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Abstract
Purpose This paper introduces the SciKit-Surgery libraries, designed to enable rapid development of clinical applications
for image-guided interventions. SciKit-Surgery implements a family of compact, orthogonal, libraries accompanied by robust
testing, documentation, and quality control. SciKit-Surgery libraries can be rapidly assembled into testable clinical applications
and subsequently translated to production software without the need for software reimplementation. The aim is to support
translation from single surgeon trials to multicentre trials in under 2 years.
Methods At the time of publication, there were 13 SciKit-Surgery libraries provide functionality for visualisation and
augmented reality in surgery, together with hardware interfaces for video, tracking, and ultrasound sources. The libraries are
stand-alone, open source, and provide Python interfaces. This design approach enables fast development of robust applications
and subsequent translation. The paper compares the libraries with existing platforms and uses two example applications to
show how SciKit-Surgery libraries can be used in practice.
Results Using the number of lines of code and the occurrence of cross-dependencies as proxy measurements of code
complexity, two example applications using SciKit-Surgery libraries are analysed. The SciKit-Surgery libraries demonstrate
ability to support rapid development of testable clinical applications. By maintaining stricter orthogonality between libraries,
the number, and complexity of dependencies can be reduced. The SciKit-Surgery libraries also demonstrate the potential to
support wider dissemination of novel research.
Conclusion The SciKit-Surgery libraries utilise the modularity of the Python language and the standard data types of the
NumPy package to provide an easy-to-use, well-tested, and extensible set of tools for the development of applications for
image-guided interventions. The example application built on SciKit-Surgery has a simpler dependency structure than the
same application built using a monolithic platform, making ongoing clinical translation more feasible.

Keywords Image-guided surgery · Platform · Software · Python · Surgical navigation

Introduction

The development of novel algorithms for image-guided inter-
ventions (IGI) brings together research in six areas: medical
imaging, medical image computing, registration, tracking,
visualisation, and user interface design. Researchers aim-
ing to build and test clinical applications incorporating novel
algorithms can benefit significantly by using software plat-
forms or toolkits that provide ready-made functionality in
each of these six areas and the connections between them
[23]. There are open-source and commercial platforms that
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meet these needs for the purpose of rapid prototyping and
development of clinical applications. However, we have
found that the use of such platforms can hinder translation
to approved clinical software, due to the software engineer-
ing resources required to turn a prototype application into
clinically useable software.

Applications built on general platforms will only use a
tiny fraction of the platform’s functionality. In addition to the
code implementing the unused functionality, this comes at the
cost of additional dependencies. Therefore, using a platform
for developing a clinical application introduces a lot of code
and dependencies that are not necessary for the application.
The amount of resources required to certify and maintain
a clinical application scales with both the complexity of the
application and the number and size of dependencies. SciKit-
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Surgery aims to avoid unnecessary code and dependencies
by providing tools for surgical innovation that are more inde-
pendent.

The SciKit-Surgery libraries have been developed to sup-
port the accelerated translation of clinical innovations to
deployable clinical applications. We phrase this as going
from “bench to bedside” in under 2 years [19]. SciKit-
Surgery libraries help enable this by reducing code com-
plexity and the number of dependencies, whilst providing
enough features to support rapid development of testable
clinical applications. In contrast to other work in this area,
SciKit-Surgery

– is a set of stand-alone libraries not a platform,
– allows researchers to combine individual libraries to
create clinical applicationswithout compilationor depen-
dency problems and

– uses Python for most functions.

During early development, the libraries used theworking title
SNAPPY; however, this was changed to make them easier
to find using typical search techniques. The SciKit prefix
indicates that they are part of the Python scientific ecosystem,
whilst Surgery indicates their intended purpose.

The rest of this paper is structured as follows. Sec-
tion 2 describes existing platforms and toolkits used for IGI
applications and compares them with SciKit-Surgery. Sec-
tion 3 discusses the design choices made when developing
SciKit-Surgery. Section 4 introduces SciKit-Surgery’s cur-
rent component libraries. Section 5 illustrates some of the
benefits of SciKit-Surgery using two example applications.

Background

Wolf [25] and Cleary [6] provide overviews of the exist-
ing software for image-guided interventions. The Medical
Imaging Interaction Toolkit (MITK) [9] and 3DSlicer [20]
are the two most widely used open-source platforms for
development of IGI systems. The Image-Guided Surgery
Toolkik (IGSTK) [5] implemented many tools for image-
guided interventions and could be integrated with MITK
[16] and 3DSlicer; however, IGSTK is no longer under
development. The Public Software Library for UltraSound
imaging research (PLUS) [15] implements numerous hard-
ware interfaces and messaging. PLUS can be integrated with
SlicerIGT[23] to provide IGI applications. Other platforms
include CamiTK [8], NifTK [3], IBIS [7], CISST [4], and
CustusX [1].

Table 1 lists these IGI platforms and compares them based
on the size of the source code. Tomeasure the size of the plat-

Table 1 Comparable sizes of other platforms, in kilo lines of
code(kLoC), measured using cloc version 1.76

Library Size (kLoC)

3DSlicer C++: 298.77 Python : 33.34

SlicerIGT C++: 13.73 Python : 2.78

PlusLib C++: 92.89 C : 11.05

NifTK C++: 206.57

MITK C++: 419.17

CustusX C++: 113.61

IBIS C++: 48.50

CISST C++: 135.68 Python : 3538

CamiTK C++: 63.69

forms,we used cloc,1 to count the lines of source code in each
project. We counted lines of code on the master branch of
each platform, as of October 2019. Lines of source code does
not give a particularly robust comparison between projects;
however, it is sufficient to give an indication of the overall
complexity of the platforms.

An alternative approach to the development of IGI appli-
cations is to use a more general-purpose scientific package
likeMATLAB[17], which provides an easy-to-use set of user
interface tools together with inbuilt and third-party libraries
for interfacing with various devices. For example, Hu et al.
[13] demonstrated an application for targeted prostate biopsy
using Matlab for the user interface, whilst Medviso [12] pro-
vided commercial medical imaging analysis software built
on MATLAB. However, we have excluded MATLAB from
Table 1 as it is not open source.

Platforms like 3DSlicer, MITK, and MATLAB have been
successfully used to develop prototype clinical applications.
Most platformsprovide the capacity to rapidly prototype clin-
ical applications, using either scripting interfaces or modular
plugin-based extension. We have previously used MITK’s
modular architecture to develop the NifTK [3] platform.
NifTK was then used to create an augmented reality applica-
tion for laparoscopic liver surgery [22]. However, it remains
uncommon for prototype clinical applications to progress
beyond research papers and into clinical products. The use
of the above platforms can create difficulty during translation
to approved medical software, due in part to the difficulty in
identifying essential components and dependencies.

Although it is not entirely reasonable to compare the size
of the SciKit-Surgery libraries with some of the other plat-
forms used for IGI, it is helpful for putting them into context.
The libraries listed in Table 1 implement a much larger tool
set, which comes at the cost of much greater complexity. In
Sect. 4, we demonstrate that the SciKit-Surgery libraries are

1 https://github.com/AlDanial/cloc.
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Table 2 The SciKit-Surgery libraries were developed with three aims in mind

SciKit-Surgery Design Aims

1 Enable novel algorithms to be built into applications that can be rapidly deployed to theatre

2 Minimise reimplementation during translation from proof of concept to multicentre trials

3 Enable dissemination of high-quality implementations of research algorithms

Table 3 The aims were translated into a set of design guidelines that can be followed when developing an individual SciKit-Surgery library

SciKit-Surgery Design Guide

1 Development driven by users’ needs

2 Do one thing and do it well

3 Functions and classes with Python interfaces using NumPy data structures

4 Installable directly from PyPI, using pip

5 Libraries fully documented and examples provided

6 Packages are small with clear instructions on how to contribute to development

7 Packages are independent, with minimal dependencies, and maximum orthogonality

8 Use version control, issue tracking, and continuous integration testing

9 Template for library development and encourage wider adoption

much smaller and have fewer direct dependencies than the
platforms listed in Table 1.

It is also notable that all the platforms listed in Table 1
are written primarily in C++. We have found it increasingly
hard to recruit researchers with the skills or willingness to
develop in C++, making development and translation based
on these platforms more difficult.

Although the platforms listed inTable 1 require a degree of
effort in getting familiar with (and in most cases compiling)
the platform, once this is done they offer convenience and
completeness for the rapid prototyping of medical applica-
tions. However, we argue that their size, internal complexity,
and choice of language makes translation to an approved
clinical product difficult.

SciKit-Surgery design aims and guidelines

SciKit-Surgery originatedwithin theWellcomeEPSRCCen-
tre for Interventional and Surgical Sciences (WEISS), to
support clinical translation and innovation.We set three aims
for the SciKit-Surgery libraries and used these aims to inform
the SciKit-Surgery design guide. Tables 2 and 3 enumerates
the aims and design guide. In this section, we discuss how
the aims were turned into design guidelines.

Goal 1: rapid deployment to theatre

SciKit-Surgery is aimed at researchers developing novel
algorithms to perform a specific task within a clinical envi-
ronment. Typically, the algorithm can be implemented in

a few hundred lines of code; however, there is a need for
supporting infrastructure to supply data input and output,
visualisation, and hardware and user interfaces. As discussed
inSect. 2, researchers alreadyhave awide choice of platforms
that can fulfil this requirement. In our experience, the main
drivers for the adoption of a particular platform are:

1. Implementation of the required functionality.
2. Familiarity with the programming language used.
3. Ease of installation on the researcher’s system.
4. Number of users amongst the researcher’s peers.

Most existing platforms meet the first driver, usually pro-
viding more functionality than will be necessary for a given
application. Additional functionality introduces additional
code complexity and dependencies. Therefore, we set the
first SciKit-Surgery design guideline to be “Needs driven
development”. Rather than setting out to deliver a platform
that meets all users’ as yet unknown needs, new functions
and classes are only implemented when they are needed for
a particular project.

To avoid the individual libraries and their dependencies
steadily growing as new needs are identified, the SciKit-
Surgery libraries follow the Unix philosophy of doing one
thing and doing it well [18].When a new feature is requested,
careful though is given to whether it should fit within an
existing library or a new SciKit-Surgery library should be
implemented.

There are a variety of approaches towards meeting the
second driver. Past attempts to get researchers to develop in
C++ have failed as most have not had exposure to C++
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at undergraduate level. MATLAB has a historic advantage
as many researchers in the field have had exposure to it at
undergraduate level. However, we have found that Python
is now widely used in research and education, so we made
the decision to adopt a Python interface, design guideline 3.
This does not preclude libraries written in other languages;
however, they should provide a Python interface, so that they
can be easily integrated into applications.

We have found that the third driver is the one that many
platforms strugglewith.Whilst in some cases pre-built binary
applications are available, once the user seeks to develop
their own applications it is often necessary to compile the
platform from source. We have found that this can be off
putting for potential users. A method to compile robustly
across multiple operating systems and compilers remains
elusive. Most user’s first experience of compilation results in
failure. Whether or not they persist depends on the strength
of the other use drivers. For this reason, we decided to avoid
libraries requiring user compilation. The Python packaging
index2 provides a well-integrated platform to handle depen-
dencies and install both pure Python and binary executable
software libraries, leading to design guideline 4. To make
using the libraries intuitive to use, we also ensure they are
fully documented and conform to PEP8 standards using static
code analysis.3 In addition to examples contained with each
library (guideline 5), there are two tutorials to date (see
Sect. 7) to help dissemination.

We have actively tried to keep each library as compact and
atomic as possible. When confronted with a large platform
[3], many users are deterred from contributing due to the
difficulty of working out where their algorithm belongs and
a fear of breaking something elsewhere in the platform. By
keeping the constituent libraries small, with a clear purpose
and consistent structure (design guideline 6), we have seen
a greater willingness of users to contribute. A good example
of a researcher-led contribution is the scikit-surgeryspeech
library, developed as a stand-alone project during a summer
internship.

Goal 2: reduce the need for reimplementation

Applications such as LumpNav [23] and SmartLiver [22] are
representative of typical clinical research prototypes. These
applications consist of between 500 and 4000 lines of code,
written by a single researcher or small (< 4) team, utilising
pre-existing platforms. The resulting applications are suffi-
cient to support single user clinical trials and publication in
technical and clinical journals. However, to prove safety and
efficacy it is necessary to progress to multicentre clinical tri-
als, ultimately aiming for certification for medical use. This

2 www.pypi.org.
3 www.pylint.org.

next stage of development requires a level of quality control
and testing that is often fatal to the application, leading to the
“Valley of Death” [2].

Turning a prototype built on top of a platform into a sta-
ble, testable, application is a difficult problem. To make the
task manageable, it is useful to be able to strip away unused
functionality from the platform. Disassembling a monolithic
platform is substantially harder than building an application
from many components [14]. The alternative approach is to
reimplement the application from the ground up, which is
also very resource intensive.

SciKit-Surgery has been designed to reduce the need for
re-engineering at this stage of translation. By keeping the
libraries compact and maintaining orthogonality between
them (design guideline 7), it becomes possible to assem-
ble them into a minimal functional application that forms
the skeleton for ongoing development. This fits the “Tracer
Bullet” approach to development described by Thomas and
Hunt [14].

SciKit-Surgery libraries are developed in line with the
U.S. Food and Drug Administration’s guidelines on software
development for medical applications [24]. SciKit-Surgery
design guideline 8 specifies version control, issue tracking,
and continuous integration testing via GitLab, to make inte-
gration into a clinical product as efficient as possible.

Goal 3: dissemination of research

The third aim has three motivations:

– maximise the impact of research, regardless of any clin-
ical translation,

– improve the software development skills of researchers
and students,

– and to encourage researchers to contribute to SciKit-
Surgery.

Alongside SciKit-Surgery, we have developed the Python
and C++ templates, design guideline 9. These are the start-
ing point for most SciKit-Surgery libraries, saving time and
maintaining a familial resemblance across libraries. The tem-
plates are also designed to be used by researchers as a base
to implement their algorithms. The templates support code
quality via static code analysis and unit testing and simplify
publishing to pypi.org. By using the templates, researchers
ensure that their algorithms can be incorporated into clinical
applications using the SciKit-Surgery libraries. Furthermore,
the researchers’ code becomes a stand-alone library that can
be readily shared and used by other researchers.

A good example of the use of the Python template to aid
dissemination is provided by Fu et al. [10]. The software
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used in their paper is now published on PyPI4 allowing other
researchers to replicate the results.

By encouraging researchers to become contributors, we
hope to make SciKit-Surgery sustainable. A key challenge
with any software platform is maintenance. Keeping amono-
lithic platform with multiple dependencies up to date will
consume an increasing amount of resources, resulting in the
eventual death of the platform. By separating the libraries
and encouraging contribution from diverse researchers, we
hope to make ongoing maintenance achievable.

The SciKit-Surgery libraries and architecture

In this section, we introduce the libraries that currently con-
stitute SciKit-Surgery. As discussed in Sect. 3.1, we are
operating a needs-based development policy, so the con-
stituent libraries are sufficient to meet our current needs, but
will be expanded for future applications.

The most notable absence from a toolkit aimed at medical
applications is a DICOM reader or a viewer for voxel images.
These functions are not usually necessary for augmented
reality applications, where simplifying the display using vol-
umetric segmentations from the original images is useful.
Segmentation canbeperformedwith a separate applicationor
even outsourced to external suppliers (e.g. VisiblePatient5).
In any case, the modular nature of SciKit-Surgery allows
existing Python packages for reading and writing DICOM
data to be easily used (e.g. https://pypi.org/project/pydicom).

The lack of medical image computing tools marks an
important difference to most of the platforms discussed in
Sect. 2. Most platforms are medical-imaging toolkits with
extensions to support computer-aided interventions, whereas
SciKit-Surgery is composed of tools aimed at computer-
aided interventions. SciKit-Surgery libraries for medical
image computing may be implemented in the future.

Table 4 lists 13 libraries that currently constitute SciKit-
Surgery. Within the core libraries, there are at most six
primary dependencies, in line with design guideline 7. This
can be contrasted with NifTK for example which cur-
rently has approximately 35 primary dependencies. We have
adopted the naming convention of using the prefix “SciKit-
Surgery” followed by a short descriptive title, which fits in
well with the existing Python package ecosystem.

All 13 libraries are open source and developed in line
with design guideline 8. Continuous integration test status,
coverage statistics, and documentation are all linked from the
individual library’s PyPI page. Users can submit issues via
the libraries’ GitLab or GitHub pages and contribute changes
via the usual processes of forking andmerge requests. Testing

4 https://pypi.org/project/yunguanfu-mil3id2019/.
5 https://www.visiblepatient.com.

on multiple platforms and build environments is currently
handled via tox and GitLab.

Three libraries lie at the core of SciKit-Surgery. scikit-
surgerycore is intended to help bind the various libraries
together by defining common data types and interfaces.
For example, scikit-surgerycore defines an abstract base
class for surgery trackers, so in theory applications using
scikit-surgerytrackers can easily switch between tracking
hardware. scikit-surgeryimage handles the acquisition, cal-
ibration, and basic processing of the video images which
create the back drop for augmented reality. Due to the nec-
essary processing power required for some algorithms (e.g.
surface reconstruction, depth estimation), these will be del-
egated to specific libraries utilising hardware acceleration,
i.e. scikit-surgerygpucpp. scikit-surgeryvtk handles the sec-
ond part of augmented reality, the positioning and rendering
of surface models. scikit-surgeryvtk provides surface models
loaders, camera models, and overlay widgets.

As the libraries are under continuous development, we
refer the reader to the individual libraries’ documentation
(accessible from PyPI) for up to date descriptions of each
library’s contents. From PyPI The user is able to quickly see
the status of the library, which should show green for testing,
coverage, and documentation buttons. Indexes of the func-
tions and classes that amodule implements are also available.
Static code analysis (pylint) is used to ensure that documen-
tation is kept up to date.

From SciKit-Surgery libraries to application;
two case studies

This section shows, using two examples, howSciKit-Surgery
has been used to produce applications used in surgery,
enabled the rapid prototyping of novel algorithms, and
enabled dissemination. The first of these applications, the
SmartLiver surgical guidance application [22], compares the
implementation using SciKit-Surgery, with a previous imple-
mentation as a plugin within the NifTK [3] platform. The
point of the comparison is to illustrate that although the size
of the actual applications is largely independent of the under-
lying libraries used, the use of the SciKit-Surgery libraries
reduces the size and complexity of dependencies. The sec-
ond application, SnappySonic [21], was developed to support
public engagement and education and is included to illustrate
how SciKit-Surgery supports rapid development and dissem-
ination.

SmartLiver augmented reality liver surgery

Previous work in our laboratory [22] on an augmented real-
ity guidance system for liver surgery has yielded promising
clinical results and continued funding to develop the sys-
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Table 4 The libraries that currently make up SciKit-Surgery. The two templates are not prefixed with SciKit-Surgery, as they have no surgical
functionality. All libraries can be found on pypi.org

Library Components Dependencies Size (kLoC)

SciKit-Surgery Core Libraries (scikit-prefix omitted for brevity)

surgerycore Common data types, abstract base
classes, configuration manager,
transform manager, common
algorithms

NumPy 0.78

Surgeryimage Video input, distortion
correction, rectification,
common image algorithms

NumPy, OpenCV, surgerycore 3.36

Surgeryvtk Visualisation, surface model loaders,
camera models, polydata utilities,
widgets

NumPy, VTK, OpenCV,
QT(PySide2), surgerycore,
surgeryimage

3.98

SciKit-Surgery Hardware Interface Libraries (scikit-prefix omitted for brevity)

Surgery-nditracker NDI trackers (Polaris, Vega, Aurora) NumPy, ndicapi,
surgerycore

1.62

Surgery-arucotracker Tracking using ArUco Tags NumPy, OpenCV, surgerycore 1.55

Surgerybk BK Medical Ultrasound NumPy, OpenCV, surgerycore 1.55

SciKit-Surgery Application Libraries (scikit-prefix omitted for brevity)

Surgeryutils Utility applications, basic overlay
window, reslice window, video lag
measurement

NumPy, OpenCV,
QT(PySide2),
surgeryimage, surgeryvtk

1.88

Surgery-tracker-
visualisation

Visualisation for surgerytrackers NumPy, VTK, PySide2,
surgeryvtk, surgeryimage,
surgerycore, surgeryutils,
surgerynditracker,
surgeryarucotracker

1.74

Surgery-davinci Augmented Reality for the DaVinci
Robot

NumPy, surgeryvtk,
surgeryimage,
surgerycore, surgeryutils

1.54

SciKit-Surgery User Interface Libraries (scikit-prefix omitted for brevity)

Surgeryspeech Speech recognition user interface pyaudio
SpeechRecognition,
google-api-python-client,
oauth2client, PySide2

1.37

SciKit-Surgery C++ Libraries (scikit-prefix omitted for brevity)

Surgerygpucpp GPU accelerated image processing ArrayFire, Boost, Eigen,
FLANN, glog, OpenCV,
PCL, VTK

2.33

SciKit-Surgery Library Templates

PythonTemplate Template for native Python
SciKit-Surgery Libraries

cookiecutter 1.27

C++ Template Template for C++
SciKit-Surgery Libraries

cookiecutter 1.27

tem into a commercially viable guidance system. Here, we
discuss the reimplementation of the SmartLiver application
using the SciKit-Surgery libraries, to demonstrate by exam-
ple how the SciKit-Surgery libraries help meet the second
development goal from Tables 2 and 3.

Our previous implementation of the software took the
form of a plugin to the NifTK software platform [3]. This
approach enabled a clinical application to be developed and
tested in vivo within the time frame of a research grant (3

years). The plugin itself consists of approximately 3.7k lines
of codes, while NifTK has around 230k lines of code with
dependencies on 10.36M lines of code, see Fig. 1. These
numbers are remarkably similar to those for other applica-
tions in the literature [23].

If the SmartLiver system were ready to be deployed, it
could be turned into a clinical product by freezing all depen-
dencies and supplying the application on a clinical grade
computer for use in theatre. However, our research in this
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Fig. 1 Use of a platform such as NifTK allowed the SmartLiver aug-
mented reality guidance system to be written in approximately 3.7k
lines of code, with a single dependency on the NifTK platform, 230k
lines of code. In common with other platforms (and the SciKit-Surgery

libraries), NifTK is built on top of further dependencies, shown scaled
by size along the bottomof the figure. The direct dependencies ofNifTK
total 10.36M lines of code

Fig. 2 First- and second-order modular dependencies for SmartLiver
implemented using NifTK a and SciKit-Surgery b. Dependencies that
form part of NifTK or SciKit-Surgery are shown in light blue and are
scaled by size. Third-party dependencies are shown in grey and are not

scaled by size, as they (principally VTK and QT) would dwarf the other
dependencies. Cross-dependencies (dependencies between first-order
dependencies) are highlighted using dashed lines. Where space permits
the library size in thousands of lines of code is shown in brackets

area is ongoing, requiring a live platform. NifTK, in com-
mon with other IGI platforms, has a small developer and
user base, relative to its size, and is dependent on external
grant funding. Development of NifTK has stalled due to the
difficulty recruiting researcherswilling to developC++ soft-
ware. The decision was made to reimplement SmartLiver
using the SciKit-Surgery libraries.

One of the design considerations of NifTK [3] was to keep
things modular, so in theory code can be separated out when

trying to develop a clinical application. Rather than consider-
ing NifTK as a single dependency (Fig. 1), we can look at the
second-order dependencies of the SmartLiver plugin in terms
of the individual modules of NifTK. Figure 2 shows a com-
parison between the first- and second-order dependencies of
SmartLiver implemented using SciKit-Surgery and the mod-
ular dependencies when usingNifTK. In terms of the number
and type of dependencies, they are similar. Most of size of
both applications comes fromQT, VTK, andOpenCV. How-
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Fig. 3 The SmartLiver system being tested in theatre with a voice-
controlled user interface. The SciKit-Surgery architecture allows the
SmartLiver system to be easily connected to the scikit-surgeryspeech
library, to test the effectiveness of voice control for calibration and
manual alignment

ever, the application built usingNifTK has significantlymore
cross-dependence amongst its direct dependencies.

Figure 2 highlights cross-dependencies (dependencies
between first-order dependencies) using dashed lines. Cross-
dependencies are problematic as they reduce the orthogonal-
ity of the code [14]. Making a change to one of these libraries
is likely to lead to unintended consequences in a depen-
dent library. The SciKit-Surgery-based application actually
has more(9) cross-dependencies than the NifTK implemen-
tation(6). With one exception (surgeryvtk to surgeryimage)
however, the SciKit-Surgery cross-dependencies are to third-
party libraries that are unlikely to require changes during
development. Whilst it is not impossible that a significant
change to one of these libraries could break the applica-
tion, such a change could at least be managed by locking
the library version. In contrast, it is very likely that changes
will be required within the direct dependencies that form part
of either NifTK or SciKit-Surgery. The NifTK implemen-
tation has four cross-dependencies between these libraries
compared to one for the SciKit-Surgery implementation.
Looking at the NifTK dependency diagram, we can see
that changes within either IGIDataSources or IGIGui could
have unintended effects on either their direct or second-order
dependents. This makes development and maintenance sig-
nificantly more difficult.

Figure 3 shows the current SmartLiver systembeing tested
in theatre with a novel voice-based user interface. The mod-
ular architecture of the SciKit-Surgery libraries made it
straightforward to connect the scikit-surgeryspeech library
to the SmartLiver application.

The SmartLiver application has now entered WEISS’s
ISO-13485 Quality Management System, to be developed
into an approved clinical application. The SciKit-Surgery
libraries used by SmartLiver will remain outside the quality
management system, treated as software of unknown prove-
nance (SOUP). SciKit-Surgery’s smaller size andmore linear

Fig. 4 SnappySonic in use at the Science of Surgery public engagement
event. An obsolete ultrasound probe is tracked using OpenCV’s ArUco
marker libraries. The position of the probe is used to show an image
from a pre-recorded ultrasound buffer, giving the appearance of live
acquisition. Image by James Tye

dependency treemake it significantly easier tomaintain it and
the SmartLiver application, supporting goal 2 of the SciKit-
Surgery libraries.

SnappySonic

The SnappySonic ultrasound simulator[21] is used here to
demonstrate the ability of the SciKit-Surgery libraries to
support goals 1 and 3 from Tables 2 and 3. The Snap-
pySonic software was developed to support a “serious game”
[11] style ultrasound demonstration at public engagement
events. Development of the SnappySonic application high-
lights some of the benefits of SciKit-Surgery. The application
itself went from idea to basic demowithin twoworking days,
between the 27th of March 2019 and the 2nd of April 2019,
utilising the Python Template, scikit-surgeryutils, and scikit-
surgeryarucotracker. The complete demonstration (including
hardware) was tested internally on the 7th of April and
deployed at the “Science of Surgery” event on the 12th of
April 2019. This gave a good demonstration of the SciKit-
Surgery libraries’ ability to support goal 1 from Tables 2 and
3. The application consists of 1675 lines of code. Figure 4
shows the application in use.

After deployment at the Science of Surgery event, it was
decided that the software was of potentially broader use and
should be maintained and published on PyPI. The focus now
changed to ensuring adequate documentation and test cover-
age. This process took around a week of work, fitted around
other projects, and on the 28th of May the project was made
available on PyPI. In its entirety, the application went from
idea to a sustainable open source application in around 2
months, illustrating the SciKit-Surgery libraries’ ability to
support goal 3 from Tables 2 and 3.
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Discussion

The SciKit-Surgery libraries form a collection of tools for
surgical navigation that can be bound together with Python,
making use of standard graphical user interface components
to rapidly develop novel applications.

InSect. 5,we compared theoccurrenceof cross-dependen-
cies in two implementations of the same application
(SmartLiver). The implementation using a single modu-
lar platform (NifTK) exhibited substantially more cross-
dependencies. These make development more difficult and
discourage new developers from contributing as it is harder
to predict the likely effects of any changes. It could be argued
that such cross-dependencies should be avoided by more
robust software engineering process within the development
team; however, this goes against a large part of what we are
trying to achieve with SciKit-Surgery.

We do not wish to provide a set of libraries developed
by a small team where contributions are closely monitored
and checked for quality, but rather a set of libraries with a
large base of contributors that avoid cross-dependencies by
design. Whilst NifTK is modular, integration testing is only
performed on the full platform; thus, cross-dependencies are
not immediately obvious, and it is tempting for developers
to add dependencies between modules to avoid reimple-
menting similar functions. By testing and deploying every
SciKit-Surgery library individually, the introduction of cross-
dependencies should be reduced

It will be interesting ongoing work to investigate the
occurrence of cross-dependencies and duplication within
the SciKit-Surgery libraries and compare this to similar
features in more monolithic platforms. It is our hope to
decentralise the development and maintenance of much
of SciKit-Surgery. Decentralisation will enable ongoing
growth, but will come at the cost of control and possible
divergence within the libraries. Defining key data types and
interfaces within scikit-surgerycore may minimise this.

Development is ongoing with a growing base of con-
tributors and users. Current work is developing graphics
processingunit accelerated libraries that use the sameNumPy
interfaces, so that surgical video canbeprocessed in real time.
However, by keeping libraries independent as far as practi-
cable, we are able to rapidly change our development plans
in response to the needs of our user base.

Investigation into the best way to deploy clinical applica-
tions built using Python is ongoing. Whilst Python packages
provide a flexible tool for researchers, distribution to clinical
users needs to be simpler. For most interventional applica-
tions, this is not an issue, as the software would be delivered
pre-installed on a dedicated clinical-grade computer. Stand-

alone installers for specific applications could also be created
using tools like pyinstaller.6

As part of our analysis, we found that typical surgical
applications and their modular dependencies run from 1000
to 3000 lines of code. We speculate that this is the amount of
code a typical researcher can write and maintain to support
their research objectives.

Conclusions

We have presented the SciKit-Surgery libraries, a set of
largely stand-alone libraries to support research innovation
and translation in surgical navigation. The SciKit-Surgery
libraries have been under active development for approx-
imately 1 year. In that time, we have demonstrated their
suitability for use in surgical navigation and related applica-
tions. We have had significantly more success with engaging
staff and students in library development than with other
platforms (NifTK),whichwe attribute to the simplified struc-
ture and use of Python rather than C++. At present, the
SciKit-Surgery libraries do not support the same amount of
functionality as existing medical imaging and IGI platforms;
however, we have shown how SciKit-Surgery can be rapidly
developed to support new functionality.

Interested readers are directed to the first two SciKit-
Surgery tutorials;

– The SciKit-Surgery augmented reality tutorial https://
snappytutorial01.readthedocs.io,

– The SciKit-Surgery library development tutorial https://
snappytutorial02.readthedocs.io,

– And the SciKit-Surgery wiki https://github.com/UCL/
scikitsurgery/wiki.
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