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Abstract: Vitamin C serves as a cofactor in the synthesis of collagen needed to support 

cardiovascular function, maintenance of cartilage, bones, and teeth, as well as being 

required in wound healing. Although vitamin C is essential, humans are one of the few 

mammalian species unable to synthesize the vitamin and must obtain it through dietary 

sources. Only low levels of the vitamin are required to prevent scurvy but subclinical 

vitamin C deficiency can cause less obvious symptoms such as cardiovascular impairment. 

Up to a third of the adult population in the U.S. obtains less than the recommended amount 

of vitamin C from dietary sources of which plant-based foods constitute the major source. 

Consequently, strategies to increase vitamin C content in plants have been developed over 

the last decade and include increasing its synthesis as well as its recycling, i.e., the 

reduction of the oxidized form of ascorbic acid that is produced in reactions back into its 

reduced form. Increasing vitamin C levels in plants, however, is not without consequences. 

This review provides an overview of the approaches used to increase vitamin C content in 

plants and the successes achieved. Also discussed are some of the potential limitations of 

increasing vitamin C and how these may be overcome. 
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Asc, ascorbate; 

CaMV, cauliflower mosaic virus; 

CAT, catalase; 

chl, chlorophyll; 

DHA, dehydroascorbate; 

DHAR, dehydroascorbate reductase; 

ETR, electron transport rate; 

Fd, ferredoxin; 

GalLDH, L-galactono-1,4-lactone dehydrogenase; 

GulLO, L-gulono-1,4-lactone oxidase; 

GalUR, D-galacturonic acid reductase; 

GR, glutathione reductase; 

GSH, glutathione; 

GST, glutathione-S-transferase; 

MDA, monodehydroascorbate reductase; 

MDAR, monodehydroascorbate reductase; 

NPQ, non-photochemical quenching; 

φPSII, quantum yield of PSII; 

qE, energy-dependent NPQ; 

qI, photoinhibition; 

RbcL, ribulose bisphosphate carboxylase/oxygenase large subunit; 

QC, quiescent center; 

PSI, photosystem I; 

PSII, photosystem II; 

ROS, reactive oxygen species; 

SOD, superoxide dismutase; 

TBARS, thiobarbituric acid reactive substance; 

VDE, violaxanthin de-epoxidase 

1. Introduction 

In addition to its roles in cardiovascular function, immune cell development, and iron utilization, 

vitamin C (L-ascorbic acid) serves as a water-soluble antioxidant in animals [1–3]. Despite the fact that 

most mammals can synthesize ascorbic acid (Asc), humans are an exception as a result of a mutation 

to L-gulono-1,4-lactone oxidase, the last enzyme in the animal Asc biosynthetic pathway [4]. Because 

Asc is water-soluble, it is not stored and is readily excreted from the body. Therefore, Asc must be 

obtained regularly from dietary sources. The National Academy of Sciences has recommend 90 mg/day 

of the vitamin for adult males and 75 mg/day for adult females. Although vitamin C can be obtained 

from the consumption of fresh meat, it is destroyed by heating and is more typically obtained from 

plant sources. Asc is present in high amounts generally in fruits and leafy vegetables whereas grains 

typically have much lower levels of the vitamin, particularly in dried grain. Moreover, the diet of a 

significant portion of the global population consists largely of plant-based foods. Although  
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post-harvest reductions in Asc can occur, particularly in leafy vegetables, increasing Asc content 

would help to preserve the nutritional quality of stored foods. As a result, much research has focused 

on developing strategies to increase vitamin C content in plant foods to improve their nutritional value 

including strategies to increase the biosynthetic capacity of plants and to increase the recycling of Asc 

once it has been used in a reaction [5–7]. 

Figure 1. Plants and animals employ distinct pathways for the synthesis of L-ascorbic acid. 

The pathway in animals is represented by reactions 1-8 whereas the pathways in plants are 

represented by reactions 9–24. Enzymes catalyzing the reactions are: 1, phosphoglucomutase; 

2, UDP-glucose pyrophosphorylase; 3, UDP-glucose dehydrogenase; 4, glucuronate-1-

phosphate uridylyltransferase; 5, glucuronate 1-kinase; 6, glucuronate reductase;  

7, aldonolactonase (gluconolactonase); 8, gulono-1,4-lactone oxidase or dehydrogenase;  

9, glucose-6-phosphate isomerase; 10, mannose-6-phosphate isomerase; 11, phosphomannose 

mutase; 12, GDP-mannose pyrophosphorylase (mannose-1-phosphate guanylyltransferase) 

(VTC1); 13, GDP-mannose-3′,5′-epimerase; 14, GDP-L-galactose phosphorylase (VTC2 

and VTC5); 15, L-galactose-1-phosphate phosphatase (VTC4); 16, L-galactose dehydrogenase; 

17, L-galactono-1,4-lactone dehydrogenase; 18, methylesterase; 19, D-galacturonate 

reductase; 20, aldonolactonase; 21, phosphodiesterase; 22, sugar phosphatase; 23, L-gulose 

dehydrogenase; 24, myo-inositol oxygenase. 

 

2. Increasing Vitamin C Content through Improved Biosynthesis 

The pathway of vitamin C synthesis in mammals begins with D-glucose and proceeds through  

D-glucose-1-P, UDP-glucose, UDP-D-glucuronic acid, UDP-D-glucuronic acid-1-P, D-glucuronic acid, 

L-gulonic acid, and finally gulono-1,4-lactone (Figure 1). Gulono-1,4-lactone oxidase then converts 

gulono-1,4-lactone into 2-keto-gulono-γ-lactone which spontaneously converts to L-ascorbic acid [8]. 



Nutrients 2013, 5 3427 

 

In contrast to this single pathway, there are at least four biosynthetic pathways suggested to date in 

plants. The first discovered was the Smirnoff-Wheeler pathway in which Asc synthesis originates with 

L-galactose [9] (Figure 1). L-Galactose is produced from mannose-1-phosphate through the intermediates 

guanosine diphosphate (GDP)-mannose and GDP-L-galactose [10]. L-Galactose then undergoes 

oxidation to L-galactono-1,4-lactone catalyzed by the NAD-dependent L-galactose dehydrogenase 

followed by oxidation to L-ascorbic acid by the mitochondrial-localized L-galactono-1,4-lactone 

dehydrogenase [11,12]. 

Feeding experiments provided support for the Smirnoff-Wheeler pathway. For example, feeding 

leaf tissue with the Asc precursors L-galactose or L-galactono-1,4-lactone resulted in their conversion 

to Asc and therefore increased Asc content [9,13,14]. In another study, exogenous application of  

L-galactono-1,4-lactone to Arabidopsis or Medicago sativa leaves increased foliar Asc content up to  

8-fold and was proportional to the amount applied [15]. Application of L-galactono-1,4-lactone or  

L-galactose to source potato leaves also increased the Asc content of these leaves as well as in sink 

organs, e.g., flowers and developing tubers [16]. 

Arabidopsis mutants affected at different steps in the Smirnoff-Wheeler pathway resulted in 

substantial reductions in Asc content, supporting the conclusion that this pathway is responsible for 

much of the Asc biosynthetic capacity in this species. For example, the vtc1 mutant lacks  

GDP-mannose pyrophosphorylase expression whereas the vtc2 and vtc5 mutants lack GDP-L-galactose 

phosphorylase expression. The vtc1 mutant exhibits a 70%–75% reduction in Asc content while the 

vtc2 mutant contains just 10%–20% of the wild-type level of Asc, vtc5 contains 80% of the wild-type 

level, and the vtc2/vtc5 double mutant bleaches in the absence of exogenous Asc or L-galactose which 

overcomes the block in the pathway [13,17,18]. The vtc4 mutant results from a mutation in  

L-galactose-1-P phosphatase [19,20]. 

Attempts to increase Asc content through increasing its biosynthesis have achieved some success. 

Overexpression of GDP-L-galactose phosphorylase from kiwifruit (Actinidia chinensis) increased Asc 

content in tobacco leaves by more than 3-fold with an accompanying 50-fold increase in enzyme 

activity [21]. Although the agroinfection approach employed resulted in only a transient increase in 

enzyme expression, up to a 4-fold increase in Asc content was observed in stably-transformed 

Arabidopsis where the enzyme was overexpressed [21,22]. Stable transformation of GDP-L-galactose 

phosphorylase into potato, tomato, and strawberry resulted in up to a 3, 6, and 2-fold increase in Asc, 

respectively, in tubers and fruits, although some loss of seed and the jelly of locular tissue surrounding 

the seed were observed in tomato and an increase in polyphenolic content was observed in strawberry 

and tomato [23]. A combinatorial approach in which kiwifruit GDP-L-galactose phosphorylase and 

GDP-mannose-3′,5′-epimerase were transiently overexpressed in agroinfected tobacco leaves increased 

Asc content up to 7-fold [22]. Overexpression of L-galactose dehydrogenase, which catalyzes the 

conversion of L-galactose to L-galactono-1,4-lactone (Figure 1), however, failed to increase foliar Asc 

content in tobacco despite a 3.5-fold increase in the activity of the enzyme [24], suggesting that the 

endogenous level of L-galactose dehydrogenase is not rate-limiting. Transformation of Arabidopsis 

with GDP-galactose guanylyltransferase resulted in a 2.9-fold increase in Asc and co-transformation 

with either L-galactose-1-phosphate phosphatase or L-galactono-1,4-lactone dehydrogenase increased 

Asc content up to 4.1-fold [25]. Overexpressing multiple enzymes within the Smirnoff–Wheeler 

pathway, particularly those whose endogenous level is closest to being rate-limiting, may offer more 
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promise to achieving substantial increases in Asc rather than the overexpression of any one enzyme. 

The choice of which enzymes to overexpress may be species-dependent as the level of expression for 

each enzyme in the pathway may differ among species. 

Evidence for other biosynthetic pathways has suggested three alternative routes for the synthesis of 

Asc. In the first of these alternative pathways, D-galacturonic acid, generated from the breakdown of 

pectin during fruit ripening, serves as the starting point for Asc synthesis and is reduced to  

L-galactonic acid as catalyzed by the NADPH-dependent D-galacturonic acid reductase  

(GalUR) [26] (Figure 1). L-Galactonic acid spontaneously converts to L-galactono-1,4 lactone which  

L-galactono-1,4-lactone dehydrogenase converts to Asc [26]. Early support for this pathway came 

from the observation that D-galacturonic acid-1-
14

C was metabolized to L-ascorbic acid-6-
14

C through 

an inversion pathway in detached ripening strawberry fruit [27]. Supplying a methyl ester of  

D-galacturonic acid to cress seedlings and Arabidopsis cell cultures also increased Asc [28,29], 

suggesting that GalUR expression was not confined to fruits. Expression of the GalUR gene from 

strawberry increased whole-plant Asc content 2- to 3-fold in Arabidopsis [30], supporting the 

existence of this pathway. Demonstration that GalUR can increase foliar Asc biosynthesis through  

D-galactonic acid and D-galacturonic acid suggests that the substrates for this pathway are present in 

leaves. The potential for manipulating this pathway to achieve increased Asc content will depend on 

whether the enzymes of the pathway are expressed and whether D-galacturonic acid is present, e.g., 

following pectin degradation. 

An example of the contingent basis of this pathway was observed in developing tomato fruit. 

Feeding tomato plants with D-galacturonate failed to increase Asc content in immature green tomato 

fruit while feeding with L-galactose, representing the D-mannose/L-galactose (or Smirnoff–Wheeler) 

pathway, did increase Asc content [31]. In contrast, feeding of either precursor increased Asc content 

of red ripened fruits, correlating with the increase in activity of D-galacturonate reductase and 

aldonolactonase, the last two enzymes of the D-galacturonate pathway in ripe fruits [31]. These 

observations suggest that the D-galacturonate pathway is not operative prior to ripening during which 

pectin is degraded. Thus, the contribution that the D-galacturonate pathway makes to Asc biosynthesis 

in tomato fruit may be limited to the ripening stage while the Smirnoff-Wheeler pathway is operative 

throughout fruit development (e.g., [23]). In addition, tracer studies have suggested that the  

D-galacturonate pathway may contribute only moderately to fruit Asc content [32] while its contribution in 

other organs has not been examined. In the second alternative pathway, GDP-mannose 3′,5′-epimerase, 

which catalyzes conversion of GDP-D-mannose to GDP-L-galactose in the L-galactose pathway [10], 

also catalyzes the 5′-epimerization of GDP-D-mannose to produce GDP-L-gulose [33] (Figure 1). 

Conversion of GDP-L-gulose to L-gulonic acid allows Asc synthesis essentially as described in the 

animal pathway although evidence for this is still lacking. The presence of L-gulonic acid and  

L-gulono-1,4-lactone dehydrogenase activity [33,34] supports the existence of this pathway in plants. 

The expression of L-gulono-1,4-lactone oxidase (GulLO) from rat in lettuce and tobacco increased Asc 

content up to 7-fold [35] and reversed the reduction in Asc content in Arabidopsis mutants affected in 

the Smirnoff–Wheeler pathway [36] although it is not known whether L-gulono-1,4-lactone or  

L-galactono-1,4-lactone served as the substrate as the possibility that L-galactono-1,4-lactone served as 

the substrate was not examined. Although feeding with L-gulono-1,4-lactone did not increase the Asc 

content of tomato fruit at any developmental stage [31], its conversion to Asc has been reported for 
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several plant species [28,37,38], supporting the presence of this pathway in plants. Expression of a 

foreign gene, however, can result in the ectopic expression of a pathway or the introduction of a novel 

pathway. Therefore, the degree to which this pathway functions in plants remains to be determined. 

Demonstrating that a labeled precursor directly labels Asc or that mutating a specific enzyme 

decreases Asc would provide more compelling evidence for such pathways. 

The third alternative pathway involves D-glucuronic acid, an intermediate of the animal pathway 

which in plants can be generated by myo-inositol oxygenase (Figure 1). Support for this pathway in 

plants comes from the observation that overexpressing an Arabidopsis gene having homology to a 

porcine myo-inositol oxygenase increased Asc content [39]. As myo-inositol does not function as a 

precursor of Asc in strawberry fruit or in parsley leaves [32], this raises the question of the extent to 

which this pathway contributes to Asc content in plants. Nevertheless, the ability to increase Asc 

through the overexpression of this putative myo-inositol oxygenase gene may provide another strategy 

for increasing Asc biosynthesis. 

Although multiple Asc biosynthetic pathways may exist in plants, the observation that mutants 

affected in the Smirnoff–Wheeler pathway result in substantial reductions in Asc content does indicate 

that the alternative pathways are unable to compensate for the loss in Asc biosynthetic capacity in 

Smirnoff–Wheeler pathway mutants. Thus, these alternative pathways may make only minor 

contributions to Asc biosynthesis and strategies focusing on these other pathways may be limited to 

increasing Asc in specific organs or at specific developmental stages. 

3. Increasing Vitamin C Content through Improved Asc Recycling 

3.1. Targeting MDAR Expression to Increase Ascorbic Acid 

Once used in enzymatic or non-enzymatic reactions, Asc is oxidized to monodehydroascorbate 

(MDHA). Asc can be regenerated from MDHA through reduction by several means. If MDHA is 

produced in the chloroplast stroma, it can be recycled to Asc by ferredoxin (Fd), which is part of the 

photosynthetic electron transport chain, or by monodehydroascorbate reductase (MDAR) in the  

stroma [40]. Other MDAR isoforms are present in the cytosol, peroxisome, and mitochondria which 

reduce MDHA produced in those compartments. As no MDAR isoform is in the thylakoid lumen, 

MDHA cannot be reduced by MDAR or by Fd, which lies on the stromal side of the thylakoid 

membrane. As a result, this short-lived radical spontaneously disproportionates rapidly to Asc and 

DHA, particularly when the pH of the thylakoid lumen is low which occurs during the light driven 

transport of protons across the thylakoid membrane from the stroma into the lumen [40,41]. Under 

these conditions, the high pH of the stroma slows the disproportionation of MDHA and it undergoes 

reduction primarily through Fd or MDAR. Once photoreduced by PsaC in the PSI complex, Fd 

reduces MDHA directly or alternatively reduces NADP
+
 to NADPH as catalyzed by Fd-NADP

+
 

reductase (FNR) which MDAR uses (or NADH instead of NADPH) to reduce MDHA to Asc [42,43]. 

Fd reduces MDHA at a rate that is 34-fold greater than the rate of photoreduction of NADP
+
 so that 

MDHA is likely reduced through Fd as part of the thylakoid scavenging system rather than by stromal 

MDAR when it is produced proximal to the thylakoid membrane [42]. MDAR, however, is available 
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to reduce any stromal MDHA produced distal to the thylakoid membrane as part of the stromal 

scavenging system. 

The multiple isoforms of MDAR are encoded by a five member nuclear gene family in Arabidopsis 

(referred to as AtMDAR1 through AtMDAR5) that are targeted to the cytosol, chloroplast, 

mitochondria, and peroxisomes [44]. Dual targeting of MDAR to chloroplasts and mitochondria results 

from the use of at least two transcription start sites which produce a seven amino acid extension in the 

mitochondrial-targeted form of the protein [45]. The 47-kDa AtMDAR1 and 54-kDa AtMDAR4 

isoforms contain a C-terminal sequence that targets them to the peroxisomal matrix (PTS1) and 

peroxisomal membrane, respectively [46]. MDAR isoforms targeted to peroxisomes, chloroplasts, or 

mitochondria typically function together with ascorbate peroxidase (APX) to scavenge H2O2 [47] 

through the transfer of electrons from two molecules of Asc to H2O2 to form water and two molecules 

of MDHA. Disproportionation of H2O2 is also catalyzed by catalase (CAT) when present, e.g., in  

the peroxisome. 

Increasing Asc content by targeting MDAR expression has achieved only limited success. 

Expression of a cytosolic tomato MDAR from a constitutive promoter in tomato (var. Micro-Tom) 

resulted in a reduction in Asc in mature green tomato fruits but unaltered foliar Asc content [48] 

although it may improve the chilling tolerance of fruit [49]. Improved tolerance against salt and 

osmotic stresses was also observed following an increase in MDAR expression in tobacco [50]. 

Increasing expression of a tomato chloroplast-targeted MDAR in tomato increased Asc marginally 

(1.2-fold) but was accompanied by a decrease in DHA, resulting in an approximate doubling of the 

Asc redox state [51]. Similar results were obtained following the expression of an Arabidopsis 

cytosolic MDAR in tobacco [52]. The little work that has been reported to date suggests that 

increasing MDAR expression may achieve only minor increases in Asc content. 

3.2. Targeting DHAR Expression to Increase Ascorbic Acid 

If MDHA is not enzymatically reduced by Fd or MDAR, it will undergo spontaneous 

disproportionation to Asc and DHA, the rate of which is dependent on the pH, such as in the thylakoid 

lumen where Fd and MDAR are absent and the pH is low during light exposure. Disproportionation of 

MDHA can also occur in other cellular compartments if not enzymatically reduced. The DHA 

produced can be reduced to Asc by dehydroascorbate reductase (DHAR) using glutathione (GSH) as 

the reductant [53,54] (Figure 2). If it is not rapidly reduced, DHA undergoes irreversible hydrolysis to 

2,3-diketogulonic acid and, as this is unable to be converted to Asc, it is lost to the Asc pool. 

Increasing the level of DHAR activity, therefore, limits DHA degradation by improving its recycling 

back into Asc before it is lost. As DHAR activity determines the relative levels of DHA and Asc and 

the enzyme is expressed in rate-limiting amounts in plants, it serves as a major regulator of the Asc 

redox state [5,55–57]. 
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Figure 2. L-Ascorbic acid recycling through DHAR and MDAR. Following Asc synthesis 

from L-galactono-1,4-lactone by L-galactono-1,4-lactone dehydrogenase (GLDH) and 

oxidization to monodehydroascorbate (MDHA), monodehydroascorbate reductase 

(MDAR) can reduce MDHA to Asc. Alternatively, two MDHA molecules can 

disproportionate non-enzymatically to Asc and dehydroascorbate (DHA). Dehydroascorbate 

reductase (DHAR) can reduce DHA to Asc using glutathione (GSH) as the reductant. 

Oxidized glutathione (GSSG) is reduced by glutathione reductase (GR) to GSH using 

NADPH as the reductant. DHA will spontaneously hydrolyze to 2,3-diketogulonic acid if 

not reduced by DHAR. 

 

DHAR is encoded by three gene members in Arabidopsis: (AtDHAR1; At5g16710), (AtDHAR3; 

At1g75270), and (AtDHAR5; At1g19570) [44]. Microarray expression analysis suggests another gene, 

At5g36270 (AtDHAR2), is likely a pseudogene as it may not be expressed [44]. A fifth gene, 

At1g19550 (AtDHAR4), is smaller than other DHAR paralogs due to multiple deletions throughout the 

polypeptide. AtDHAR3 is likely cytoplasmic while AtDHAR5 and AtDHAR1 are targeted to the 

mitochondria and chloroplast, respectively [58]. No DHAR isoform is transported to the apoplast. 

Consequently, any Asc transported to the apoplast is quickly oxidized, disproportionates, and the 

resulting DHA is either degraded or transported to the cytoplasm for recycling into Asc. 

Because DHAR is a major recycler of Asc, a number of studies have focused on increasing the 

expression of this enzyme as a means to increase Asc content in plants, which has achieved success in 

several species. Although ectopic expression of a human DHAR in tobacco chloroplasts failed to 

increase Asc despite a 2-fold increase in DHAR activity [59,60], expression of a cytosolic wheat 

DHAR in tobacco did increase Asc content up to 4-fold as well as the redox state (i.e., an increase in 

the Asc to DHA ratio) with a simultaneous increase in Asc and a decrease in DHA [5]. Similar results 

were obtained when this cytosolic wheat DHAR was expressed in leaves and developing kernels of 

maize [5], demonstrating that changes in Asc can be made in photosynthetic and non-photosynthetic 

organs. Because Asc is transported from the cytoplasm to the apoplast and apoplastic DHA is 

transported back to the cytoplasm, expression of the cytosolic wheat DHAR not only increased the Asc 

content of the cytosol but the apoplast as well when measured from the apoplastic fluid [55], 



Nutrients 2013, 5 3432 

 

demonstrating that cytosolic DHAR regulates the symplastic and apoplastic Asc pool size and redox 

state. No change in Asc biosynthesis was observed following the increase in DHAR expression 

indicating that the synthesis of Asc and its recycling are independently controlled. The increase in 

DHAR expression and Asc recycling was accompanied by an increase in the GSH pool size and redox 

state [5]. As GSH is used by DHAR as the reductant, this suggests that the GSH pool size is affected 

by changes in DHAR activity. The extent to which the increase in GSH contributed to any 

physiological changes in these plants was not examined. 

As the Asc pool size is determined by the rate of its synthesis and decay, the ability of DHAR to 

increase Asc content is a consequence of its recycling function that reduces DHA before it is lost 

through decay. As increasing DHAR expression results in improved Asc recycling and higher Asc 

levels, the endogenous level of DHAR is likely rate-limiting. Whether this is generally true throughout 

plant species is unknown. Consequently, the potential to increase Asc through increased DHAR 

expression will be greatest for species in which DHAR expression is rate-limiting. The strategy of 

increasing Asc content through increased DHAR expression, however, has been validated by 

subsequent studies that increased DHAR expression in the cytosol or in the chloroplast of a variety of 

species. Two studies that expressed a cytosolic DHAR from Arabidopsis in tobacco reported increases 

in Asc content by nearly 2-fold [52,61] whereas expression of an Arabidopsis cytosolic DHAR in 

Arabidopsis increased foliar Asc by 2 to 4.25-fold [62]. Expression of a rice cytosolic DHAR in 

Arabidopsis resulted in a slight increase in Asc content [63] as did expression of a rice DHAR in 

transformed tobacco chloroplasts [64]. Further increases in Asc content were observed when 

chloroplasts were transformed with glutathione reductase (GR) and DHAR [64]. 

Grains represent the most important food group supporting the global population either directly or 

indirectly as use in animal feed. Improving the nutritional value of grains offers the greatest potential 

for improving the diet of many and recent research has focused on engineering increasing multiple 

vitamins and micronutrients in grains as an efficient delivery mechanism for those whose diets are 

deficient in several vitamins. Although Asc content in grains is typically low, it is present during grain 

development but undergoes progressive oxidation during late development and is largely present as 

DHA by maturity [65]. The relationship between increased DHAR expression and increased Asc 

content in cereals was first shown in developing maize grain [5]. This was followed by a combinatorial 

approach to increase the levels of Asc, folate and β-carotene in maize grain using a barley D-hordein 

promoter to drive expression of a rice DHAR and an E. coli GTP cyclohydrolase (folE) to increase the 

level of Asc and folate, respectively, and a wheat LMW glutenin promoter to drive expression of 

maize phytoene synthase (psy1) and the D-hordein promoter to drive expression of Pantoea ananatis 

carotene desaturase (crtI) in order to increase β-carotene content [7]. These transgenes resulted in a  

6-fold increase in Asc, a 2-fold increase in folate, and a 169-fold increase in β-carotene [7], 

demonstrating that an increase in Asc content can be combined with increases in the level of other 

vitamins to improve substantially the nutritional value of a fundamentally important staple. Increasing 

Asc content in other important, non-grain foods has been reported. Expression of a potato cytosolic 

DHAR from the CaMV 35S promoter increased foliar Asc content by more than 1.6-fold and in tubers 

by more than 1.2-fold which correlated with its expression where it is expressed higher in tubers than 

in leaves [66]. Expression of a chloroplast-localized potato DHAR increased foliar Asc content up to 

1.5-fold but not in tubers which also correlated with its expression in leaves but a lack of expression in 
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tubers [66]. Therefore, the strategy of increasing Asc content through increased Asc recycling through 

chloroplast-targeting of DHAR expression is likely to be limited to photosynthetically active tissues 

whereas increasing Asc content in non-photosynthetic organs will likely require expression of a 

cytosolic isoform of DHAR. Supporting this conclusion were results from the expression of a sesame 

DHAR under the control of a patatin promoter in potato. Just as the patatin promoter is active in tubers 

but not in leaves, expression of the sesame DHAR increased Asc 1.1 to 1.3-fold in tubers but no 

increase was observed in leaves. In contrast, expression of sesame DHAR under the constitutively 

active CaMV 35S promoter increased Asc content in leaves by 1.5-fold and 1.6-fold in tubers [67]. 

Overexpressing a cytosolic tomato DHAR from a constitutive promoter in tomato (var. Micro-Tom) 

increased Asc content in mature green and red ripe fruit by 1.6-fold in plants grown under low  

light [48]. In this example, however, no increase in foliar Asc was observed. The increase in Asc and 

GSH observed during the initial phases of embryogeny in Norway spruce following overexpression of 

the class I homeobox of knox 3 gene, HBK3, was attributed to increased activities of DHAR, GR, and 

ascorbate free radical reductase [68], suggesting that DHAR may also contribute to regulating Asc 

content in gymnosperm species. 

4. Consequences of Increasing Asc Content in Plants 

4.1. Effects on Other Antioxidants and ROS-Detoxifying Enzymes 

As a major antioxidant in plants, changes in Asc content may well affect other antioxidant pools. 

Moreover, different approaches used for increasing Asc might be expected to affect specific 

antioxidants disproportionately. For example, increasing Asc by increasing biosynthetic activity would 

impact different antioxidant pools than would increasing Asc through improved Asc recycling which 

requires GSH and NADPH (or NADH) for the reduction of DHA or MDHA by DHAR or MDAR, 

respectively. Although most reports have observed increases in Asc content and/or in the Asc redox 

state following an increase in DHAR expression, the impact of this increase of DHAR activity on other 

antioxidants is less clear. Increases in GSH were observed in tobacco and maize expressing wheat 

DHAR with no change in glutathione reductase (GR), superoxide dismutase (SOD), APX, or CAT 

activities [5], suggesting coordinate regulation between DHAR and GSH. A similar increase in GSH 

content was reported for Arabidopsis overexpressing DHAR [62]. In contrast, expression of human 

DHAR in tobacco chloroplasts resulted in a reduction in GSH that was accompanied by a 1.43-fold 

increase in GR activity [59]. Whether this was a consequence of expression of DHAR in chloroplasts 

remains to be determined. 

4.2. Increasing Ascorbic Acid Improves Tolerance to Many Environmental Stresses 

Although oxygen is essential to plants, it can be highly damaging, particularly as singlet oxygen 

(
1
O2) or in its reactive forms such as the superoxide anion (O2

•−
), hydroxyl radical (

•
OH), or hydrogen 

peroxide (H2O2). ROS are detoxified through the action of antioxidants such as Asc and GSH either 

directly or in reactions catalyzed by SOD, APX, and CAT [69,70]. Under conditions of excess light, 

O2
•−

 is produced during photosynthesis and is converted by SOD to H2O2 which is reduced to H2O by 

APX as one means to maintain electron flow through the photosystems [71]. Abiotic stresses such as 
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cold, drought, or high light increase ROS production by creating conditions of light stress at lower 

light levels. H2O2 rapidly inactivates APX if Asc is limiting [72] and inhibits CO2 assimilation by 

inhibiting several Calvin cycle enzymes [40]. ROS can invade a plant in the form of environmental 

pollutants, e.g., ozone [73,74], which damages cell membranes or induces programmed cell death [75–77]. 

As a defense mechanism, H2O2 produced from ozone functions as a signaling intermediate in guard 

cells to promote stomatal closure thus limiting ozone entry into the leaf interior [78,79]. 

As an antioxidant, Asc would be expected to affect tolerance to environmental stress. This was first 

demonstrated using vtc mutants of Arabidopsis in which their reduced Asc content correlated with a 

reduction in tolerance to environmental ROS. With 70%–75% less Asc, the vtc1 mutant is 

hypersensitive to ozone and sulfur dioxide [13,19,80] and contains a higher oxidative load relative to 

wild-type plants when exposed to stress conditions such as salt despite its increased GSH content [81]. 

The expression level of regulators of Asc biosynthesis can also affect the degree of ozone tolerance. 

Knockout mutants of AMR1 (for ascorbic acid mannose pathway regulator 1) resulted in up to 3-fold 

greater foliar Asc content in Arabidopsis and increased ozone tolerance [82]. In contrast, plants with 

increased expression of AMR1 through activation-tagging exhibited a 60% reduction in Asc and 

greater ozone sensitivity [82]. As AMR1 coordinately regulates transcript expression of six  

Smirnoff–Wheeler pathway enzyme genes to negatively regulate Asc biosynthesis, targeting regulators 

of biosynthetic pathways offers yet another promising approach to alter Asc content. In a second study, 

overexpression of the Arabidopsis ethylene response factor gene AtERF98 increased Asc content up to 

approximately 1.6-fold which was attributed primarily to an increase in the expression of genes in the 

Smirnoff–Wheeler pathway [83]. As AtERF98 binds to the promoter of VTC1, AtERF98 likely 

functions as a transcriptional activator of one or more genes in the Smirnoff–Wheeler pathway [83]. 

Increasing AtERF98 expression resulted in enhanced salt tolerance, demonstrating that increasing Asc 

biosynthesis improves tolerance to this abiotic stress [83]. 

That the endogenous level of apoplastic Asc is important in detoxifying ozone was shown in 

tobacco in which the level of apoplastic Asc was specifically altered [84]. Overexpressing an 

apoplastic-localized cucumber ascorbate oxidase (AO), which oxidizes apoplastic Asc, increased the 

ozone sensitivity of transgenic tobacco, correlating with the conversion of virtually all apoplastic Asc 

to DHA and depriving the apoplast of its ability to detoxify ozone entering the leaf interior [84]. A 

decrease in the cytosolic Asc redox state was also observed which would compromise the ability of a 

cell to detoxify ozone entering the cytosol. 

Increased sensitivity to ozone following a reduction in Asc recycling was observed following loss 

of cytosolic DHAR expression in the Arabidopsis AtDHAR3 mutant [58]. The lower redox state but 

not pool size of Asc in this mutant indicates that Asc recycling is important in preventing oxidative 

damage. Consistent with its role in ozone tolerance, AtDHAR3 expression is induced by ozone [58]. 

If decreasing Asc content reduces tolerance to environmental ROS, increasing Asc content would 

be predicted to have the opposite effect, a notion supported by several studies published to date. 

Increasing Asc content in tobacco by increasing DHAR expression increased the Asc content of the 

apoplast and symplast and thus increased tolerance to ozone by reducing the oxidative load of the plant 

(i.e., a lower level of foliar and apoplastic H2O2) which was accompanied by a lower induction of 

antioxidant-related enzyme activities, more chlorophyll, and a higher level of photosynthetic activity 

following ozone exposure [56]. This increase in tolerance occurred despite the guard cells being less 
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responsive to ozone as a consequence of their higher Asc content which reduces H2O2 levels [73,85]. 

Thus, increasing Asc content throughout a plant reduces guard cell responsiveness which permits more 

ozone to enter the leaf interior. The increased ozone tolerance can be understood, however, by the 

increased ability of every cell to detoxify ozone invading the leaf interior. Consistent with these 

findings, increasing Asc content 2-fold in tobacco through the expression of a cytosolic Arabidopsis 

DHAR enhanced its tolerance to ozone as well as drought, salt, or polyethylene glycol [61]. 

Conversely, a reduction in Asc recycling through the suppression of DHAR expression increased 

the responsiveness of guard cells to ozone thereby limiting ozone diffusion into the leaf interior [56]. 

At the same time, however, the decrease in DHAR activity lowered the Asc content of leaf cells and 

thus reduced their ability to detoxify any ozone that did invade [56]. Thus, increasing Asc content 

provides greater protection against environmental oxidative damage without compromising 

photosynthetic activity than does increasing guard cell responsiveness through decreasing Asc which 

reduces ozone entry but also reduces photosynthetic activity. 

In addition to ozone, increasing Asc content provides greater tolerance to other environmental 

stresses. Arabidopsis with increased Asc content and redox state resulting from an increase in DHAR 

expression retained more Asc and chlorophyll with less membrane damage following exposure to high 

light and temperature or following treatment with paraquat [62]. Arabidopsis expressing a rice DHAR 

had greater tolerance to salt stress despite the small increases in DHAR activity and Asc achieved 

although no difference in cold tolerance was observed [63]. Although tobacco expressing a 

chloroplast-targeted human DHAR failed to increase Asc, it did increase the Asc redox state and the 

plants experienced less membrane damage following exposure to methyl viologen or H2O2 and had 

improved tolerance to low temperature and salt [60]. Combining expression of a chloroplast-localized 

DHAR with the expression of a chloroplast-localized CuZnSOD and APX increased the Asc and GSH 

redox states and the plants exhibited greater tolerance to paraquat and salt [86]. Greater tolerance to 

salt and cold was also observed in tobacco following the simultaneous expression of two pairs of 

chloroplast-localized enzymes, i.e., an E. coli GR with either an E. coli glutathione-S-transferase 

(GST) or a rice DHAR, that increased Asc and GSH content and their redox states [64]. 

Because fewer studies on increasing Asc through MDAR expression have been reported and those 

that have been carried out have observed smaller increases in Asc content, much less is known about 

the effects of MDAR-mediated increases in Asc on plant growth and plant responses. However, the 

results to date suggest that increasing Asc through MDAR expression has similar effects to those 

following an increase in DHAR expression. The slight increase in Asc content and decrease in DHA 

content that resulted in an approximate doubling of the Asc redox state in tomato seedlings 

overexpressing a chloroplast-targeted tomato MDAR resulted in a reduced oxidative load (as measured 

by H2O2), lower thiobarbituric acid reactive substance (TBARS) content (a measure of membrane 

damage), a higher net photosynthetic rate, higher maximal photochemical efficiency of PSII and 

greater fresh weight when subjected to low or high temperature stress [51]. Reducing Asc and its  

redox state through the suppression of MDAR expression resulted in largely opposite phenotypes [51]. 

In agreement with these results, greater tolerance to ozone, reduced H2O2 levels, and increased 

photosynthetic activity were observed in tobacco expressing an Arabidopsis MDAR following  

salt stress [50]. 
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ROS can also be generated during development. For example, H2O2 is produced in the peroxisome 

of oilseeds as a by-product of fatty acid β-oxidation during lipid catabolism that accompanies seedling 

growth [87,88]. Catalase in the peroxisomal matrix detoxifies H2O2 and a membrane-bound APX3 and 

MDAR4, encoded by SUGAR-DEPENDENT2 (SDP2), together detoxify H2O2 using Asc [87,89–91]. 

Loss of MDAR4 expression in the Arabidopsis sdp2 mutant is conditionally seedling-lethal as MDAR 

activity is needed to reduce leakage of H2O2 from peroxisomes that protects SDP1-encoded 

triacylglycerol (TAG) lipase activity and storage oil hydrolysis in the closely associated oil bodies 

during seedling growth [92]. Loss of MDAR4 activity results in inactivation of TAG lipase by H2O2 

and a reduced ability to catabolize storage oil needed to support seedling growth [92]. Whether 

increasing Asc through increasing MDAR4 expression might improve seedling growth has not been 

examined. However, increasing APX3 expression increases tolerance against oxidative stress [93], 

suggesting an increase in Asc and the peroxisomal-associated APX3 and MDAR4 that use and recycle 

Asc may improve seedling tolerance against oxidative stress. 

4.3. Increasing Ascorbic Acid Improves Tolerance to High Light 

As mentioned above, in addition to environmental sources, ROS is generated during exposure to 

high light. Excess light energy can generate triplet state chlorophyll (
3
Chl) which transfers its energy to 

ground-state O2 to produce 
1
O2. Photosystem over reduction also produces ROS such as O2

•−
 and  

H2O2 [94] which can damage proteins, membranes, and pigments of photosystem I (PSI) and 

photosystem II (PSII), resulting in the inactivation of reaction centers as well as compromise their 

repair [95,96]. An increase in DHAR expression in tobacco resulted in less photoinhibition following 

exposure to high light that was likely due to an increase in the foliar levels of xanthophyll pigments 

and chlorophyll as well as in the electron transport rate (ETR) and CO2 assimilation, particularly at 

high light intensities, while ROS were reduced [97]. Thus, an increase in Asc maintains photosynthetic 

functioning by limiting ROS-mediated damage. Conversely, reducing Asc through suppression of 

DHAR results in elevated ROS and photoinhibition that is accompanied by reductions in the quantum 

yield of PSII and ETR [97]. 

4.4. Increasing Ascorbic Acid Decreases Tolerance to Drought Stress 

While ROS are generally detrimental they also serve as important signaling cues about the external 

environment, e.g., the role of H2O2 in guard cells in regulating gas exchange and transpiration in 

response to water availability [98]. Abscisic acid (ABA) can promote H2O2 production during periods 

of water limitation which signals for stomatal closure [99]. Although tobacco overexpressing DHAR 

grew normally under well-watered conditions, the higher Asc content in guard cells not only reduced 

their responsiveness to ozone but also their responsiveness to the onset of water stress which normally 

triggers stomatal closure to prevent further water loss [55]. The reduction in responsiveness can be 

understood through the role of Asc as a scavenger of H2O2 and the balance between H2O2 production 

and Asc establishes whether H2O2 rises to a level that triggers stomatal closure. As a consequence, 

increasing Asc in DHAR-overexpressing tobacco maintains H2O2 at a lower level which delays 

stomatal closure upon onset of water stress, resulting in greater open stomatal area, increased 

transpiration and water loss, and ultimately decreased tolerance to water stress [55]. Reducing Asc 
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content through suppressing DHAR expression results in an elevated accumulation of H2O2 in guard 

cells and a greater degree of stomatal closure even under non-stress conditions [55]. This 

hyperresponsiveness enables such plants to reduce transpiration during drought conditions resulting in 

up to 30% less water loss [55]. Thus, increasing Asc content throughout a plant confers protection 

against environmental ROS while reducing drought tolerance whereas reducing Asc content reduces 

CO2 assimilation under normal growth conditions as a consequence of the reduction in the open 

stomatal area but also reduces water loss resulting in improved drought tolerance. A strategy to increase 

foliar Asc content while maintaining normal levels of Asc in guard cells may improve nutritional value 

and tolerance to environmental ROS without increasing sensitivity to drought conditions. 

4.5. Increasing Ascorbic Acid Prolongs Leaf Function 

Increasing Asc through increasing DHAR expression resulted in higher levels of ribulose 

bisphosphate carboxylase/oxygenase large subunit (RbcL), chlorophyll, and CO2 assimilation but this 

had no effect on plant growth under normal conditions [57]. In contrast, reducing Asc content through 

reduced biosynthesis resulted in slower shoot growth, smaller leaves, and reduced shoot fresh weight 

and dry weight [80] while plants with lower Asc content following suppression of DHAR expression 

exhibited a slower rate of leaf expansion, slower shoot growth, delayed flowering time, and reduced 

foliar dry weight [57]. These phenotypes correlated with reduced leaf function as measured by a 

disproportionate loss in chlorophyll a, a reduction in RbcL, and a lower rate of CO2 assimilation [57]. 

The lower rate of CO2 assimilation was not due to a limitation in CO2 diffusion into DHAR-suppressed 

leaves as the sub-stomatal CO2 concentration was actually higher [57]. Rather, the reduced growth 

likely resulted from a premature loss of leaf function and early onset of senescence in mature leaves 

that may have reduced photosynthate available to young leaves. 

4.6. Increasing Ascorbic Acid Can Alter Pathogen Defense Responses 

The role of Asc in pathogen defense has received only limited attention. In an early study, the 

reduced Asc content of Arabidopsis vtc1 or vtc2 mutants resulted in reduced growth of the bacterial 

pathogen Pseudomonas syringae pv maculicola ES4326 and hyphal growth of the fungal pathogen 

Peronospora parasitica pv Noco [100]. The reduction in growth of P. syringae in vtc1 plants 

correlated with a greater induction of the pathogenesis-related proteins PR-1 and PR-5, increased 

expression from some senescence-associated gene (SAG) genes and higher levels of salicylic acid. The 

reduced Asc content in these mutants resulted in the premature senescence of uninfected plants with an 

accompanying increase in salicylic acid [100]. These observations suggest that reducing Asc content 

predisposed Arabidopsis to induce defense responses faster upon pathogen attack. Whether an increase 

in Asc content would have had the opposite effect on these pathogens was not examined in this study. 

Quite different results were observed in a more recent study that also employed the same mutants. In 

this study, Arabidopsis vtc1 and vtc2 were more susceptible to the pathogenic ascomycete Alternaria 

brassicicola and Asc strongly inhibited growth of fungal cultures [101]. Asc levels decreased 

following A. brassicicola infection with an increase in DHA, suggesting that Asc is being consumed 

during infection [101]. Given the limited number of studies focusing on the relationship between Asc 

content and pathogen defense, it is not possible at this point to conclude how increasing Asc content 
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will affect defense responses. These two studies do suggest, however, that changes in Asc content may 

affect defense responses in a very pathogen-specific manner. 

4.7. Increasing Ascorbic Acid Induces Twinning 

In addition to being an antioxidant, Asc regulates the cell cycle by promoting G1 to S progression of 

cells, e.g., in the quiescent center of onion roots [102–106]. Repression of L-galactono-1,4-lactone 

dehydrogenase (GalLDH) expression in tobacco BY-2 cell lines resulted in 30% less Asc and a 

reduction in the rate of cell division and growth [107]. The ability of Asc to promote cell division had 

dramatic consequences when its level was elevated during early embryo development. Embryo 

development initiates with a transverse zygotic division to produce an apical, proembryo cell and a 

basal cell that gives rise to the suspensor and in most species, a single embryo develops in each seed. 

Increasing Asc content in tobacco by increasing DHAR expression, however, resulted in monozygotic 

twinning and polycotyly [108]. The twin zygotes resulted from a longitudinal instead of transverse cell 

division and these twin zygotes developed into embryos of equal size. Direct injection of Asc into 

tobacco ovaries was sufficient to induce twinning but only if delivered within the first two days after 

pollination during which the zygote undergoes its first division. The twinning can be understood as an 

Asc-induced alteration in the normal transverse division of the zygote that results in a loss of the 

positional cues needed for the normal differentiation of the apical cell into the embryo and the basal 

cell into the suspensor. 

Polycotyly (i.e., the development of more than two cotelydons) was also induced by Asc, either 

following an increase in DHAR expression or when Asc was injected at the globular stage of embryo 

development prior to the initiation of cotyledon development [108]. As in zygotic division, an  

Asc-induced alteration in cell division during the specification of cotyledon-forming fields likely  

is responsible for the observed polycotyly. Although Asc likely affects cell division in other  

tissues [102–106], the lack of a readily observable phenotype may make the effect of increased Asc 

content in other aspects of plant development less apparent. 

5. Conclusions 

From its role as an antioxidant essential for photosynthesis and for detoxifying ROS from 

endogenous and exogenous sources, to its role in regulating cell division and flowering, to its function 

as a co-factor in multiple enzymatic reactions, ascorbic acid has fundamentally enabled the 

colonization of land by plant species. This is likely due to the challenge that the rise in atmospheric 

oxygen during Earth’s past presented to multicellular organisms, which required limiting the harmful 

consequences of increased exposure to oxygen that a land-based existence entails. Vitamin C is critical 

to plants as it is unlikely they could tolerate a single day of exposure to sunlight without ascorbic acid 

detoxifying the ROS generated by photosynthetic activity. In contrast, animals unable to synthesize 

ascorbic acid, such as humans, can survive the absence of the vitamin for weeks or even months before 

succumbing to disease and death. Despite the importance of its role in detoxifying ROS, ascorbic 

acid’s functions are now so integrated into plant growth and development that its importance cannot be 

underestimated. Because of the complexity of its many roles, any attempts to engineer changes in 

ascorbic acid content in plants that improves one aspect, such as nutritional content, will require close 
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examination of how such changes impact the overall health and performance of the plant under field 

conditions. In addition to the engineering approaches described above, genetic diversity within plants 

offers another means to increase Asc content through standard breeding approaches [109], although 

whether changes in Asc content through these means may limit any deleterious effects on plant growth 

and development is unknown at this time. The most successful strategies will undoubtedly involve 

highly targeted approaches to alter ascorbic acid content in specific cell types or tissues to achieve a 

desired end while limiting possible unintended consequences in other aspects of growth, development, 

and responses to biotic and abiotic stresses. 
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