitatively unrealistic shape of the incidence curve 
if compared with the data. This is the consequence of a pronounced exponential increase in the 
number of crypts, which sharply accelerates the generation of type 6 crypts. As r1 increases and crypt 
fission rates decrease, the incidence curves become less steep, until the best fitting crypt fission rate 
reaches zero. At this stage, the best fitting incidence curve is achieved, because further increase in 
r1 results in an increase in the incidence that happens too early.

So far, in order to fit the model to the adenoma data, we fixed several of the parameters to 
their measured values and varied the three remaining parameters (‍r1, γ3, γ4‍) within realistic ranges 
to investigated the error landscape and find global minima. To obtain a more comprehensive 
picture of the model behavior, we have implemented a procedure where five parameters were 
varied: the division rate of stem cells, r1, two cellular fitness parameters, ‍RAPC+/−‍ and ‍RKRAS‍ (with 

‍FAPC+/+ = 2FAPC+/−‍); and two crypt fission parameters, ‍γ3‍ and ‍γ4‍. The rest of the parameters were set 
to their values in Table Appendix 1—table 2.

The fitness parameters were varied between 1.1 and 3.5 to match the measured range. For each 
pair (‍RAPC+/− , RKRAS‍), a fitting procedure identical to that of Appendix 1—figure 2 was performed, 
see Appendix 1—figure 3. Each graph corresponds to a unique pair (‍RAPC+/− , RKRAS‍), and the values 
of these coefficients are indicated on each panel. The horizontal axes of each panel is the stem cell 
division rate, r1. The green curves show the log10(fitting error), and the black (gray) dots show the 
best fitting values of ‍γ3‍ (‍γ4‍), multiplied by 10 for convenience of presentation. If the best fitting 
crypt fission parameter was negative, then the fitting error shows corresponded to ‍γ3 = γ4 = 0‍. We 
observe that in all the cases, the best fitting parameter combination is reached when the crypt fission 
rates become zero, reproducing the result of Appendix 1—figure 2, but for a wide parameter range. 

https://doi.org/10.7554/eLife.71953
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To observe this more clearly, we also presented the error landscape for the best fitting parameter r1, 
as a function of ‍γ3‍ and ‍γ4‍ (the horizontal and vertical axes in each panel, respectively). The quantity 
log10(fitting error) is shown as a heat map, with darker colors corresponding to lower error values. We 
can see that the lowest error corresponds to the corner ‍γ3 = γ4 = 0‍.

Appendix 1—figure 3. Fitting the linear model. Each panel shows fitting results for a particular parameter 
combination, (‍RAPC+/− , RKRAS‍); the values of these two fitness parameters are indicated, and ‍FAPC+/+ = 2FAPC+/−‍. 
The green lines show the log10(fitting error) as a function of r1. The fitted parameters ‍γ3‍ and ‍γ4‍ (multipied by 10) 
are shown as black (gray) lines. The rest of the parameters are as in Table Appendix 1—table 2.

https://doi.org/10.7554/eLife.71953


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Computational and Systems Biology

Wang et al. eLife 2022;11:e71953. DOI: https://doi.org/10.7554/eLife.71953 � 23 of 33

Appendix 1—figure 4. Fitting the linear system: for each parameter combination, (‍RAPC+/− , RKRAS‍), of 
Appendix 1—figure 3, the error landscape is shown that corresponds to the best fitting r1 (see the minima of the 
green lines in Appendix 1—figure 3). The contour plot represents log10(fitting error) as a function of ‍γ3‍ and ‍γ4‍ 
(darker colors correspond to lower values). The rest of the parameters are as in Table Appendix 1—table 2.

Nonlinear model: competition among crypts
Let us assume that the types of crypts that undergo crypt fission (types 3,4, and 5) are in direct 
competition with each other, modeled as logistic, as opposed to straight exponential, growth. Let us 
denote te carrying capacity associated with the growth of the KRAS- crypt (type 3) as ‍KA‍, and that for 
the KRAS+ crypts (types 4 and 5) as ‍KR‍. Then the nonlinear system with crypt competition becomes

	﻿‍ ṅ1 = −(R12 + R14)n1,‍� (19)

	﻿‍ ṅ2 = R12n1 − (R23 + R25)n2,‍� (20)

	﻿‍
ṅ3 = R23n2 − R36n3 + γ3n3

(
1 − n3 + n4 + n5

KA

)
− δn3,

‍�
(21)

	﻿‍
ṅ4 = R14n1 − R45n4 + γ4n4

(
1 − n3 + n4 + n5

KR

)
− δn4,

‍�
(22)

	﻿‍
ṅ5 = R25n2 + R45n4 − R56n5 + γ5n5

(
1 − n3 + n4 + n5

KR

)
− δn5,

‍�
(23)

with initial conditions (6) and the probability to create a crypt of type 6 given by system (12). 
While an analytical solution is no longer available, a procedure similar to that performed for the 
linear system can be performed numerically. Results can be seen in figure Appendix 1—figure 5. 
As before, all the parameters were fixed to their values in Table Appendix 1—table 2, except the 
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cell division rate, r1, and the crypt fission rates, ‍γ3‍ and ‍γ4‍. Additionally, we assumed a crypt carrying 
capacity ‍KA = KR = K = 103

‍ and crypt death rate ‍δ = 0.05‍ yrs-1. The best fitting values of ‍γ3‍ and ‍γ4‍ 
were found for each value of r1, which was varied in the realistic range. This procedure yielded a 
range of low-error fits (panel (c)) that correspond to nonzero values of crypt fission rates in the 
realistic range (panel (b)), with the corresponding incidence curves given in the inset of panel (a).

Appendix 1—figure 5. Nonlinear model fitting to the incidence data (fixing the crypt carrying capacity, 
varying crypt fission rates). (a) The best fitting curves corresponding to increasing SC division rates, r1, 
are plotted together with the epidemiological data; inset: the best fitting curves corresponding to the 
values of r1 from the Region of low error, see panel (c). (b) The best fitting parameters ‍γ3‍ and ‍γ4‍ are 
shown for each value of r1. (c) The fitting error as a function of r1. The relative fitness values are fixed to 

‍FAPC+/− = 1.6, FAPC−/− = 3.76, FKRAS = 3.54, KA = KR = K = 1000‍. The rest of the parameters are as in Table 
Appendix 1—table 2.

Since this procedure yielded a wide range of similarly good fits under a fixed value for the crypt 
carrying capacity, we next performed a fitting procedure where the crypt fission rates ‍γ3‍ and ‍γ4‍ were 
fixed to those in Table Appendix 1—table 2, and the best carrying capacity, ‍K ‍, was determined 
for each division rate, r1, by fitting to the data. Results (under the assumption that ‍KA = Kr = K ‍) are 
presented in Appendix 1—figure 6a-c. We can see that for a range of values of the cell division 
rates, r1, a low-error fit was found, with the carrying capacity values ranging between about ‍5 × 102‍ 
and ‍5 × 103‍. The best fitting values are ‍K = 1318, r1 = 141.1‍ (divisions approximately every 2.5 days). 
Changing the crypt death rate to ‍δ = 0‍ yields very similar results, see Appendix 1—figure 6d-f.

Appendix 1—figure 6. Nonlinear model fitting to the incidence data (fixing crypt fission rates, varying the 
crypt carrying capacity). Compared are the cases in the presence of a non-zero crypt death rate, ‍δ = 0.05‍ yrs-1 
(a–c), and in the absence of crypt death rate, ‍δ = 0.0‍ yrs-1 (d-f). (a,d) The heatplot of the fitting error, where all 
parameters are fixed except ‍KA = KR = K ‍ and r1. Dark colors correspond to lower values of the error. (b,e) The 
Appendix 1—figure 6 continued on next page
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fitting error as a function of r1. (c,f) The best fitting curves corresponding to increasing SC division rates, r1, are 
plotted together with the epidemiological data the value of r1 are taken from the Region of low error. Inset: 
The best fitting carrying capacity ‍K ‍ is shown for each value of r1. The rest of the parameter values are fixed 
to,‍FAPC+/− = 1.6, FAPC−/− = 3.76, FKRAS = 3.54, γ3 = 0.2, γ4 = 0.07‍ and the rest as in Table Appendix 1—
table 2.

These results suggest that biologically, the nonlinear model is a more appropriate choice because 
it produces the best fit for values of crypt fission rates that are within the experimentally observed 
range, while the linear model requires zero crypt fission rates. From the statistical point of view, 
the nonlinear model is a significantly more powerful model e.g. by applying the Akaike Infromation 
Criterion (AIC).

Model predictions and advanced adenoma generation dynamics
Gillespie simulations and the mean-field approximation
Equation 12 approximates the probability ‍P(t)‍ that by time ‍t‍, a single type 6 crypt has been 
generated. In order to test its validity we have run stochastic Gillespie simulations based on system 
(LABEL:n1non-23), which were stopped when the first type 6 crypt was created. The resulting 
incidence was compared to that obtained from the deterministic system (LABEL:n1non-23, 12), 
see Appendix 1—figure 7, line (0). There, the blue symbols and the blue solid line correspond 
to the stochastic simulations and the deterministic approximation respectively. The deterministic 
approximation showed excellent agreement with Gillespie simulations.

Appendix 1—figure 7. Comparing deterministic solutions (system (LABEL:n1non-23, 12), solid lines) with the 
stochastic Gillespie simulations (symbols of the same color). The three lines correspond to the different stopping 
conditions: (0) 1 crypt of type 6; (1) ‍N1 = 102

‍ crypts of type 6, (2) ‍N2 = 105
‍ crypts of type 6. The rest of the 

parameters are as in Appendix 1—figure 6a-c. 100,000 independent simulations were performed for each line, 
and the standard deviation bars are too small to see.

Gillespie simulations described here can be used to simulate stochastic effects associated with 
crypt dynamics studied here, see e.g. results presented in Section 5.3. These simulations were also 
used to study the effect of aspirin, Section 6. Finally, this methodology can be extended to study 
the clonality of abnormal crypts. The ODE model does not keep track of clonality. For example, if 
type 5 crypt is created multiple times (by conversion) in the system, the variable n5 simply gives the 
total number of type-5 crypts. In a stochastic Gillespie model, however, it is possible to keep track of 
different clones by designating each newly generated crypt as a different “sub-type”, which can then 
clonally expand through crypt fission. This however goes beyond the scope of the current study.

The growth phase of advanced adenoma
So far we have stopped the simulations as soon as the first copy of a type 6 crypt was created. 
Alternatively, one could explicitly account for the growth phase of the APC-/- KRAS+ crypts. 
Estimates for the doubling time of advanced adenomas vary in the literature. For example, (Jones 
et al., 2008) suggests that the doubling time of advanced adenoma is 250 days (that is, the net rate 
of expansion 1.01 yr-1), with a similar doubling time of about 1 year quoted in Kang and Shibata, 

Appendix 1—figure 6 continued
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2013 (the net rate of expansion 0.7 yr-1). The number of crypts in an advanced adenoma can be 
estimated as follows. Given that the minimum advanced adenoma size is 10 mm (see Dewanji et al., 
2011 and also Chen et al., 2018), and assuming 109 cells per cm3 (Huels and Sansom, 2015), we 
obtain that each advanced adenoma contains about 106 cells. This comprises about 102 crypts, if we 
assume that type 6 crypts are 104 cells each, which is somewhat larger that normal colonic crypts 
that measure about ‍2 × 103‍ cells (Devall et al., 2021). A somewhat larger estimate is given in McNeil 
et al., 2018 where it is noted that a 1 mm3 adenoma contains on the order of ‍5 × 105‍ cells, which 
translates into ‍5 × 108‍ cells in an adenoma of size 10 mm3, or ‍5 × 104‍ crypts. Therefore, we have 
explored a range of crypt expansion to sizes ‍N1 = 102

‍ and ‍N2 = 105
‍ ctypts, see Appendix 1—figure 

7. Assuming, for type 6 crypts, ‍γ6 = 1.01‍ yr-1 and the crypt death rate ‍δ6 = 0.05‍ yr-1, we obtain that 
expansion from 1 type 6 crypt to N1 crypts will take ‍∆T1 = 4.79‍ years, and expansion from 1 type 6 
crypt to N2 crypts will take ‍∆T2 = 11.97‍ years respectively.

Using these calculations, we obtain the deterministic prediction that expansion to 102 crypts will 
shift the incidence curve by ‍∆T1‍ years, and expansion to 105 crypts will shift it by ‍∆T2‍ years. Apart 
from this shift, the probability of crypt non-extinction has to be incorporated. If ‍P(t)‍ is the solution of 
equation (12) under system (LABEL:n1non-23), then we can approximate the probability ‍Pi(t)‍ that 
by time ‍t‍, ‍Ni‍ crypts of type 6 have been generated, by

	﻿‍
Pi(t) =

(
1 − δ

γ6

)
P(t −∆Ti), i = 1, 2.

‍� (24)

The corresponding curves are marked as curves 1 and 2 in Appendix 1—figure 7, see the orange 
and green solid lines respectively. To check this approximation, we have run Gillespie simulations 
that stopped as soon as ‍N1 = 102

‍ (orange symbols) and ‍N2 = 105
‍ (green symbols) crypts were 

generated. Again, very good agreement between the stochastic simulations and our deterministic 
approximation was observed.

Next, we will show that similar results are obtained when the model with an explicit type 6 crypt 
expansion phase is fit to the advanced adenoma incidence data. Fixing a crypt carrying capacity, we 
found the best fitting fission rates ‍γ3‍ and ‍γ4‍ for each value of r1. The procedure was similar to that 
used in Appendix 1—figure 5, except probabilities to have ‍Ni‍ type 6 crypts, ‍Pi(t)‍ (equation (24)) 
were used to fit the incidence data. Results are shown in Appendix 1—figure 8. The plot of the 
fitting error again shows regions of low error (panel (a)). In those regions, nonzero values of crypt 
fission correspond to the best fit (see panels (b) and (c), where regions of low error are shaded red). 
As in Appendix 1—figure 5(b), the best fitting values of ‍γ4‍ are lower than those of ‍γ3‍, and both are 
similar to those found in the literature, see Table Appendix 1—table 2.

Appendix 1—figure 8. Fitting the adenoma incidence curve to the nonlinear model with an explicit expansion 
phase. Under a fixed ‍KA = KR = 1000‍, for each value of r1 the best fitting values of ‍γ3‍ and ‍γ4‍ were found. (a) The 
Appendix 1—figure 8 continued on next page
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fitting error is shown as a function of r1 for the original model (blue line, same as in Appendix 1—figure 5(c)); the 
model with expansion to N1 crypts (yellow curve), and the model with expansion to N2 crypts (green curve). (b) The 
best fitting values of crypt fission rates, ‍γ3‍ and ‍γ4‍, for the model with expansion to N1 crypts. (b) The best fitting 
values of crypt fission rates, ‍γ3‍ and,‍γ4‍ for the model with expansion to N2 crypts. The rest of the parameters are as 
in Appendix 1—figure 5.

Therefore, to proceed, we will fix the crypt fission rates ‍γ3‍ and ‍γ4‍ to their values in Table 
Appendix 1—table 2, and fit the model to the advanced adenoma incidence curve to find the best 
rate r1 and crypt carrying capacities. This is a procedure similar to that in Appendix 1—figure 6, 
except type 6 crypt populations grow to a given size. The fitting error for the three cases (that is, 
growth to size 1, size 102, and size 105 crypts) is shown in Appendix 1—figure 9(a) as a function of 
r1. The fitting procedure was performed by using the ODE approximation (equation (24)), and the 
best fitting parameter set then used in a Gillespie simulation (‍5 × 105‍ simulations are used and the 
error bars are too small to see). Appendix 1—figure 9(b) shows the result of the Gillespie simulation 
corresponding to the best-fitting parameters for the case of expansion to 105 crypts. The ODE 
prediction and the fitted curve for the expansion to 105 crypts look identical.

Appendix 1—figure 9. Fitting the adenoma incidence curve to the nonlinear model with an explicit expansion 
phase. Under fixed crypt fission rates, for each value of r1 the best fitting value of ‍KA = KR‍ was found. (a) The 
fitting error is shown as a function of r1 for the original model (blue line, same as in Appendix 1—figure 6(b)); the 
model with expansion to N1 crypts (yellow curve), and the model with expansion to N2 crypts (green curve). (b) The 
fitted incidence curve (Gillespie simulation) for the case of expansion to 105. The ODE prediction and the fitted 
curve for the expansion to 102 crypts look identical. (c) The reduction in error resulting from relaxing the restriction 

‍KA = KA‍. The rest of the parameters are as in Appendix 1—figure 6(a-c).

Compartment dynamics and pathways to advanced adenoma
Relaxing the restriction ‍KA = KR‍ improves the fitting, as shown in Appendix 1—figure 9(c). We 
will explore compartment dynamics in this more general setting, given that by AIC, the model 
with carrying capacities ‍KA‍ and ‍KR‍ separately fitted is more powerful. Appendix 1—figure 10 
shows the procedure of fitting in the case where type 6 crypts grow to size 102 before detection. 
For each value of r1, the best fitting pair ‍(KA, KR)‍ was determined and the resulting error plotted 
(panel (a)). Panel (c) shows examples of heatplots of the error as a function of ‍KA‍ and ‍KR‍ (for a 
fixed r1 value). Depending on the size of the resulting error and the location of the minimum 
in the ‍(KA, KR)‍ space, three groups of fits can be distinguished. Of particular interest in the 
group marked by orange and green points. For the fits in the “orange” group, we have ‍KA > KR‍, 
that is, the best fitting carrying capacity that characterizes type-3 crypts is larger than that for 
type-4 and 5 crypts. In contrast to that, the “green” group has ‍KA < KR‍. This can be seen in 
Appendix 1—figure 10(b), where the best fitting pairs ‍(KA, KR)‍ are shown for each r1 value. We 
reject the “green” group of fits because it corresponds to a larger carrying capacity of type-4 and 
5 crypts compared to that of type-3 crypts, which is inconsistent with observations; in addition, 

Appendix 1—figure 8 continued

https://doi.org/10.7554/eLife.71953
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the fitting error is minimized for one of the fits in the “orange” group. The same procedure was 
also performed for the case where type-6 crypts grew to size 105 (see Appendix 1—figure 11), 
with very similar results.

Appendix 1—figure 10. Pathways to adenoma: Fitting the incidence curve to the nonlinear model with an explicit 

expansion phase. Under fixed crypt fission rates, for each value of r1 the best fitting pair (‍KA, KR)‍ was found. 

(a) The fitting error is shown as a function of r1; 3 groups of parameter combinations are marked by blue, orange, 

and green. (b) The best fitting pairs (‍KA, KR)‍ for each of the points in the three groups. (c) Heatplots of the fitting 

error as a function of (‍KA, KR)‍, for 3 different values of r1, one from each group. (d) Proportion of the APC pathway 

(formula Moolgavkar, 1978) plotted as a function of time for different values of r1, using the same color code for 

the three groups. Expansion to 102 crypts is assumed. The rest of the parameters are as in Appendix 1—figure 
6a-c.

Appendix 1—figure 11. Same as Appendix 1—figure 10, except expansion to 105 crypts is assumed.

https://doi.org/10.7554/eLife.71953
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In order to determine the likelihood of type y6 produced from cells of type y3 or cells of type y5, 
we looked at the probabilities of the two pathways, ‍PAPC‍ and ‍PKRAS‍, which stand for the probability 
to create adenoma by first inactivating the APC gene and then adding a gain-of-function mutation in 
KRAS gene, or by first activating KRAS and then inactivating the APC gene, see panel (a) of Figure 3 
of the main text. The two probabilities satisfy the following equations,

	﻿‍ ṖAPC = R36n3(1 − PAPC), PAPC(0) = 0,‍� (25)

	﻿‍ ṖKRAS = R56n5(1 − PKRAS), PKRAS(0) = 0.‍� (26)

The proportion of adenomas that originated through the APC pathway is given by

	﻿‍ PAPC/(PAPC + PKRAS).‍� (27)

This function is plotted in Appendix 1—figure 10(d) for the parameters corresponding to both 
“orange” and “green” groups of fits. We can see that for parameter combinations from the orange 
group the APC-pathway is predominant, while for parameter combinations from the “green” group 
the KRAS pathway is predominant. The same qualitative results are observed in Appendix 1—figure 
11(d).

For further simulations, we used the two best fitting parameter combinations obtained from the 
fitting procedures in Appendix 1—figure 10 and Appendix 1—figure 11. The parameter values 
obtained by means of these fitting procedure are summarized in Table Appendix 1—table 3.

Appendix 1—table 3. Parameters obtained from the fitting procedures in Appendix 1—figure 10 
and Appendix 1—figure 11.

Parameter set # ‍Ni‍ (crypts) ‍∆Ti‍ (yrs) r1(yrs-1) ‍KA‍ ‍KR‍ Comment

1 102 4.79 204 1000 17 best fit

2 102 4.79 198 1039 171 2nd best fit

3 105 11.97 300 607 10 best fit

4 105 11.97 288 631 68 2nd best fit

System (LABEL:n1non-23, 12) does not only allow fitting the model to advanced adenoma 
incidence data, but also shows the prediction for the dynamics of the crypts of different 
mutational status leading up to the advanced adenoma formation, as shown in figure 
Appendix 1—figure 12(a). Using the best fitting parameters of Appendix 1—figure 6(b), we can 
visualize the mean trajectories for the numbers of crypts in each compartment, ni for ‍i = 1, . . . , 5‍. 
The stochastic Gillespie simulations provide additional information on the statistics of crypt 
numbers. Appendix 1—figure 12(b) shows the numerically obtained probability distributions 
for the crypt numbers in each compartment, at the time when the first type 6 crypt is created. 
These simulations of panel (b) correspond to the same parameter set as in panel (a); both assume 
expansion to 102 crypts and ‍KA = KR‍. Panel (c) presents similar simulations but for the best fitting 
parameters where expansion to 105 crypts takes place. The mean crypt numbers are given in blue 
in each histogram; we can see that the orders of magnitude are similar for both cases. Similar 
results are obtained when the restriction ‍KA = KA‍ is dropped, see Appendix 1—figure 13; as 
expected, the size of the type-3 compartment is somewhat larger and the size of the type-5 
compartment somewhat smaller than the corresponding values for the ‍KA = KR‍ case. Note that 
Appendix 1—figure 12 and Appendix 1—figure 13 do not contain information on pathways 
to advanced adenoma. In other words, shown are just the numbers of crypts of each type that 
are present in the entire simulated colon, at the time when the first crypt associated with the 

https://doi.org/10.7554/eLife.71953
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advanced adenoma is generated, regardless of whether it was generated by a mutation of a type 
3 or a type 5 crypt.

Appendix 1—figure 12. Compartment dynamics for the best fitting models with ‍KA = KR‍. (a) The expected crypt 
numbers (using equations (LABEL:n1non-23)) for the 5 compartments are shown for the 2nd parameter set in table 
Appendix 1—figure 9(c) (expansion to 102 crypts). (b) For the same parameter values, probability distributions for 
the crypt numbers are shown at the time when the first type 6 crypt is created (‍5 × 105‍ simulations were run); mean 
crypt numbers are shown in blue. (c) Same as (b) but for the 3rd parameter set in table Appendix 1—figure 9(c) 
(expansion to 105 crypts).

Appendix 1—figure 13. Same as Appendix 1—figure 12(b-c), but without the restriction ‍KA = KR‍. (a) Parameter 
set #2 from Table Appendix 1—table 3 was used. (b) Parameter set #4 from Table Appendix 1—table 3 was 
used.

Aspirin dosage and modeling aspirin’s effect on the crypt dynamics
In mouse experiments performed in Shimura et al., 2020 we used the doses of 15 mg/kg, 50 mg/
kg, and 100 mg/kg aspirin each day. Using the conversion table in Drew et al., 2016, and a mass of 
a human of 70 kg, we obtain the equivalent daily human doses of 85.1 mg/day, 283.5 mg/day, and 
567 mg/day.

To compare this with the weekly intake of the participants in the study of Chan et al., 2004, 
we note that a standard aspirin tablet contains 325 mg, such that 2 tablets a day (i.e. 14 tablets 
per week) is 650 mg/day. The patients were grouped by their intake into 0.51.5 tablets per week, 
25 tablets per week, 614 tablets per week, and gt14 tablets per week. Therefore, the highest dose 

https://doi.org/10.7554/eLife.71953
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administered in our mouse experiments (100 mg/kg aspirin per day) most closely matches the intake 
of the 614 tablets per week group, see Table 1 of the main text.

To explore the effect of aspirin on the incidence of advanced adenoma, we used Gillespie simulations 
of system (LABEL:n1non-23), also including a growth phase of type 6,‍̇n6 = R36n3 + R56n5 + (γ6 − δ6)n6.‍

In these simulations, aspirin-free parameter values were used for ‍0 ≤ t < Tstart‍, and then during 
an interval of aspirin treatment ‍Tstart ≤ t ≤ Tend‍, parameter values modified by aspirin were used, see 
Figure 4(b) of the main text. As before, simulations were stopped at ‍t = 80‍ yrs or when the target 
number of type 6 crypts were generated, whichever happened first. Incidence curves and relative 
risk were constructed by processing a large number of such simulations. ‍2.5 × 105‍ independent 
simulations per condition were used unless otherwise noted. The error bars for the age incidence 
curves or the relative risk are too small to be seen.

Appendix 1—figure 14. extends the results of main text Figure 4(a) and shows that relative adenoma risk 
predicted for each decade of treatment is very similar for all parameter sets (#1-4, Table Appendix 1—table 3).

Figure Appendix 1—figure 14: Relative incidence of advanced adenoma, where (a) growth to 102 
type 6 crypts is assumed and parameter sets #1 and #2 (Table Appendix 1—table 3) are compared, 
and (b) growth to 105 type 6 crypts is assumed and parameter sets #3 and #4 are compared. Aspirin 
affects type 2–6 cells, both through conversion rates and crypt fission/death. Treatment is applied for 
different decades (as marked under the pairs of bars), and the relative risk is evaluated at the end of 
the treatment decade. ‍2.5 × 105‍ independent simulations are used for each condition.

Appendix 1—figure 15. Relative incidence of advanced adenoma, where (a) parameter set #1 (Table 
Appendix 1—table 3) and (b) parameter sets #2 is used. In each panel, a comparison is presented between the 
case where aspirin affects crypt fission/death rates (yellow) and where it does not affect crypt fission/death rates 
(blue). Aspirin affects cellular kinetics through conversion rates in all cases; types 2-6 are affected. ‍2.5 × 105‍ 
independent simulations are used for each condition.

https://doi.org/10.7554/eLife.71953
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Appendix 1—figure 16. Predicted advanced adenoma incidence in the absence of aspirin treatment (thin black 
lines are the fitted curves and black dots are incidence data); under aspirin treatment where the drug affects types 
2–6 (yellow lines), under aspirin treatment where the drug affects type 6 only (blue lines). Each panel corresponds 
to aspirin treatment administered during one decade (20-30 years, 30–40 years, etc). The treatment period is 
shaded light green. It was assumed that type 6 crypts grow to 105, and set #4 in Table Appendix 1—table 3 was 
used. ‍2.5 × 105‍ independent simulations are used for each condition.

Appendix 1—figure 17. A comparison of predicted relative advanced adenoma risk under the assumption that 
cell types 2–6 (yellow bars) and only type 6 cells (blue bars) are affected by aspirin. Aspirin is administered during 
different decades of patients’ life (as marked under each pair of bars), and different panels correspond to different 
durations of the follow-up period. (a) Parameter set #2, and (b) parameter set #4 (Table Appendix 1—table 3) is 
used; ‍2.5 × 105‍ independent simulations are used for each condition.

https://doi.org/10.7554/eLife.71953
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Appendix 1—figure 18. A comparison of predicted relative advanced adenoma risk under the assumption 
that aspirin treatment lasts 10 years (yellow) or 5 years (blue). (a) Predicted advanced adenoma incidence in the 
absence of aspirin treatment (thin black lines are the fitted curves and black dots are incidence data); the incidence 
curve fo patients treated for 10 (yellow) and 5 (blue) years. Aspirin is administered during different decades of 
patients’ life (the shorter, 5 year intervals, are marked green). (b) A comparison of predicted relative advanced 
adenoma risk under the assumption of treatment for 10 years (yellow bars) and 5 years (blue bars). All cell types 
2–6 are affected by aspirin (both through conversion and fission/death). Parameter set #2 is used; ‍2.5 × 105‍ 
independent simulations are used for each condition.

Appendix 1—figure 15 explores the individual contributions of the two possible mechanisms 
by which the effect of aspirin could be manifested. The yellow bars correspond to the effect on 
both conversion rates and crypt fission/death rates, and the blue bars only include the effect on 
conversion rates. It is clear that the effect on conversion rates is not as strong compared to the effect 
on the crypt fission/death rates.

Appendix 1—figure 16 is similar to main text Figure 4(a), except is contains additional incidence 
functions that correspond to aspirin only affecting type 6  cells (blue lines). Not surprisingly, the 
resulting change in adenoma risk is smaller, that is, the blue line (effect on type 6 cells only) is closer 
to the thin black line (no-aspirin adenoma incidence) than the yellow line (where aspirin affects all 
types 2–6). It is interesting that the difference becomes larger with time. In Appendix 1—figure 17 
we change the length of the follow-up (see Figure 4(b) of the main text), and the difference between 
the two assumptions (crypts 2–6 affected vs only type 6 crypts are affected) increases as time goes 
by.

Appendix 1—figure 18 shows the effect of a shorter aspirin duration time

https://doi.org/10.7554/eLife.71953
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