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Abstract: Labeling-assisted visualization is a powerful strategy to track circulating tumor cells (CTCs)
for mechanism study (e.g., tumor metastasis). Due to the rarity of CTCs in the whole blood, efficient
simultaneous enrichment and labeling of CTCs are needed. Hereby, novel in situ electroporation
on a previously-developed micropore-arrayed filter (PERFECT filter) is proposed. Benefiting from
the ultra-small-thickness and high-porosity of the filter plus high precision pore diameter, target
rare tumor cells were enriched with less damage and uniform size distribution, contributing to
enhanced molecular delivery efficiency and cell viability in the downstream electroporation. Various
biomolecules (e.g., small molecule dyes, plasmids, and functional proteins) were used to verify
this in situ electroporation system. High labeling efficiency (74.08 ± 2.94%) and high viability
(81.15 ± 3.04%, verified via live/dead staining) were achieved by optimizing the parameters of
electric field strength and pulse number, ensuring the labeled tumor cells can be used for further
culture and down-stream analysis. In addition, high specificity (99.03 ± 1.67%) probing of tumor
cells was further achieved by introducing fluorescent dye-conjugated antibodies into target cells. The
whole procedure, including cell separation and electroporation, can be finished quickly (<10 min).
The proposed in situ electroporation on the PERFECT filter system has great potential to track CTCs
for tumor metastasis studies.

Keywords: in situ electroporation; circulating tumor cell; high viability

1. Introduction

The ability to introduce foreign molecules, such as DNA, mRNA, fluorescent dyes,
and proteins, into living cells has significant implications for various applications in cellular
manipulation [1], cellular imaging [2], genome engineering [3], and disease treatment [4].
Various methods, including viral-mediated, chemical-mediated, and physical-mediated
approaches, have been developed to deliver molecules into the cells. The viral-mediated
approach is the most popular method of gene delivery because it is highly efficient, while
the application remains a considerable safety concern, including toxicity, immunogenicity,
and chromosomal integration [5–7]. The chemical-mediated approach is often used to
deliver intracellular biomolecules, but it also struggles with the toxic effects, particularly
molecules and limited cell types [6]. Compared to other physical methods (e.g., microin-
jection, optoporation, and sonoporation), electroporation is considered an effective and
powerful technique because it is easier to perform and has the ability to introduce types of
molecules into target cells without potentially damaging cells [8,9].

Electroporation utilizes short and high voltage pulses to cause a temporary loss of the
semipermeability of cell membranes and delivers molecular probes into the cytosol [10].
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It is widely accepted that hydrophilic pores, electrically altered lipids, and modulated
voltage-gated ion channels increase membrane permeability within microseconds [11–13].
Technically, the efficiency of intracellular delivery can be optimized by modulating the pulse
duration, frequency, and voltage. Besides, the electric field strength required to transiently
disrupt cellular membranes is strongly correlated with cell size [14]. In conventional
electroporation designs, bulk electroporation has been used for effective DNA transfection
into suspension cells [15]. However, in order to obtain practical efficiency and viability for
samples with large heterogeneity in cell diameter, a strong electric field was used, which
might lead to the destruction of the cell membrane [16]. When evaluating the performance
of electroporation, the following points should be considered: (1) electroporation efficiency
and cell viability with an easy operation; (2) controllability at the single-cell level; and
(3) selectivity between targeted cells and background cells (e.g., rare circulating tumor cells
(CTCs) and blood cells).

A series of researchers have explored various nano-devices and micro-devices to oper-
ate single-cell electroporation, which effectively decreases the applied voltage, resulting in
enhanced cell viability [17–23]. The nano-devices, including nanochannel [19,24], nanopil-
lar [25], nanostraw [26,27], nanoprobe [28], nanopore [29,30], nanoelectrode [31], etc., are
focused on a nanosized portion of the cell membrane, which enables the efficient and
precise amount of molecule delivery [17]. However, the aforementioned methods suffer
from relatively low throughputs. Meanwhile, micro-devices mainly include microfluidic
channels [32,33], microcapillaries [34], microarrays [35–37], etc., which make it easier to
achieve high-throughput paralleled transfection. However, additional assistance must be
operated for cell localization, such as using microfluidic devices to squeeze cells or vacuum
set-ups to trap cells, which may affect the viability of target cells. No reports have yet real-
ized high-throughput CTC enrichment and labeling simultaneously in nano/microdevices,
which could be attributed to the poor cell viability and failure in effective electroporation
caused by large forces (shear stress, pressure) endured during separation.

In our previous study, a PERFECT (precise, efficient, rapid, flexible, easy-to-operate,
controllable, and thin) filter with high porosity and high mechanical strength was prepared
via the Parylene C molding technique. Benefiting from the ultra-small-thickness (<10 µm)
and high-porosity (46.79%, edge-to-edge space between the adjacent micropores <4 µm) of
the filter plus the high precision pore diameter, this filter significantly decreases the forces
applied on cells during filtration [38] and thus ensures high cell viability, which facilitates
the feasibility of electroporation on separated cells. In this study, in situ electroporation
on the PERFECT filter was proposed to realize high-throughput, high-efficiency, and high-
viability tumor cell separation and electroporation simultaneously (Figure 1). Multiple
molecules have been delivered to verify the excellent performance of this device, which
may provide a new tool for CTC tracing in vivo.
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2. Materials and Methods
2.1. Set-Up of In Situ Electroporation System

The micropore-arrayed filter with ultra-small-thickness (<10 µm) and high-porosity
(46.79%)-based tumor cell separation builds on our previous work [39]. The optimum mi-
cropore diameters (4 µm space and 10 µm diameter) for cell viability under the electric field
strengths and shear stresses were also preliminarily explored [40]. After separation, the
target tumor cells were captured on the filter, and transferred into a commercially-available
cuvette (620, 2 mm Gap Cuvette, BTX) with two parallel-plate electrodes for in situ elec-
troporation. A modified electroporation buffer (13 mM KH2PO4, 13 mM K2HPO4, 25 mM
myo-inositol) was used for this in situ electroporation. The magnitude of applied square
wave pulses, V, was varied from 100 to 400 V to have the electric field strength, E = V/L
(L: 2 mm), applied across the electroporation chambers ranging from 0.5 to 2 kV/cm. The
applied magnitude, pulse duration (100 µs, 1000 µs, 3000 µs, 5000 µs, 10,000 µs), and
pulse number (3 and 6) were optimized respectively to determine the optimum electrical
condition for multiple molecule delivery.

2.2. Cell Culture and Counting

Mouse lung cancer cells (1601), separated and prepared by the collaborator, were
used as a model cell in this study [41,42]. The 1601 cells were cultured with high glucose
Dulbecco’s modified Eagle medium (DMEM-high glucose, Corning, New York, NY, USA)
supplemented with 10% fetal bovine serum (FBS, Gibco, Thermo Fisher, Waltham, MA,
USA), 2 mM glutamine (Gibco, Thermo Fisher, USA), 1 mM sodium pyruvate (Gibco,
Thermo Fisher, USA), 25 mM HEPES (Gibco, Thermo Fisher, USA), and 100 U/mL penicillin-
streptomycin (Gibco, Thermo Fisher, USA). Cells were incubated at 37 ◦C in a 5% CO2
humidified atmosphere. When the confluency reached 80–90%, cells were trypsinized from
the flask, centrifuged at 1000 rpm for 6 min, then resuspended in DMEM at a concentration
of 5 × 105 cells/mL for separation and electroporation.

To verify the separation and electroporation rate of presented in situ electroporation
systems, spiking PBS or undiluted whole blood from healthy volunteers (with the statement
of informed consent) were tested first. The spiking samples were prepared by adding
10,000 1601 cells via serial dilutions into 1 mL PBS or whole blood. Before adding, the
adhered 1601 cells were rinsed with trypsin (0.25%, Gibco, Thermo Fisher, USA) and then
incubated with 5 µg/mL Hoechst 33342 (H1399, Invitrogen™, Thermo Fisher, USA) and
Cell Tracker Red/Green (5 µM, Invitrogen, Thermo Fisher, USA) at room temperature
for 30 min for pre-labeling. After incubation, the cells were washed with PBS 3 times
and resuspended into the PBS or blood. Note that pre-labeling was operated to facilitate
the observation and counting of 1601 among background cells under the fluorescence
microscope.

2.3. Fluorescent Molecules Used for Device Optimization

The nucleic acid fluorescent dyes (4 µM, EthD-1, Invitrogen™, Thermo Fisher, USA)
were used to access the current system’s small molecule delivery efficiency. The choice of
fluorescent dye was made because of its impermeability for live cells, and thus can only
be loaded into cells under successful electroporation. Therefore, it can be used to access
the electroporation efficiency of the presented device in this work. In order to identify
the cell viability, fluorescent live-cell staining dyes (2 µM, Calcein Green AM, Invitro-
gen™/Thermo Fisher, USA) were selectively performed before and after electroporation.
The double-positive red and green fluorescence (i.e., EthD-1+/Calcein Green AM+) stands
for successful electroporation and cell viability. The positive for green while negative for
red fluorescence (i.e., Calcein Green AM+/EthD-1-) stands for cells with viability and
unsuccessful electroporation. The positive for red while negative for green fluorescence
(i.e., Calcein Green AM-/EthD-1+) stands for cell death.

The anti-cytokeratin 7 (CK7) fluorescent dye-conjugated antibody (ab209601, Abcam,
Boston, MA, USA) (1:200 dilution, rabbit-anti-mouse, Alexa Fluor® 555) was used to access
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the current system’s delivery efficiency of proteins. In this work, the antibody was directly
mixed with electroporation buffer. Then, target cells were separated on the filter and placed
into the buffer for in situ electroporation. Subsequently, electroporation efficiency was
calculated by counting the number of fluorescent-labeled cells and the number of total
target cells. The whole procedure, including cell separation and electroporation, can be
finished within 10 min.

2.4. Traditional and Improved Immunofluorescence Staining

The traditional immunofluorescence staining can achieve specific labeling of CTCs
through a series of operations, but fails to maintain the viability of target cells. After
filtration, the cells on the membranes were fixed with 4% (w/v) paraformaldehyde for
10 min, followed by washing three times with PBS for 5 min each. Next, permeabilized
with 0.1% (v/v) Triton X-100 for 7 min at room temperature, followed by washing three
times with PBS for 5 min each. Then, the cells were blocked with blocking buffer for 60 min
at room temperature. After blocking nonspecific binding sites, cells were incubated with
anti-cytokeratin 7 (CK7) fluorescent dye-conjugated antibody (ab209601, Abcam, USA) at
4 ◦C overnight. In order to improve the viability of labeled cells and reduce the staining
time, we improved the traditional immunofluorescence staining method. The improved
immunofluorescence staining contains cell permeabilized with 0.1% (v/v) Triton X-100 for
3 min at room temperature, followed by washing three times with PBS for 5 min each and
incubated with anti-cytokeratin 7 (CK7) fluorescent dye-conjugated antibody 10 min at
room temperature.

2.5. Data Analysis

In the delivery experiment of small molecule dyes, the living cells were stained with
Calcein Green AM (green fluorescent dye), and the transfected cells were successfully
stained with EthD-1 (red fluorescent dye). In the delivery experiment of plasmids, the
live/dead staining was used for cell viability validation (the dead cells were stained with
red fluorescent dye), and the transfected cells were successfully transfected with a plasmid
containing green fluorescent protein (GFP). In the delivery experiment of dye-conjugated
antibodies, the live/dead staining was also used for cell viability validation (the living cells
were stained with green fluorescent dye), and the tumor cell was specifically labeled with
red fluorescent when the electroporation was successful.

The cell viability, transfection efficiency after electroporation, and total cell viability
after filtration and electroporation were calculated based on the following equations:

Cell viability (electroporation) =
The number of living cells on the filter
The number of total cells on the filter

× 100%

Electroporation efficiency =
The number of transfected cells

The number of total cells on the filter
× 100%

Cell viability (total) =
The number of living cells on the filter

The number of total spiked cells
× 100%

3. Results and Discussion
3.1. Optimum Electrical Parameters for High-Efficiency Small Molecule Delivery

According to our previous study [40], the filter with 4 µm space and 10 µm diam-
eter with a porosity of 46.79% was chosen in this work. First, the recoveries of 10,000
1601 cells spiked in PBS (1 mL) or undiluted whole blood (1 mL) showed high recovery
rates (79.3 ± 2.5%, 76.3 ± 5.9%, respectively, n = 3 for every trial) and high cell viability
(86.0 ± 5.6%, 83.0 ± 8.7%, respectively, n = 3 for every trial) indicating the high separation
performance of this platform (see Supplementary Material Figure S1). After cell separation,
A series of electroporation experiments with systematically varied electric field strengths
and pulse numbers were conducted in order to determine the optimum condition for
high-efficiency electroporation of 1601 cells.
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Figure 2a,b show that the electroporation efficiency inversely correlates with viability.
When cells were exposed to electric field strengths higher than 1.25 kV/cm with six pulses, a
high electroporation efficiency up to about 80% was exhibited, but the cell viability was less
than 70%; whereas those electric field strengths of 0.75 kV/cm with three pulses showed a
viability and electroporation efficiency of 83% and 36%, respectively. The optimum electric
field strengths are required to consider viability and efficiency simultaneously. Thus,
electric field strengths at 1.5 kV/cm, 100 µs pulse duration, three pulses, and 1000 ms pulse
interval (denoted as 1.5 kV/cm/100 µs/3/1000 ms) is an optimal condition for both high
electroporation efficiency (74.08 ± 2.94%) and cell viability (81.15 ± 3.04%). The short-term
viability tested via the live/dead assay is shown in Figure 2c. Successful electroporation
with maintained viability of 1601 cells showed triple-positive for blue, red, and green
fluorescence colors (i.e., Nucleus+/EthD-1+/Calcein Green AM+).
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Figure 2. Transfection of fluorescent dyes in 1601 cells. (a) The electroporation efficiency of 1601 cells
under different electric field strengths and pulse numbers (n = 3 for every trial). (b) The cell viability
after electroporation under different electric field strengths and pulse numbers (n = 3 for every trial).
(c) Typical fluorescent images of successful electroporation with viability maintained.
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In order to verify the long-term viability, in situ culture of the electroporated cells on
the PERFECT filter was carried out. The well-presented adhesion, as shown in Figure 3,
further confirmed the excellent performance of this in situ electroporation system. The
compatibility for in situ culture and proliferation of presented systems may widen its
applicability in downstream analyses, such as cell-based immunotherapy, gene-mediated
therapy, and gene editing immunotherapy.
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Figure 3. Good adhesion and spreading of the tumor cells on the PERFECT filter indicate successful
in situ long-term (24 h) culture after electroporation.

3.2. Plasmid Transfection

As a proof, taking the superior viability and electroporation efficiency of the proposed
system, we conducted luciferase/GFP double reporter plasmid transfection of 1601 cells.
Similar to the small molecule dyes experiment, a 10 mg/mL solution of plasmid was loaded
and delivered into the separated 1601 cells using the in situ electroporation system. Under
the identical electroporation condition (1.5 kV/cm/100 µs/3/1000 ms), the electroporation
efficiency and cell viability were 54.07 ± 11.20% and 80.65 ± 3.74%, respectively, as shown in
Figure 4a. A substantial reduction in transfection efficiency compared to the small molecule
delivery could reflect the expected intracellular degradation and/or insufficient nuclear
targeting of delivered plasmids after successful penetration across the cell membrane [43].
After delivery, the cells were incubated for another 48 h to allow for GFP expression,
and the results were evaluated with fluorescence microscopy and quantitatively analyzed
(Figure 4b). In situ manipulation of separation of tumor cells and the high viability of
plasmid transfection made it possible to track CTCs for tumor metastasis study. However,
for real CTC research, considering the extremely rare presence (1–10 cells/mL blood),
imaging accuracy, and number of cells required for tumor formation need to be considered
in further studies.

3.3. Specific Delivery of Functional Proteins

Identifying the tumor cells from a large number of background cells without cellular
structure damage is a powerful strategy to monitor the targeted cells for the study of biolog-
ical mechanisms. The electroporation-based method generally relies on the complex probe
design [44], and traditional immunofluorescence (IF) staining is impossible to guarantee
both high efficiency and high activity of cell labeling.
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Figure 4. Transfection of plasmid in 1601 cells. (a) The electroporation efficiency and viability under
different electric field strengths (n = 3 for every trial). (b) Fluorescence image of plasmid expression
in the cells 24 h post-electroporation.

We further explored the functional protein delivery using this in situ electroporation
system for highly specific tumor cell labeling. Specifically, we established an antibody
electroporation-based imaging approach to introduce fluorescent dye-conjugated antibod-
ies into target living cells. The accumulation of biomolecules in the vicinity of the cell
would cause diffusion-based delivery in the final stage [45], so the internal fluorescence in-
tensities are directly proportional to the pulse durations. In order to achieve high-efficiency
macromolecular protein delivery, four different pulse durations were used for testing. We
observed that the variation of electroporation efficiency increased as the pulse duration
increased. However, when the duration was 5000 µs, the cell viability was less than 80%, so
we chose 3000 µs as an optimal condition (1.5 kV/cm/3000 µs/3/1000 ms), where the elec-
troporation efficiency and cell viability were 83.7 ± 7.00% and 80.3 ± 8.71%, respectively
(Figure 5a).

The cell labeling efficiencies obtained from the improved immunofluorescence staining
were experimentally compared in parallel, as shown in Figure 5b. Highly specific cell
labeling (98.6 ± 1.2%) was achieved (see Supplementary Material Figure S2), but the
efficiency of the presented in situ electroporation system was significantly higher than the
method of improved immunofluorescence staining. Within 10 min, the efficiency increased
by 64.45%. Specific labeling of tumor cells from a large number of background cells (White
blood cells, WBCs) was achieved, as shown in Figure 5c.
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(b) A comparison of transfection efficiency for the proposed system and the traditional IF staining
(Wilcoxon rank-sum test, *** p < 0.001) (n = 3 for every trial). (c) Typical fluorescent images of tumor
cell-specific electroporation.

4. Conclusions

In this study, a high-efficiency in situ electroporation on the PERFECT filter platform
is established for high viability and specific separating and labeling tumor cells from a
large number of background cells with high throughput (7 × 105 micropores per square
centimeter). Three biomolecules (e.g., small molecule dyes, plasmids, and functional
proteins) with different sizes were used to verify this in situ electroporation on the PERFECT
filter system (the optimum electroporation parameters of three biomolecules are shown in
Supplementary Material Table S1). By systematically varying electric field strengths and
pulse numbers, high-efficiency small molecule dye and plasmid delivery were obtained.
Cell viability after electroporation was confirmed by short-term staining, long-term in situ
culture, and proliferation. In order to realize the protein delivery, a wider pulse duration
was attempted. Fluorescent dye-conjugated antibodies were successfully introduced to
tumor cells resulting in highly specific cell labeling. Overall, the high electroporation
performances could be attributed to the combination of PERFECT filter-based tumor cell
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filtration and in situ electroporation. All-in-one operation reduces cell loss and damage
between steps and controls the procedure operated in less than 10 min. In future work, a
highly integrated dialysis system could be developed which allows for real CTC capture
and labeling under dynamic electroporation on the PERFECT filter platform. Overall, we
anticipate that this study was promised to be not only an efficient CTC separation and
labeling technique but also a powerful tool to real-time monitor the activities of CTCs,
which might provide valuable information for comprehensively understanding cancer
pathogenesis and progression, and thus reveal new strategies for cancer diagnosis and
tumor metastasis study.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi13050672/s1. Figure S1: The separation efficiency and cell
viability of 10,000 1601 cells in 1 mL PBS or whole blood, Figure S2: A comparison of transfection
specificity for the proposed system and the traditional IF staining. Table S1: The optimum parameters
of three types of molecules.
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