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Evolutionary highways to persistent bacterial
infection
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Persistent infections require bacteria to evolve from their naive colonization state by opti-
mizing fitness in the host via simultaneous adaptation of multiple traits, which can obscure
evolutionary trends and complicate infection management. Accordingly, here we screen
8 infection-relevant phenotypes of 443 longitudinal Pseudomonas aeruginosa isolates from
39 young cystic fibrosis patients over 10 years. Using statistical modeling, we map evolu-
tionary trajectories and identify trait correlations accounting for patient-specific influences.
By integrating previous genetic analyses of 474 isolates, we provide a window into early
adaptation to the host, finding: (1) a 2-3 year timeline of rapid adaptation after colonization,
(2) variant “naive” and "adapted” states reflecting discordance between phenotypic and
genetic adaptation, (3) adaptive trajectories leading to persistent infection via three distinct
evolutionary modes, and (4) new associations between phenotypes and pathoadaptive
mutations. Ultimately, we effectively deconvolute complex trait adaptation, offering a
framework for evolutionary studies and precision medicine in clinical microbiology.
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acteria have spent millennia evolving complex and resilient

modes of adaptation to new environments, and some spe-

cies effectively deploy these skills as pathogens during
colonization within human hosts!~3. Due to gradual increases in
fitness via accumulating genetic and epigenetic changes, it has
been difficult to pinpoint overarching drivers of adaptation (from
systems-level traits down to individual mutations) that reliably
signal fitness*. Distinct populations may travel along the same
predictable path to successful long-term persistence within a host,
but other unique sequences of multi-trait adaptation can be
equally optimal® in a complex, fluctuating environment®. This is
even more relevant in a clinical context where dynamic selection
pressures are applied via therapeutic treatment intended to era-
dicate infection.

Even for a well-studied model system of bacterial persistence
leading to chronic infection such as the airway infections of
cystic fibrosis (CF) patients, evolutionary trajectories remain
difficult to map due in part to competing modes of evolution. We
know from laboratory evolution studies in highly controlled
conditions that these multiple modes are at work and induce
substantial phenotypic adaptation to minimal media within the
initial 5,000-10,000 generations®”-8, but only an estimate is
available of the timeline of adaptation in the complex CF lung
environment®. Multiple recent studies have shown a high degree
of population heterogeneity in chronic CF infections that could
be influenced by competing evolutionary modes, but past con-
sensus has been that select traits converge towards similar evolved
states during most CF infections (e.g., loss of virulence and
increase in antibiotic resistance)310-12, This convergence can be
complex and drug-driven, as recent studies have shown devel-
opment of collateral sensitivity to antibiotics (treatment with one
drug can induce reciprocal changes in sensitivity to other
drugs);!3 this illustrates that a single selection pressure can
reversibly affect multiple other traits, obscuring evolutionary
trends. As in evolution in most complex, natural environments,
persistent bacterial infections are influenced by strong and
competing selective forces from very early in a patient’s
life. However, few studies have focused on the early periods of
infection where environmental strains transition to successful
pathogens in patient lungs.

Studies have assessed the genetic evolution of human patho-
gens in CF and identified specific genetic adaptations correlating
with colonization and persistence!#-16. However, only a few have
linked genotypic and phenotypic changes>%17:18, as this is espe-
cially challenging in natural populations. The genetic signature of
adapting phenotypes is obscured over the course of evolution by
the continuous accumulation of mutations and acclimatization by
environment-based tuning of pathogen activity. Furthermore, it is
inherently difficult to identify genotype-phenotype links for
complex traits governed by multiple regulatory networks!®20.
Consequently, we are far from the reliable prediction of pheno-
typic adaptation by mutations alone during evolution in a com-
plex, dynamic environment such as airway infections in CF1921,
and we propose that for now, phenotypic characterization is
equally important. Analyses of infections of CF airways are an
important platform for resolving these issues; approaches can be
directly translated to other increasingly concerning persistent and
chronic infections!18:22,

To address the complexity of pathogen adaptation in the host
environment, we analyzed our phenotypic dataset using statistical
methods that account for the environmental effects on patient-
specific lineages (Generalized Additive Mixed Models—GAMMs)
and assess adaptive paths traversing the evolutionary landscape
from a multi-trait perspective (Archetype analysis—AA). We
identify emergent patterns of bacterial phenotypic change across
our patient cohort that depart from expected evolutionary paths

and estimate the period of initial rapid adaptation during which
the bacteria transition from a “naive” to an “evolved” phenotypic
state. We further identify distinct and repeating trajectories of
pathogen evolution, and by leveraging our prior genomics study
of this isolate collection!®, we propose new associations between
these phenotypic phenomena and genetic adaptation. We find
that specific traits, such as growth rate and ciprofloxacin resis-
tance, can serve as rough estimators of adaptation in our patients,
while multi-trait modeling can map complex, patient-specific
trajectories towards distinct evolutionary optima that enable
persistence. Implementation of this trajectory modeling in general
evolutionary studies might enable scientists to more easily define
multi-trait evolutionary objectives and the genotype-phenotype
relationships that enable their realization. Implementation as a
diagnostic tool in patient care might enable clinicians to respond
more quickly and effectively to evolving pathogens and inhibit the
transition to a persistent infection.

Results

Evaluating pathogen adaptation in early stage infections. The
collection of 443 clinical P. aeruginosa isolates originates from a
cohort of 39 youth with CF (median age at first P. aeruginosa
isolate = 8.1 years) treated at the Copenhagen CF Centre at
Rigshospitalet and captures the early period of adaptation,
spanning 0.2-10.2 years of colonization by a total of 52 clone
types. Of these isolates, 373 were previously characterized in a
molecular study of adaptation!®. Isolates were collected at the
clinic from both the upper airways through sinus surgery sam-
ples, and the lower airways through expectorate (sputum) and
bronchioalveolar lavage (BAL) samples. At study initiation, none
of the patients were diagnosed as chronically infected by the
CF center at Rigshospitalet, which is defined as elevated anti-
bodies and/or multiple P. aeruginosa cultures spanning a period
of six months?324. Whenever a single clone type has been sam-
pled over multiple sampling dates within a patient, we use the
term “persisting colonization”. The colonization time of an isolate
is defined for each specific lineage, approximating the length of
time since a given clone type began colonization of the CF air-
ways in the specific patient. Importantly, our colonization time
metric does not necessarily start at the true time zero, since a
significant bacterial load is necessary for a positive culture. Our
isolate collection also does not capture the complete population
structure, but a previous study shows that 75% of our patients
have a monoclonal infection persisting for years with mutations
accumulating in a highly parsimonious fashion indicating uni-
directional evolution!®. Additionally, a metagenomic study of
four patients from our cohort indicates that the single long-
itudinal isolates are representative of the major propagating
subpopulation??,

To obtain systems-level readouts of pathogen adaptation in the
host and thereby assess multi-trait evolutionary trajectories, we
present an infection-relevant characterization of our isolate
collection entailing high-throughput measurements of 8 pheno-
types: growth rates (in Luria-Bertani broth (LB) and artificial
sputum medium (ASM)), antibiotic susceptibility (to ciproflox-
acin and aztreonam), virulence factors (protease production
and mucoidity), and adherence (adhesion and aggregation)
(Figs. 1 and 2). We define adherence as a shared trend in
adhesion and aggregation, which we associate with a biofilm-like
lifestyle (see Methods for further discussion of limitations of these
measures). These phenotypes are generally accepted to change
over the course of colonization and infection of CF airways based
primarily on studies of chronically-infected patients!:17:26:27,

That is, an evolved isolate would grow slowly, adhere
proficiently, be more likely to exhibit a mucoid and/or
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Fig. 1 Study design. Upper panel: Every month, CF patients are seen at the CF clinic at Rigshospitalet in Copenhagen, Denmark. Here they deliver a sputum
or endolaryngeal suction sample where selective microbiological culturing is performed’8. The longitudinally collected isolates have been genome
sequenced and analyzed previously'®. Middle panel: Longitudinally collected isolates have been subjected to different phenotypic analyses for this study
and are here (lower panel) analyzed using two data modelling approaches: Archetype analysis (AA) and Generalized Additive Mixed Model (GAMM). By
integrating these approaches, we map dominant evolutionary trajectories and analyze mechanistic links between phenotypic and genetic adaptation

hypermutator phenotype, have reduced protease production, and
resist antibiotics, in contrast to a naive isolate (Fig. 2b). However,
simply ordering our measurements by colonization time does not
illustrate an overarching adaptive trajectory from naive to evolved
phenotypes (Fig. 2c). Instead, we see substantial heterogeneity,
with isolates that resemble both naive and evolved phenotypic
states throughout the study period. Given that we are investigat-
ing a unique collection from a young patient cohort that we track
for a substantial period of colonization, this data fills the critical
gap between studies of acute infections and chronic infections?8.
We are surprised to see naive phenotypes retained in late
colonization as well as isolates in early colonization that deviate
significantly from PAO1 phenotypes. However, a general pattern
of heterogeneity is in alignment with previous studies of both P.
aeruginosa and Burkholderia spp. infections®!1:12. To make sure
that the presence of late naive isolates is not caused by a new
infection with the same clone type, we investigated the molecular
distance to the other isolates of the patient in question. Five
lineages with isolates sampled later than three years after first
detection of the clone type presented with seven or eight naive
phenotypic characteristics out of the eight measured (DK13 from
patient P0504, DK17 from P3804, DK41 from P7604, DK25 from
P2605 and DK19 from P7204). In all cases, we found only a few
SNPs separating late naive isolates from their nearest neighbors
(0-2 SNPs!6). However, in DK19 we found more SNPs separating
two of the late naive isolates from the nearest neighbor than in
the other cases. However, by looking at the maximum likelihood
phylogeny including all identified SNPs of the DK19 clone type
(present in multiple patients)!® (Fig. 2a, rightmost panel), we are

convinced that this is not caused by a reinfection by the same
clone type; these isolates are still more related to other isolates
within the same patient than to isolates from other patients.

A unique modeling approach. Because our data is hetero-
geneous, we required specialized modeling approaches to account
for specific environmental pressures and assess the boundaries of
the evolutionary landscape. Previous studies have employed lin-
ear mixed models of phenotypic adaptation?®, and employed AA
in the comparison of features of transcriptomic adaptation by P.
aeruginosa>0. Similar studies of multi-trait evolutionary trade-offs
using polytope fitting have predicted the genetic polymorphism
structure in a population3!. We use related modeling methods to
ensure that patient-specific effects are minimized, irregular
sampling intervals are smoothed and a multi-trait perspective is
prioritized by (1) modeling the dynamic landscape of multi-trait
evolution using AA and (2) evaluating temporal correlations of
phenotypic adaptation by fitting cross-patient trendlines using
GAMMs (Fig. 1). We describe our approach below in brief, with
more extended explanation available in both the Methods and
Supplementary Notes 1 and 2.

With AA, we want to assess multi-trait adaptive paths within
the context of the evolutionary landscape. We map these paths
(or trajectories) by first fitting idealized extreme isolates
(archetypes) located on the boundaries of the evolutionary
landscape and then evaluating every other isolate according to
its similarity to these idealized extremes. The archetypes are
positioned at the corners of the principal convex hull (PCH), the
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Fig. 2 Phenotypic characterization. We present summary statistics of our phenotype screen including a mean and mean standard deviation for each
phenotype over all isolates as well as the P. aeruginosa PAO1 value and antibiotic breakpoint we use for normalization, respectively (above boxplot). We
also show boxplots of continuous normalized variables (including the median as the center line, first and third quartile box bounds and whiskers
representing 1.5 inter-quartile range). We also show the overall count of isolates with presence/absence of mucoidity, protease and hypermutator
phenotypes and a maximum likelihood phylogeny (1000 bootstraps) of the DK19 clone type; nodes marked with white triangles have bootstrap values
>=50. Blue stars represent late (>3 years) phenotypically naive (7-8 naive phenotypes out of 8) isolates from patient P7204. Circles with different shades
of grey represent isolates from patients marked on the outer edge of the circle. We then compare the b expected adaptation over time based on field
consensus versus € the measured raw adaptation of our isolate collection over time. The X-axis represents the time since colonization of a specific lineage
or “colonization time". Colors are linked with the expected change of the specific phenotype (b), so that blue denotes a “naive” phenotype and red denotes
an “evolved"” phenotype. For growth rate (in artificial sputum medium (ASM)), adhesion and aggregation, naive and evolved phenotypes are determined by
comparison with the reference isolate PAO1 phenotype. For aztreonam and ciprofloxacin MIC, naive and evolved phenotypes are based on sensitivity or
resistance as indicated by the EUCAST breakpoint values as of March 2017

polytope of minimal volume that effectively encapsulates our
phenotype dataset3? (Fig. 1, bottom panel). We conceptualize
archetypes as the naive and evolved states of plausible adaptive
trajectories and predict both the optimal number of archetypes
and their distinct phenotypic profiles. We illustrate the AA by the
2D projection of our multi-trait model via a simplex plot, as
shown in Fig. 3¢33.

With the GAMMs, we want to predict whether a given
phenotype (the predicted variable) significantly correlates with
other phenotypes or time (the explanatory variables). To do this
we need to account for the effects of patient-specific environ-
ments and the effect of sampling time, while fitting trend lines for
each trait (Fig. 1, bottom panel). This is done by fitting patient
and time as random effects; we reduce the risk of overfitting by
using a penalized regression spline approach with smoothing
optimization via restricted maximum likelihood (REML)34. To
avoid assumptions of cause-and-effect between our variables, we
permute through different one-to-one models of all phenotypes,

and then reduce our models by combining only the statistically
significant individual phenotypes into a multi-variable model. We
further remove any phenotype that loses significance in the multi-
variable model, assuming that it is correlated with a more
impactful phenotype. From this point, all mentions of significance
are obtained from the GAMM analyses with p-values < 0.01 based
on Wald-type tests as described in3+3°, unless otherwise stated.

Revealing multi-trait adaptation on a cross-patient scale. AA
predicted six distinctive archetypes sufficient to describe each
isolate within the evolutionary landscape of 5 continuous traits as
shown in Fig. 3a. We use only growth rate in ASM due to its
correlation with growth rate in LB (Fig. 3d). The simplex plot of
Fig. 3c highlights the standout features of each archetype by
annotating according to the highest or lowest values for each
phenotype across all archetype trait profiles (Fig. 3b). This sim-
plex key illustrates that two archetypes resembled naive and un-
evolved isolates with fast growth, antibiotic susceptibility, and low
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Fig. 3 AA and GAMM models. We present a summary of the models underpinning our study of pathogen adaptation. a Screeplot showing the average
residual sum of squares (RSS) for 25 iterations of each fit of a given number of archetypes. The “elbow” of the plot indicates that six archetypes are
sufficient to model our dataset. b Characteristic trait profiles describing the five distinct phenotype levels that each of our 6 archetypes represents. We use
the following abbreviations to represent our normalized data: grASM for growth rate in ASM, agg for aggregation, adh for adhesion, azt for aztreonam
susceptibility, and cip for ciprofloxacin susceptibility. € Simplex plot of the AA showing the six archetypes (A1-A6) sorted by their characteristic growth
rate (A3 and A5 vs A2 and A6), decreased sensitivity towards ciprofloxacin (AT and A6), and increased aggregation and adhesion (A2 and A4). All further
simplex visualizations are also sorted accordingly and can be interpreted using this key, which is annotated with the extreme phenotype values for each
archetype. The complete analysis can be found in Supplementary Note 1. d P-values for GAMM models with multiple explanatory variables (columns) for
the six predictor variables (rows) after model reduction. P-values are only shown for explanatory variables that showed a significant (p-value<0.01, GAMM
with Wald-type tests) impact on the predictor in question. The complete analysis can be found in Supplementary Note 2

adherence (Archetype A3 and A5), while two others accounted
for slow-growing evolved archetypes (A2 and A6), in accordance
with the accepted paradigm!%27. A substantial portion of isolates
in our study resemble the naive archetypes more closely than the
evolved archetypes as indicated by their localization in the sim-
plex plot (Fig. 3c, most isolates cluster on the left near the naive
archetypes). This aligns with the infection stage of the patients
included in this study. Importantly, we also find two regions in
the simplex visualization which represent different focal points of
adaptation: (1) an increase in adherence (A2 and A4) and (2)
ciprofloxacin resistance (Al and A6).

We also built a GAMM for each of our six continuous
phenotypes to identify whether any of the other traits and time
influenced it significantly across our patient cohort (Fig. 3d).
First, we found that patient background had a significant impact
on all predicted variables (p <0.01, GAMM based on Wald-type
tests), underlining the importance of accounting for the

environment and partially the genetic background of the lineages.
When evaluating adaptation of the specific phenotypes, we found
that the colonization time had a significant impact on both
growth rate and sensitivity to ciprofloxacin but did not
significantly influence sensitivity to aztreonam (Figs. 3c and 4a,
b), which is a reflection of the current treatment regimen of the
patients with regular administration of ciprofloxacin but not
aztreonam!6-36,

Phenotypic trends contrast with CF paradigms. An important
distinction between AA and GAMMs is that many isolates clearly
cluster in AA according to phenotypes whose adaptation is not
significantly influenced by time of colonization as shown by
GAMMs. This contrast shows the importance of combining these
approaches to understand our data. As an example, the biofilm-
related metric of mucoidity does not significantly correlate with
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lineage. Hypermutators are marked by purple triangles

any other measured phenotype. Furthermore, neither adhesion
nor aggregation correlates with colonization time for this popu-
lation of young patients, though we see selection for adherence in
a few specific patients via AA. That this is not a major trend in
our data is surprising when we consider that a biofilm lifestyle is
expected to be beneficial to persistence in chronically-infected
patients®37-3%, Together, these results prompt further reassess-
ment of common assumptions regarding the evolutionary
objectives of P. aeruginosa in CF infections.

Initial adaptation happens within 3 years of colonization. We
find that the routes to successful persistence and a transition to
chronic infection are initiated early in infection!®40, The
GAMMs indicate that a substantial change occurs in both growth
rate and ciprofloxacin susceptibility during the first 2-3 years
(5256-7884 bacterial generations®) of colonization as shown by
the trendline slopes in this period (Fig. 4a, b). Using AA, we also
see a substantial shift from naive towards evolved archetypes as
shown by the broad distribution of isolates reaching the outer
simplex boundaries by year 3 (Fig. 4c), further confirming the
rapid adaptation shown by the GAMMs. While the first isolate of

each patient in our collection may not represent the true start of
adaptation given sampling limitations, the window of rapid
adaptation is still likely substantially contracted compared to the
previous estimate of within 42,000 generations®.

Interestingly, the four hypermutator isolates arising in the early
adaptation window do not alone define the AA boundary,
indicating that the acquisition of a high number of mutations
does not explain all extreme phenotypes (Fig. 4d, full dataset in
Supplementary Figure 1). To further evaluate parallels between
phenotypic and genetic adaptation, we investigated the accumu-
lation of nonsynonymous mutations in coordination with
archetypal relationships (Fig. 4d, e). We used the isolates
representing the first P. aeruginosa culture from a patient as the
reference point for identification of accumulating mutations. We
observed that most of the first isolates with 0-30 mutations
aligned with naive archetypes, and 2-3-year-old isolates with
9-48 mutations extended to the outer boundaries of adaptation
(A2, A6, and A1) (Fig. 4¢, d). We also observed the persistence of
WT-like genotypes with few mutations alongside evolved
genotypes (Fig. 4d). Thus, we find discordant molecular and
phenotypic adaptation from a multi-trait perspective.
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The dN/dS ratio of all lineages with greater than 3 years
colonization time ranged from 0.14 to 1.08 with an average of
0.54, indicating the dominance of negative selection (69% of
lineages with a probability of neutral selection <0.05, see
Supplementary Data 2). When analyzing the entire dataset using
GAMMs, we found a significant, near-linear relationship between
colonization time and the number of nonsynonymous SNPs
(Fig. 4e). However, accumulation of all nonsynonymous muta-
tions appears logarithmic with accumulation slowing after 2
years; when we plot accumulation of indels alone, we see the
likely driver of the logarithmic trend. When combined with the
discordance found by AA, these findings support the theory that
select beneficial mutations (for example, a highly impactful indel)
can alone induce important phenotypic changes that improve
fitness*!. However, the likelihood of beneficial mutations
presumably decreases over time as theorized previously*? and
other methods of adaptation also contribute, such as acclimation
to the CF lung environment via gene expression changes*344.

AA enables complex genotype-phenotype associations. The
obscuring of genotype-phenotype links via polygenic effects and
the possible pleiotropic effects of single mutations is difficult
to resolve, especially when working with complex traits. However,
using our multi-dimensional perspective, we mapped a subset
of 52 previously identified pathoadaptive genes—genes mutated
more often than expected from genetic drift and thus assumed
to confer an adaptive advantage during infection!®%. By over-
laying nonsynonymous mutations on AA simplex plots, we
evaluated the impact of mutation of the following pathoadaptive
genes: (1) mexZ (the most frequently mutated gene) and other
repressors of drug efflux pumps (nfxB and nalD), (2) mucoidity
regulators mucA and algU and the hypothesized infection-
state switching retS/gacAS/rsmA regulatory pathway previously
examined from a genetic adaptation perspectivel®4, and
(3) ciprofloxacin resistance genes gyrA and gyrB-49. Isolates
with mexZ mutations are broadly distributed by AA, so we
analyzed mexZ mutants in combination with other pump
repressor gene mutations. Even double-mutant isolates (grouped
by efflux pump associations) showed diverse phenotypes via
AA, though we noted a unique distribution of the many
isolates impacted by a mutation in nfxB (Supplementary Figure 3,
Fig. 5b). We saw no obvious spatial correlations with mutations
linked to mucoidity regulation via AA (Supplementary Figure 2),
paralleling mucoidity’s lack of significance in our GAMM
analyses. However, the isolate distributions of retS/gacAS/rsmA
and gyrA/B mutants were striking in their spatial segregation
(Fig. 5a, b).

Differential evolutionary potential via resistance mechanisms.
The primary drivers of ciprofloxacin resistance in P. aeruginosa
are theorized to be mutations in drug efflux pump repressor nfxB
and the gyrase subunits gyrA and gyrB of the DNA replication
system*’~4%. We would therefore expect isolates with mutations
in these genes to cluster around archetypes Al and A6 char-
acterized by high ciprofloxacin minimal inhibitory concentrations
(MICs) (Fig. 3c). However, AA illustrates a broad distribution
of gyrA/B mutants among archetypes, and a contrasting
narrow distribution of nfxB mutants (Fig. 5a, b, left panel). In
association, we see a range of ciprofloxacin resistance levels
associated with affected isolates both across and within patient
lineages, and no dominant mutations/mutated regions repeating
across lineages (Fig. 5a, b, right panel). The incidence of resis-
tance was equal at 78% of affected isolates (54 out of 69 resistant
gyrase mutants vs. 37 out of 47 resistant nfxB mutants based on
the European Committee on Antimicrobial Susceptibility Testing

(EUCAST) breakpoint). However, the persistence of these
respective mutations in affected lineages was dissimilar. Gen-
erally, nfxB mutation occurred earlier in lineage evolution and
persisted in fewer lineages compared to gyrA/B mutations. This
likely contributes to nfxB’s distinctive band-like distribution via
AA which suggests an evolutionary restriction associated with
sustaining the mutation.

Interestingly, we noted that isolates with a gyrB mutation (22
isolates alone or 14 in concert with gyrA mutation) are
concentrated closer to biofilm-linked archetypes A2 and A4 than
isolates with only a gyrA mutation (33 isolates). To our
knowledge, there is no direct relationship between gyrB and the
capability to adhere®. This positive association of gyrB on
adhesion was confirmed by GAMM, but when we moved the two
SNPs affecting the most isolates in both gyrA and gyrB (2 lineages
each, Supplementary Figure 4) into lab strain P. aeruginosa
PAO1, we did not find the same association (Supplementary
Figure 5) (p-values>0.05, ANOVA with Tukey correction, F
(4,10) = 0.233). Furthermore, one gyrA (G259A MIC: 0.5) and
one gyrB (G1405T MIC: 0.5) mutant strain showed resistance
towards ciprofloxacin, while PAO1 (MIC: 0.064) and the others
did not (gyrA-C248T MIC: 0.25 and gyrB-C1397T MIC: 0.19),
compared to the EUCAST breakpoint of 0.5. We then looked for
co-occurring mutations in biofilm-linked genes in the gyrB-
mutated lineages; for all but one lineage, there was no obvious
explanation for increased adhesion. Ultimately, this association
underlines the impact that genetic background and the multi-
genetic signature of biofilm regulation can have on the
identification of links between genotype and phenotype.

Infection trajectory reversal via a regulatory switch. The func-
tional model of the retS/gacA/gacS/rsmA regulatory system is
theorized to be a bimodal switch between acute and chronic
infection phenotypes?®°1. Posttranscriptional regulator rsmA
activates an acute infection phenotype characterized by plank-
tonic growth and inhibits a non-motile biofilm lifestyle. retS
mutants are preserved in many lineages because they repress
rsmA via the gacA/S two-component system, promoting a chronic
infection phenotype. However, our previous genetic analysis!®
unexpectedly showed that multiple evolving lineages gained a
subsequent mutation in gacA/S that often appeared years after the
retS mutation. Despite the complexity of this regulatory system,
we show a clear phenotypic separation between clinical isolates
that are retS mutants versus retS + gacA/S mutants via our AA
model (Fig. 5¢, left panel). In this study, three of six patients with
nonsynonymous mutations in this system have isolates which are
retS + gacA/S double mutants (Fig. 5c, right panel). While retS
mutants resemble the evolved archetypes (A1-2 and A6), all but
one double-mutant cluster around the naive archetypes (A3-A5).
According to patient-specific trajectories, this reversion happens
after an initial migration towards evolved archetypes. Because of
the limited isolates and patients affected, we did not follow up
with additional GAMM analyses of the effect of these mutations
on different phenotypes.

This unexpected phenotypic reversion to an acute infection
state does not easily reconcile with theories about persistence via
convergence towards a chronic phenotype. However, over time
some patients are colonized by new clone types and/or other
pathogens; this could require re-establishment of a colonization
mid-infection and thus induce the population to revert towards
an acute infection state where fast growth and motility improve
its ability to compete.

Infections persist via distinct routes of adaptation. Given
the above insights from lineage-based analysis, we further
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Fig. 5 Mechanistic links, gyrA/gyrB/nfxB and retS/gacAS/rsmA. We use AA to illustrate phenotypic separation by isolates affected by distinct mutations in
ciprofloxacin resistance genes gyrA, gyrB, and nfxB and the retS/gacAS/rsmA regulatory system. (a, b, left panel) As visualized by AA simplex plots, the
diversity of trait profiles associated with isolates with mutations in DNA gyrase (gyrA/B) is in stark contrast to the constrained band of nfxB-mutated
isolates. Mutations in DNA gyrase and nfxB do not co-occur in the same isolate but co-occur in different isolates of two lineages (patient P8804, genotype
DKO8 and patient P8203, genotype DK32). The differences in time of appearance during the colonization period and persistence of gyrA/B mutant isolates
versus nfxB mutant isolates is shown in the lineage timelines plotted in the right column for gyrA/B (a, right panel) versus nfxB (b, right panel).
Furthermore, gyrB-mutated isolates cluster more closely with A2 and A4 than gyrA mutated isolates, indicating a potential association with adhesion;
GAMM predicts that gyrB mutation has a significant impact on adhesion (p-value « 0.01, GAMM with Wald-type tests). (¢, left panel) Mutations in the
retS/gacAS/rsmA system show a clear phenotypic change when retS is mutated alone (blue circles) or in combination with gacA or gacS (red squares and
circles). The associated lineage plot (¢, right panel) shows the appearance of double mutations (retS + gacA/S) after a colonization period by retS mutated
isolates in three patient lineages. (a/b/c - lineage plot notation) Multiple isolates may be collected at the same sampling date based on differences in
colony morphology or collected from different sinuses at sinus surgery, which explains the vertical overlap of isolates for some lineages. Lineage length is
based on the span of time for which we have collected isolates and is indicated by gray bracketed lines, with only isolates affected by a mutation of the
gene of interest plotted using shape and color (see legend of simplex plots). If multiple unique mutations occur in a lineage, this is specified by differential
shading. (a/b only) Symbol size indicates the level of resistance to ciprofloxacin

investigate lineage influences by mapping patient-specific adap-
tive trajectories. We find three overarching modes of evolution
that P. aeruginosa can utilize to persist successfully in individual
patients: (1) convergent evolution, (2) directed diversity or (3)
general diversity. Figure 6a, d shows examples of adapting
lineages employing these modes. We see rapid convergent evo-
lution towards a single archetypal endpoint (A3/A5 towards A1)
of ciprofloxacin resistance in patient P5304 (Fig. 6a). Diverse
isolates appear to move across the same general plane of multiple
archetypal endpoints (A3/A4 towards A2/A6) towards increased
adhesion and aggregation in patient P4104 (Fig. 6b), which we
term “directed diversity”. No directionality is apparent in the

diverse isolates of the trajectory of patient P0804 (Fig. 6¢), which
we term “general diversity”. In the complex trajectory of patient
P1404 (Fig. 6d), the genotypic distinction of the young isolate
near A4 indicates that the persisting sublineage initiates with the
isolate near A3, after which it gains a gyrB mutation guiding the
trajectory towards ciprofloxacin resistant Al. This mutation is
retained during the subsequent shift towards A2, characterized by
increased adherence and decreased sensitivity to aztreonam.
These results illustrate the diverse adaptive trajectories followed
by P. aeruginosa in our patient cohort, which connect distinct
start and endpoints of adaptation yet enable equally lengthy
periods of persistent colonization.
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Fig. 6 Evolutionary trajectories guided by different adaptation objectives.
We present four different trajectories showing modes of evolution found in
multiple patients: a Convergent evolution driven primarily by changes of a
single phenotypic trait (decreased ciprofloxacin sensitivity). b Directed
diversity with early/naive isolates showing a population moving in a broad
and diverse plane from naive archetypes towards evolved archetypes.

c General diversity where the population has no clear evolutionary
trajectory. d A special case of convergent evolution with one outlier isolate
(isolate 96 of DK12) but an otherwise clear trajectory first towards
ciprofloxacin resistance and afterwards a gain in adhesive capabilities

Here, we draw specific examples from patients with high
sampling resolution and at least 3 years of infection within our
cohort, but to capture the full spectrum of evolutionary
trajectories and the incidence of different evolutionary modes
will require more uniform cross-cohort sampling that also
addresses population dynamics as well as the inclusion of more
patients. With these expansions, we theorize that distinctive
evolutionary trajectories will correlate with infection persistence
and patient outcomes.

Discussion
Complex mutation patterns are an inherent byproduct of evolu-
tion driven by both genetic drift and selection, and result in
equally complex adaptive trajectories that lead to persistence.
Phenotype represents the cumulative systems-level impacts of
these mutation patterns. We therefore emphasize the value of
classical phenotype-based investigations as a highly relevant
complement to genomics approaches. By integrating these per-
spectives via our statistical modeling framework, it is possible to
identify consistent pan-cohort trends while illuminating complex
patient-specific patterns and their genetic drivers. This approach
could also be valuable in assessing evolution-based scenarios such
as interpretation of laboratory evolution experiments, investiga-
tions of long-term microbiome fluctuations and studies of evol-
ving clonal populations in other natural environments.

We identify signatures of adaptation that, when compared
with prior studies, contrast current paradigms of beneficial
adaptive phenotypes!®17:26:27_ We achieve this via our approach

of tractable high-throughput in vitro assays despite our inability
to replicate in vivo conditions (especially at this scale). As an
example, mucoidity is used as an important biomarker of chronic
infection in the Copenhagen CF Centre2. However, in this study,
we do not identify any correlation with other measured pheno-
types. We hypothesize that the rate of adaptation and relative
benefit of this phenotype may vary significantly and be sensitive
to temporal stresses such as antibiotic treatment. In support of
our findings, others have recently shown that the longitudinal
relationship between mucoidity and a clinical diagnosis of
chronic infection is not as direct as previously expected>3. We do
see an expected decrease in growth rate and development of
ciprofloxacin resistance, but it is characterized by an initial period
of surprisingly rapid adaptation (approximately 5256-7884 bac-
terial generations?®) contrasting with prior estimates for CF
adaptation (~42,000 generations®). In fact, our observations align
more with those from laboratory evolution experiments such as
Lenski’s long-term Escherichia coli evolution, where an initial
phase of rapid fitness improvement was measured before 10,000
generations”8. Our timeline of P. aeruginosa adaptation to the CF
airways provides a valuable estimate of a narrow treatment
window based on analysis at high temporal resolution, which
aligns with the early aggressive antibiotic therapy used in the
Rigshospitalet CF Centre>°.

While specific traits show cross-patient convergence (growth
rate and ciprofloxacin resistance), we highlight remarkable
diversity both within and across patients. In addition to con-
vergent and directed evolution, we thus emphasize the main-
tenance of general diversity as a useful evolutionary mode of
persistence as supported by prior observations of resilience in
diverse populations®*->6. The fact that we are only working with
single isolates means that our findings may be partly obscured by
subpopulation diversity and we are likely only observing the
major changes as also suggested in Sommer et al. (2016)%°. Due to
the structure of our data, which includes both transient lineages
and persisting lineages and irregular sampling constrained by
patient infection state, we have likely undersampled the bacterial
population in many patients. With further sampling, some
patients currently grouped within the ‘diverse’ evolutionary
mode could ultimately exhibit more directed evolution. However,
we expect general diversity to be preserved in some patients as
there is prior evidence of both diversity!!:12 and convergence!? of
phenotypes in CF infections. Among our patient-specific trajec-
tories, we also find varying routes within these categories of
evolution that enable the successful persistence of different
patient lineages. We provide a quantitative approach to mon-
itoring infection state via patient-specific trajectories, which can
offer important insights into bacterial response to treatment. We
aim to eventually class patients within a broader archetype model
structured according to the extreme phenotypes and archetypal
states of chronic isolates, which will allow relative grading of
infection progression in visualizations accessible to clinicians.
Incorporating records of patient treatment and response to our
assessment of adaptive trajectories may further advance precision
medicine in clinical microbiology.

Our study underlines the necessity of a multi-trait perspective, as
individual mutations may have pleiotropic effects and obscure
genetic signatures while accumulating over time!®. Our genotype-
phenotype associations support the theory that specific mutations
confer unique evolutionary restrictions to adaptive trajectories;
these restrictions impact the fixation of other mutations or adap-
tation of other traits, but genetic background and host-specific
evolutionary pressures influence the type and degree of restriction®.
By mapping phenotypic trajectories, we can identify both under-
pinning genetic changes and complex trait adaptations that signal
the impact of selection pressures on individual infections.
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Methods

The isolate collection. The current isolate library is comprised of 443 long-
itudinally collected single P. aeruginosa isolates distributed within 52 clone types
collected from 39 young CF patients treated at the Copenhagen CF Centre at
Rigshospitalet (median age at first P. aeruginosa isolate = 8.1 years, range =
1.4-24.1 years, median coverage of colonization: 4.6 years, range: 0.2-10.2 years).
This collection is a complement to and phenotypic extension of the collection
previously published!® and captures the period of initial rapid adaptation’?, with
389 isolates of the previously published collection included here in addition to 54
new isolates. To build a homogeneous collection for our study of evolution, we
excluded two patients with a sustained multi-clonal infection. For the GAMM
analysis, we excluded isolates belonging to clone types present in a patient at two or
fewer time-points, unless the two time-points were sampled more than 6 months
apart. The isolates not included in the previous study have been clone typed as a
routine step at the Department of Clinical Microbiology at Rigshospitalet in order
to confirm lineage association (variants have not been called). This clone type
identification was performed in short by aligning de novo assemblies and
demarcating clone types by >10,000 differential SNPs!, and the sequencing was
carried out as follows: DNA was purified from over-night liquid cultures of single
colonies using the DNEasy Blood and Tissue Kit (Qiagen), libraries were made
with Nextera XT and sequenced on an Illumina MiSeq using the v2 250 x 2 kit. The
dN/dS ratio was calculated assuming that a nonsynonymous change is three times
more likely than a synonymous change. The probability of neutral selection was
calculated based on a cumulative binomial distribution probability. All variants
assessed in this analysis were previously called and published in Marvig et al.!°.

Ethics approval and consent to participate. The local ethics committee at the
Capital Region of Denmark (Region Hovedstaden) approved the use of the stored
P. aeruginosa isolates: registration number H-4-2015-FSP. All patients have con-
sented to study of their bacterial samples under the supervision of the Copenhagen
CF Center. For patients below 18 years of age, informed consent was obtained from
their parents. The study was carried out in accordance with the approved guide-
lines and the University Hospital Rigshospitalet approved the experimental
protocol.

Phenotypic characterizations. For all phenotypes except the antibiotic MIC tests,
phenotypic analysis was carried out by replicating from a 96 well plate pre-frozen
with overnight cultures diluted with 50% glycerol at a ratio of 1:1 and four tech-
nical replicates were produced for each isolate. We acknowledge that hypermuta-
tors are not a true in vitro measured phenotype, as this characteristic is defined
only by the non-synonymous mutation of either mutS or mutL, both initiator
proteins of the mismatch repair system of P. aeruginosa, which is linked to an
increased number of mutations in our collection!®.

Phenotypic characterizations—growth rate. Isolates were re-grown from frozen
in 96 well plates in 150 pl media (LB or ASM%7) and incubated for 20 hours at 37 °C
with ODg30nm measurements every 20 minutes on an ELISA reader. Microtiter
plates were constantly shaken at 150 rpm. LB growth rates were first assessed by
manual fitting of a line to the exponential phase of the growth curve. This dataset
was then used to confirm the accuracy of R code that calculated the fastest growth
rate from each growth curve using a sliding window approach where a line was fit
to a 3-9 timepoint interval based on the level of noise in the entire curve (higher
levels of noise triggered a larger window to smooth the fit). To develop an auto-
mated method of analyzing the ASM growth curves, which are much more noisy
and irregular than the LB growth curves across the collection, we used standardized
metrics for identifying problematic curves that we then also evaluated visually.
Curves with a maximum OD increase of <0.05 were discarded as non-growing.
Curves with linear fits with an R? of <0.7 were discarded as non-analyzable, and a
small number of outlier curves (defined as curves analyzed for growth rates of 1.5
times the mean strain growth rate) were also discarded. Examples of our analyzed
curves are shown in Supplementary Figure 6 and all visualizations are available
upon request.

Phenotypic characterizations—adherence measures. The ability to form biofilm
is a complex trait that is impacted by multiple factors, such as the production of
polysaccharides, motility and the ability to adhere®®-%, In this study, we have
measured adhesion to peg-lids and estimated the ability to make aggregates. Both
traits have been linked with an isolate’s ability to make biofilm®!:62, Because of this,
we are using these two measures as an estimate of our isolates’ ability to make
biofilm. However, because we are aware of the complexity of the actual biofilm-
forming phenotype, we have chosen to refer to this adhesion/aggregation pheno-
type as “adherence” and not biofilm formation.

Adhesion was estimated by measuring attachment to NUNC peg lids. Isolates
were re-grown in 96 well plates with 150 ul medium where peg lids were used
instead of the standard plate lids. The isolates were incubated for 20 h at 37 °C,
after which ODggonm Was measured and subsequently, the peg lids were washed in a
washing microtiter plate with 180 ul PBS to remove non-adhering cells. The peg
lids were then transferred to a microtiter plate containing 160 ul 0.01% crystal
violet (CV) and left to stain for 15 minutes. The lids were then washed again three

times in three individual washing microtiter plates with 180 ul PBS to remove
unbound crystal violet. To measure the adhesion, the peg lids were transferred to a
microtiter plate containing 180 ul 99% ethanol, causing the adhering CV stained
cells to detach from the peg lid. This final plate was used for measurements using
an ELISA reader, measuring the CV density at ODsgonm. (Microtiter plates were
bought at Fisher Scientific, NUNC Cat no. 167008, peg lids cat no. 445497).

Aggregation in each well was first screened by visual inspection of wells during
growth assays in ASM and by evaluation of noise in the growth curves, resulting in
a binary metric of aggregating versus non-aggregating. However, to incorporate
this trait in our AA, we needed to develop a continuous metric of aggregation.
Based on the above manual assessment, we developed a metric based on the
average noise of each strain’s growth curves. While we tested several different
metrics based on curve variance, the metric that seemed to delineate isolates
according to the binary aggregation measure most successfully was based on a sum
of the amount of every decrease in OD that was followed by a recovery at the next
time point (versus the expected increase in exponential phase and flatline in
stationary phase). This value was normalized by the increase in OD across the
whole growth curve, to ensure that significant, irregular swings stood out with
respect to overall growth. This metric therefore specifically accounts for fluctuation
—both a limited number of large fluctuations in ODg30nm (often seen during
stationary phase) as well as smaller but significant fluctuations across the entire
curve (ie., sustained irregular growth). While an imperfect assay of aggregation
compared to available experimental methods®?, this high-throughput aggregation
estimate showed a significant relationship with adhesion when analyzed with
GAMMs (Fig. 3d), supporting its potential as a measure of adherence-linked
behavior. We show examples of the measurement and comparison with binary
aggregation data in Supplementary Figures 6-7.

Phenotypic characterizations—protease production. Protease activity was
determined using 20 x 20 cm squared LB plates supplemented with 1.5% skim milk.
From a master microtitre plate, cells were spotted onto the square plate using a 96
well replicator. Colonies were allowed to grow for 48 h at 37°C before protease
activity, showing as a clearing zone in the agar, was read as presence/absence.

Phenotypic characterizations—mucoidity. Mucoidity was determined using 20 x
20 cm squared LB plates supplemented with 25 pg/ml ampicillin. From a master
microtitre plate, cells were spotted onto the square plate using a 96 well replicator.
Colonies were allowed to grow for 48 h at 37 °C before microscopy of colony
morphologies using a 1.25x air Leica objective. By this visual inspection, it was
determined if a colony was mucoid or non-mucoid.

Phenotypic characterizations—MIC determination. MICs were determined

for ciprofloxacin and aztreonam by E-tests where a suspension of each isolate
(0.5 McFarland standard) was inoculated on 14 cm-diameter Mueller-Hinton agar
plates (State Serum Institute, Hillered, Denmark), where after MIC E-Test Strips
were placed on the plate in accordance with the manufacturer’s instructions
(Liofilchem®, Italy). The antimicrobial concentrations of the E-tests were
0.016-256 pug/ml for aztreonam and 0.002-32 ug/ml for ciprofloxacin.

Phylogenetic reconstruction. Phylogenetic analysis was done using the program
MEGA (v. 7.0.26)%* to produce a maximum likelihood phylogeny with 1000
bootstraps of concatenated SNPs of the DK19 clone type as previously identified in
Marvig et al. (2015)!6. The tree presented in Fig. 2a is the tree with the highest log
likelihood and bootstrap values >= 50 indicated by white triangles.

Construction of gyrA/B mutants. Four P. aeruginosa PAO1 mutants carrying
point mutations in gyrA and gyrB were constructed: PAO1:gyrAG2594A, PAOL:
gyrAC48T PAQ1:gyrBC1397T and PAO1:gyrBG1405T, A recombineering protocol
optimized for Pseudomonas was adapted from Ricaurte et al. (2017)6°. A

PAOI strain carrying a pSEVA658-ssr plasmid®® expressing the recombinase ssr
was grown to exponential phase with 250 rpm shaking at 37 °C. Bacteria were then
induced with 3-methylbenzoate and electroporated with recombineering oligonu-
cleotides. Cells were inoculated in 5 ml of glycerol-free Terrific Broth (TB) and
allowed to recover overnight at 37 °C with shaking. CipR colonies were identified
after streaking on a Cip-LB plate (0.25 mgL~!) and sent for sequencing after
colony PCR.

Each recombineering oligonucleotide contained 45 base pair homology regions
flanking the nucleotide to be edited. Oligonucleotides were designed to bind to the
lagging strand of the replichore of both genes and to introduce the mismatch in
each mutation: G259A and C248T in gyrA, and C1937T and G1405T in gyrB,
respectively. The recombineering primers used are the following:

Rec_gyrA_G259A -

G*C*ATGTAGCGCAGCGAGAACGGCTGCGCCATGCGCACGATGG
TGTtGTAGACCGCGGTGTCGCCGTGCGGGTGGTACTTACCGATCACG*T*C

Rec_gyrA_C248T -

A*G*CGAGAACGGCTGCGCCATGCGCACGATGGTGTCGTAGACCGCGa
TGTCGCCGTGCGGGTGGTACTTACCGATCACGTCGCCGACCAC*A*C

Rec_gyrB_C1397T -
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C*C*GATGCCACAGCCCAGGGCGGTGATCAGCGTACCGACCTCCTGGa
AGGAGAGCATCTTGTCGAAGCGCGCCTTTTCGACGTTGAGGAT*C*T

Rec_gyrB_G1405T -

C*C*TCGCGGCCGATGCCACAGCCCAGGGCGGTGATCAGCGTACCGAa
CTCCTGGGAGGAGAGCATCTTGTCGAAGCGCGCCTTTTCGACG*T*T

Modeling of phenotypic evolution. To identify patterns of phenotypic adaptation
while limiting necessary model assumptions that might bias our predictions, we
chose to implement GAMMs, where the assumptions are that functions are
additive and the components are smooth. These models allow us to account for
patient-specific effects, thereby enabling us to identify trends in phenotypic
adaptation across different genetic lineages and different host environments.
Furthermore, to be able to simultaneously assess multiple phenotypes of each
isolate from a systems perspective, we implemented AA, where each isolate is
mapped according to its similarity to extremes, or archetypes, fitted on the
boundaries of the multi-dimensional phenotypic space. This modeling approach
allows us to predict the number and characteristics of these archetypes and fur-
thermore identify distinctive evolutionary trajectories that emerge from long-
itudinal analysis of fitted isolates for each patient.

For all analyses, the time of infection is defined within each lineage as the time
since the clone type of interest was first discovered in the patient in question. This
is biased in the sense that the time since colonization can only be calculated from
the first sequenced isolate of a patient. However, we have collected and sequenced
the first isolate that has ever been cultured in the clinic for 20 out of the 39 patients.

Normalization of phenotypic values were carried out the following way for both
AA and GAMM: ciprofloxacin and aztreonam MICs were normalized by dividing
the raw MICs with the breakpoint values from EUCAST: ciprofloxacin breakpoint
value: > 0.5 ug/ml, aztreonam breakpoint value: >16 ug/ml (EUCAST update 13
March 2017). This results in values above one equaling resistance and equal to or
below one equaling sensitivity. The response and the explanatory variables were
log2 transformed to get a better model fit for ciprofloxacin MIC, aztreonam MIC,
Adhesion, and Aggregation. For the AA, Adhesion, Aggregation and growth rate in
ASM was further normalized (before log2 transformation) by scaling the values by
the values of the laboratory strain P. aeruginosa PAO1 such that zero was
equivalent to the PAO1 phenotype measurement or the EUCAST MIC breakpoint.
PAO1 was chosen to be the reference point of wild type phenotypes.

Because the mutations identified in our collection are based on our previous
study!® where mutations were called within the different clone types, we added a
second filtering step to identify mutation accumulation within patients. The second
filtering step removed mutations present in all isolates of a lineage (a clone type
within a specific patient) from the analysis. Isolates without called variants (54 new
isolates) were removed from all variant-reliant analyses.

All statistics were carried out in R7 (version 3.4.0) using the packages mgcv©8:69
(version 1.8-18) for the GAMM analysis and archetype3370:71 (version 2.2) for the
AA. Complementary packages used for analysis are: tidyverse’? (version 1.1.1),
itsadug’? (version 2.3), ggthemes’* (version 3.4.0), knitr’> (version 1.16) and
kableExtra’® (version 0.6.1). We also referred to Thegersen et al. 30 and Fernandez
et al. 77 in the design of appropriate assessment methods for the final AA model.
We include two R markdown documents that explain our modeling steps and
further evaluation plots in detail (AA: Supplementary Note 1, GAMM:
Supplementary Note 2), and summarize our methods below in brief.

Data modeling—AA. We evaluated several different model fitting approaches by
varying the number and type of phenotypes modeled as well as the archetype
number and fit method, using RSS-based screeplots of stepped fits of differing
archetype numbers, explained sample variance (ESV), isolate distribution among
archetypes, convex hull projections of paired phenotypes (all combinations), and
parallel coordinate plots as metrics for choosing the best fit parameters and
approach to accurately represent our data. Ultimately, we focused on 5 continuous
phenotypes correlated with growth (growth rate in ASM), biofilm (adhesion

and aggregation), and antibiotic resistance (aztreonam and ciprofloxacin MICs),
which also were linked to relevant findings provided by the GAMM models.

We used a root sum squared (RSS) versus archetype number screeplot of different
fits to determine that a 6 archetype fit would produce the optimal model for

this dataset.

We then performed 500 simulations of a 100 iteration fit using the
robustArchetypes method’!, which reduces the impact of data outliers in fitting the
convex hull of the data. We evaluated the mean ESV and the number of isolates with
an ESV greater than 80% for the best model from each simulation in this study and
differences in archetype characteristics to assess convergence, ultimately selecting the
model with the second highest mean ESV (90.32%) and highest number of isolates
with an ESV over 80% (87.13%); this model also closely resembled the other 10 top
models of the simulation study. The order of archetypes around the simplex plot
boundary obscures the true dimensionality of the isolate distribution by implying the
archetypes are equidistant, so relationships between phenotypes are not always
obvious. We re-ordered the archetypes in the simplex plot by growth rate and
secondarily antibiotic resistance to improve clarity in the complex 6 archetype plot.
This reordering was also justified when projecting the archetypes onto a PCA plot of
the phenotypes (Supplementary Note 1). All simplex plots have also had the 11 isolates

with an ESV < 50% removed such that we are not drawing any conclusions from these
poorly fit data (they are shown via simplex plot in the Supplementary Note 1).

Data modeling—GAMMs. For all phenotypes, GAMMs were used to identify
evolutionary trends over time since first colonization. We correct for the patient
environment and inconsistent sampling over time using a smooth random factor.
Models were fitted in the following way: All continuously measured phenotypes
included in the AA were fitted as a response variable (predicted or dependent
variable in Fig. 3d) one-to-one, with both time as an explanatory or independent
variable alone and combined with each of the phenotypes to account for potential
time-dependence of the observations. Factorial/binary phenotypes were imple-
mented as categorical functions and continuous phenotypes as smooth functions,
allowing for non-parametric fits. Normally only one variable/phenotype of interest
is used as the predictor while other alterable variables or factors are used as
explanatory variables to explain or predict changes in the predictor. However, this
requires a preconceived idea of a one-way-relationship where one variable (the
predictor) is assumed to be affected by certain other variables (the explanatory
variables), but where the explanatory variables cannot be affected by the predictor.
By testing all phenotypes against each other, we avoid assumptions regarding the
specific direction of relationships between the predictor variable and the expla-
natory variable. Furthermore, in using the GAMM:s we prioritize accuracy of fitting
but increase our risk of overfitting as a byproduct. We sought to counteract the risk
of overfitting by the default penalization of fits inherent to the method used®%:6?
and by model estimation via REML which has been found to be more robust
against overfitting>»%°. When significant relationships were identified in one-to-
one models (p-value < 0.05, as based on Wald-type tests343%), all significant
explanatory variables were used to build a multi-trait model for the associated
predictor. If select explanatory phenotypes were then identified as non-significant
(p-value > 0.05) in the multi-trait model, they would be removed in a reduction
step. To identify whether a reduced multi-trait model resulted in a better fit than
the initial multi-trait model, a Chi-square test was carried out on the models using
the compareML function of the R package itsadug’? (Fig. 3d). The specific models
and additional information can be found in Supplementary Note 2.

In demonstration of the utility of this approach, the multi-trait models of our
five primary predictor phenotypes show that at least one explanatory phenotype
has a statistically significant impact on the predictor phenotype. For all of the
predictor phenotypes, multiple explanatory traits preserved significant impacts
after model reduction steps (Fig. 3d and Supplementary Note 2). All mentions of
significant relationships or correlations in the main text are obtained from the
GAMM analyses with Wald-type test statistics presenting p-values < 0.01, unless
otherwise stated. For information on deviance explained, R?, and degrees of
freedom for the individual models/variables, we refer to Supplementary Note 2.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability. Data normalization, processing and construction of all models
was performed in R (V. 3.4.0) as described above and all essential code for
reproduction of these steps is provided in R Markdown format in Supplementary
Note 1 (AA) and Supplementary Note 2 (GAMMs). Versions of the packages used
are also indicated in the Supplementary Notes 1-2. These files also include code for
replicating the model visualizations of Figs. 3a, d and 4a, ¢, e. Code to reproduce
various secondary analysis figures is available on request.

Data availability

The authors declare that all data and code necessary for supporting the findings of
this study are enclosed in this paper. The entire dataset is enclosed in Supple-
mentary Data 1, while the code used for the archetypal analysis (AA) and the
generalized additive mixed models (GAMM:s) are enclosed in Supplementary
Note 1 (AA) and Supplementary Note 2 (GAMMs). Furthermore, we provide
visualization and summary statistics of normalized data in Fig. 2. All genomic data
is publicly available through the SRA database and has been published previously
by Marvig et al.1%. The accession numbers of all genomically analyzed isolates can
also be found in Supplementary Data 1; the NCBI SRA study summary can be
accessed at [https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=ERP004853].
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