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Abstract
Small ubiquitin-related modifier (SUMO)-specific protease 2 (SENP2) is essential

for the development of healthy placenta. The loss of SENP2 causes severe placen-

tal deficiencies and leads to embryonic death that is associated with heart and brain

deformities. However, tissue-specific disruption of SENP2 demonstrates its dis-

pensable role in embryogenesis and the embryonic defects are secondary to placen-

tal insufficiency. SENP2 regulates SUMO1 modification of Mdm2, which controls

p53 activities critical for trophoblast cell proliferation and differentiation. Here we

use genetic analyses to examine the involvement of SUMO2 and SUMO3 for

SENP2-mediated placentation. The results indicate that hyper-SUMOylation cau-

sed by SENP2 deficiency can be compensated by reducing the level of SUMO

modifiers. The placental deficiencies caused by the loss of SENP2 can be alleviated

by the inactivation of gene encoding SUMO2 or SUMO3. Our findings demon-

strate that SENP2 genetically interacts with SUMO2 and SUMO3 pivotal for the

development of three major trophoblast layers. The alleviation of placental defects

in the SENP2 knockouts further leads to the proper formation of the heart struc-

tures, including atrioventricular cushion and myocardium. SUMO2 and SUMO3

modifications regulate placentation and organogenesis mediated by SENP2.
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1 | INTRODUCTION

Covalent conjugation of proteins by small ubiquitin-related
modifier (SUMO) is a reversible and evolutionary con-
served process.1,2 SUMO modification can modulate a
variety of cellular functions, including protein trafficking,
cell cycle and cell survival/death.3-7 SUMO has been
shown to alter protein function, activity, interaction, and

subcellular distribution. The transfer of SUMO polypep-
tides to their targets is called “SUMOylation”, catalyzed by
E3 ligases.1,8 The reversed “deSUMOylation” process
which removes SUMO is mediated by SUMO-specific pro-
teases.9,10 The hallmark of these proteases is a highly con-
served SENP domain located at the carboxyl terminus.
They catalyze deSUMOylation in various physiological
systems, and genetic analysis has recently begun to unfold
their importance in mammalian development and
disease.11-15Wulf Paschen: Retired in 2018.
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Genetic inactivation of SUMO-specific protease
2 (SENP2) in mice reveals its irreplaceable function for the
development of trophoblast stem cell niches and lineages
during placentation.11 In addition to placental defects, the
global knockout of SENP2 also causes embryonic lethality
and the mutants exhibit abnormalities in the brain and
heart.12,13 The placental insufficiency greatly complicates
the analysis of these phenotypes as they arise at specific
stages when embryogenesis becomes highly dependent on
placental function.11 Further analyses using the conditional
deletion approach revealed that the brain and heart abnor-
malities of SENP2 global knockout are not primary, but sec-
ondary defects due to placental deficiencies.12,14 With a
healthy placenta containing intact SENP2, embryos with
epiblast-specific ablation of SENP2 did not exhibit any brain
and heart defects, demonstrating the contribution of placen-
tal insufficiency to the observed embryonic deformities.

The loss of SENP2 resulted in its substrates maintained
at the sumoylated state. Their hyper-SUMOylation is likely
the cause of the extraembryonic deformities. We previously
identified that SENP2 mediates SUMO1 modification of
Mdm2/p53 signaling, contributing to the cell cycle regula-
tion of trophoblast stem cell proliferation and differentia-
tion.11 There are four confirmed SUMO polypeptides.1,6,8,16

However, it remains to be determined if SENP2 also modu-
lates other SUMO regulatory pathways, for example,
SUMO2 and SUMO3, essential for placentation. To deter-
mine the role of SUMO2 and SUMO3 in SENP2-mediated
extraembryonic development, we performed genetic tests for
SENP2, SUMO2, and SUMO3. By reducing the amount of
SUMO2/3, we tested if placental defects caused by hyper-
SUMOylation could be alleviated in the SENP2 null. The
results of our genetic analysis clearly demonstrated the
requirement of SUMO2 and SUMO3 for SENP2-mediated
placentation that is essential for the development of the
healthy embryo.

2 | RESULTS

2.1 | Genetic interaction of SENP2 with
SUMO2 and SUMO3

SENP2 is required for SUMO1-mediated trophoblast devel-
opment and the ablation of SENP2 causes placental deficien-
cies leading to embryonic death at mid-gestation where the
embryo begins to reply on maternal supplies upon allantoic
fusion.11 Intercross of SENP2+/− mice resulted in the
homozygous embryos, which appear underdeveloped after
E9.5 and most of them did not survive. Only a few SENP2
nulls could be recovered after E11.5 but were significantly
underdeveloped (Figure 1A-D) and exhibited heart deformi-
ties including pericardial effusion, missing atrioventricular

(AV) cushion (Figure 1E,F), and myocardial thinning
(Figure 1G,H). As we demonstrated previously using condi-
tional knockout mouse models, these were secondary defects
caused by placental insufficiencies.14

SUMO2 and SUMO3 show an extremely high degree of
similarity (approximately 95% identical). Therefore, we used
a genetic approach to test if SUMO2 and SUMO3 also mod-
ulate placental development mediated by SENP2. To per-
form genetic tests, mice carrying the deletion of SENP2
were crossed with those carrying SUMO2 and SUMO3
mutation to obtain the double mutants. At E10.5, three major
trophoblast layers — the labyrinth, spongiotrophoblast, and
TGC (trophoblast giant cell) in SUMO2+/− and SUMO3−/−
placentas are comparable to the wild type (Figure 2A-C and
A0-C0; Control n = 12). Similar to our prior reports,11,14 the

FIGURE 1 Secondary defects in heart formation caused by
placental deficiencies in the SENP2 knockout. Gross morphological
evaluation of the wild type (A, C) and SENP2−/− (B, D), embryos at
E11.5 (A-B) and 12.5 (C-D). Histology shows the atrioventricular
(AV) cushion (E-F; asterisks) and myocardium (G-H) defective in the
SENP2 knockout. Scale bars, 3 mm (A-D); 100 μm (E-H). SENP2,
SUMO-specific protease 2
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loss of SENP2 impaired placental development (Figure 2).
The SENP2−/− placentas were smaller and paler than the
controls. The development of all three trophoblast layers that

cannot be distinguished by histological analysis (Figure 2D,
D0; n = 2). The TGC layer, most severely affected by the loss
of SENP2, is almost completely missing. To test if removal of

FIGURE 2 SENP2 genetically interacts with SUMO2 and SUMO2 during the formation of three major trophoblast layers. Histology examines
the placentas of SENP2+/+ (A, A0) and SENP2+/+; SUMO2+/− (B, B0), SENP2+/+; SUMO3−/− (C, C0), SENP2−/− (D, D0), SENP2−/−; SUMO2+/−
(E, E0) and SENP2−/−; SUMO3−/− (F, F0) in transverse sections at E10.5. Labyrinth (L), spongiotrophoblast (S) and trophoblast giant cell (G) layers were
defined by blue, red and green broken lines, respectively. Scale bars, 200 μm (A-F, A0-F0). SENP, SUMO-specific protease; SUMO, small ubiquitin-related
modifier
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SUMO2 or SUMO3 modifiers could reduce the hyper-
sumoylated effects in the SENP2−/− placenta, we performed
genetic tests. The results showed three trophoblast layers
clearly formed in the SENP2−/−; SUMO2+/− (Figure 2E;
n = 4/12) and SENP2−/−; SUMO3−/− (Figure 2F; n = 3/5)
placentas. Removing one allele of SUMO2 seemed to have
more alleviative effects than removing two alleles of SUMO3
(Figure 2E-F). Unfortunately, we could not test the removal
of two alleles of SUMO2 due to embryonic lethality.17 In
some cases, the alleviation is less effective (Figure 2E0;
n = 8/12 and Figure 2F0; n = 2/5). The results clearly

demonstrated that SENP2 genetically interacts with SUMO2
and SUMO3. The SENP2-dependent SUMO2 and SUMO3
modifications are required for placental development.

2.2 | Reversal of placental deficiencies
alleviates embryonic heart defects in the
SENP2 nulls

The alleviation of placental defects seemed to allow the
embryo to survive after E12.5. We were able to recover
SENP2−/−; SUMO2+/− embryos at E12.5 (Figure 3A-C).

FIGURE 3 Alleviation of heart deformities caused by SENP2 deficiency. (A-C) Gross morphological evaluation of the SENP2+/+; SUMO2+/−
(A), SENP2+/−; SUMO2+/− (B) and SENP2−/−; SUMO2+/− (C) embryos at E12.5. Histology shows embryo homozygous for SENP2 and
heterozygous for SUMO2 (F, I, L) exhibiting the proper formation of the atrioventricular (AV) cushion (D-I) and myocardium (MC; D-F, J-L) comparable
to the control (D-E, G-H, J-K). Scale bars, 4 mm (A-C); 200 μm (D-L). SENP, SUMO-specific protease; SUMO, small ubiquitin-related modifier
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FIGURE 4 The loss of SUMO3 alleviates heart deformities associated with the SENP2 ablation. (A-C) Gross morphological evaluation of the
SENP2+/+; SUMO3−/− (A, M), SENP2+/−; SUMO3−/− (B, P) and SENP2−/−; SUMO3−/− (C, O) embryos at E12.5 (A-C) and 13.5 (M-O).
Histology analysis reveals that the SENP2 and SUMO3 double knockout (F, I, L) displays the proper formation of the atrioventricular (AV) cushion
(D-I) and myocardium (MC; D-F, J-L) comparable to the control (D-E, G-H, J-K). Scale bars, 4 mm (A-C, M-O); 200 μm (D-F); 100 μm (G-L).
SENP, SUMO-specific protease; SUMO, small ubiquitin-related modifier
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Therefore, we examined if the heart deformities are also alle-
viated by reducing the level of SUMO2. In the SENP2 nulls,
the embryonic heart was affected due to placental insuffi-
ciencies.14 The mutants cardiac showed marked myocardial
thinning and missing of atrioventricular (AV) cushions
(Figure 1E-H). Similar to the controls (genotypes: SENP2+/+;
SUMO2+/− and SENP2+/−; SUMO2+/−), AV cushion
was able to form and easily identifiable in the SENP2−/−;
SUMO2+/− embryo (Figure 3D-I). The development of
the myocardium was also comparable to the controls
(Figure 3J-L).

To test if SUMO3 also modulates SENP2-dependent
embryonic and extraembryonic development, SENP2 nulls
were crossed into the SUMO3 homozygous background. We
successfully obtained the double knockout of E12.5 and
E13.5 embryos (Figure 4A-C, M-O), subsequently analyzed
by histology for heart development. The removal of SUMO3
was able to alleviate heart defects found in the SENP2 nulls
(Figure 4D-L). Comparable to the control (genotypes:
SENP2+/+; SUMO3−/− and SENP2+/−; SUMO3−/−), the
AV cushion and myocardium were able to develop in the
SENP2−/−; SUMO3−/− embryo (Figure 4D-L).

3 | DISCUSSION

Genetic analyses described in this study clearly demonstrate
that SUMO2 and SUMO3 modulate SENP2-dependent
extraembryonic and embryonic development. Placental
defects caused by hyper-SUMOylation in the SENP2 knock-
outs can be alleviated by the reduction of SUMO modifiers.
We succeed to prove the concept that hyper SUMOylation
caused by the loss of SUMO proteases can be compensated
by decreasing the level of SUMO modifiers. Although
SUMO1 regulates the Mdm2/p53 pathway essential for cell
cycle progression,11,18 the important role of SUMO2 and
SUMO3 in trophoblast development remains elusive.
SUMO2/3 has not only a much wider expression pattern in
the trophoblast lineages and cell types, but also distinct
stress responses compared to the SUMO1, implying a func-
tional difference between SUMO1 and SUMO2/3 during
placental development.19 Our findings support the critical
functions of SUMO2 and SUMO3 in placentation. Reducing
the level of SUMO2 or SUMO3 successfully alleviates the
developmental defects of the trophoblast layers, suggesting
their involvement in hyper-SUMOylation caused by the loss
of SENP2. To our knowledge, the current study provides the
first genetic evidence indicating the essential function of
SUMO2 and SUMO3 modifications in placental
development.

It remains possible that the alleviation of extraembryonic
and embryonic defects is independent of each other in the
double mutants. However, our data show a tight link of heart

deformities to placental deficiencies, suggesting these are
dependent events. Furthermore, our demonstration of
SENP2 dispensable for embryonic development strongly
argues against a specific requirement of SENP2 in cardiac
tissue during heart development.14 The heart deformities
associated with global inactivation of SENP2 are not pri-
mary but secondary defects due to placental insufficiency.
This is further supported by the current study showing that
rescue of placental insufficiencies promotes the proper for-
mation of the AV cushion and myocardium.

While removing one allele of SUMO3 has no effect on
the SENP2-null defects, placental and embryonic defects are
alleviated by SUMO2 heterozygosity. Therefore, SUMO2
may play a more important role than SUMO3 in
SENP2-mediated placentation. The genetic analyses also
suggest nonredundant functions of SUMO2 and SUMO3 in
SENP2-dependent regulation. Although SUMO2 and
SUMO3 are ~95% identical, we do not find synergistic
effects when both of them are reduced in the SENP2 nulls. It
is possible that SUMO2 and SUMO3 modify distinct sub-
strates critical for placentation. In addition to the
SUMO1-mediated modulation, SUMO2/3 may be critical
for the regulation of S phase during cell cycle progression.20

SUMOylation may also regulate the hypoxia pathway that
has been suggested in preeclampsia.21 The importance of
SUMO2/3 has also been implicated in chromatin remo-
deling, DNA damage-induced apoptosis, oxidative stress
and cell differentiation.22-26 Although the SENP2 substrates
modified by SUMO2/3 remain unknown during placenta-
tion, it is possible to reveal their identities using proteomic
approaches.27,28 Identification of these SUMO2/3 targets
promises new insight into SENP2-mediated regulation dur-
ing extraembryonic and embryonic development.

4 | EXPERIMENTAL PROCEDURES

4.1 | Mouse Strains

The SENP2, SUMO2 and SUMO3 knockout mouse strains
and their genotyping methods were reported previ-
ously.11,14,17 The SENP2 and SUMO2 double mutants
(genotype: SENP2−/−; SUMO2+/−), and positive (geno-
type: SENP2−/−; SUMO2+/+) and negative controls
(SENP2+/+; SUMO2+/+, SENP2+/+; SUMO2+/−;
SENP2+/−; SUMO2+/−) were obtained by intercross
between SENP2+/−; SUMO2+/− male and female mice
that are viable and fertile. The SENP2 and SUMO3 double
mutants (genotype: SENP2−/−; SUMO3−/−), and positive
(genotype: SENP2−/−; SUMO3+/+) and negative controls
(SENP2+/+; SUMO3−/−, SENP2+/−; SUMO3−/−) were
obtained by crossing SENP2+/−; SUMO3+/− males with
SENP2+/−; SUMO3+/− or SENP2+/−; SUMO3−/−
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females that are viable and fertile. The care and use of exper-
imental animals described in this work were approved by
and comply with guidelines and policies of the University of
Committee on Animal Resources at the University of
Rochester.

4.2 | Histology analysis

Samples were fixed, paraffin-embedded, sectioned and sta-
ined with hematoxylin/eosin for histological evalua-
tion.11,29-34 Images were taken using Leica DM2500
microscope with a DFC7000T digital imaging system (Leica
Biosystems Lnc., Buffalo Grove, Illinois), as well as Nikon
SMZ1500 and TS100-F microscope (Nikon, Melville,
New York) equipped with a SPOT Pursuit Slider and Insight
Camera, respectively (Diagnostic Instruments, Sterling
Heights, Michigan).29,30,35-37
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