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Analysis of PNGase F-Resistant N-Glycopeptides Using
SugarQb for Proteome Discoverer 2.1 Reveals Cryptic
Substrate Specificities
Johannes Stadlmann, David M. Hoi, Jasmin Taubenschmid, Karl Mechtler,
and Josef M. Penninger*

SugarQb (www.imba.oeaw.ac.at/sugarqb) is a freely available collection of
computational tools for the automated identification of intact glycopeptides
from high-resolution HCD MS/MS datasets in the Proteome Discoverer
environment. We report the migration of SugarQb to the latest and free
version of Proteome Discoverer 2.1, and apply it to the analysis of PNGase
F-resistant N-glycopeptides from mouse embryonic stem cells. The analysis of
intact glycopeptides highlights unexpected technical limitations to PNGase
F-dependent glycoproteomic workflows at the proteome level, and warrants a
critical reinterpretation of seminal datasets in the context of
N-glycosylation-site prediction.

Glycosylation, the covalent attachment of simple or complex car-
bohydrate structures onto proteins, is one of the most abundant
post-translational modification (PTM), and affects virtually all as-
pects of life.[1] Over 50% of human proteins are predicted to carry
these important and dynamic sugar modifications, which alter
their activities in fundamental biological processes, such as intra-
cellular trafficking, cell adhesion, signal transduction, essential
immune functions, or host–pathogen interactions.[2] In contrast
to other PTMs, glycosylation remains largely unexplored at the
proteome scale. Despite the massive technological advances in
mass-spectrometry (MS)-based proteomics, the enormous struc-
tural complexity and the rather unfavorable fragmentation prop-
erties of intact glycopeptides still pose a formidable challenge to
the concurrent analysis of the peptide and glycanmoieties by tan-
dem mass-spectrometry (MS/MS).
Consequently, pioneering studies in the field of glycopro-

teomics primarily focused on the identification of enzymat-
ically de-N-glycosylated peptides by MS/MS.[3,4] To this end,
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glycopeptides were first specifically
enriched using a wide range of tech-
niques (e.g., lectins,[4] titanium dioxide,[5]

or via hydrazone formation of peri-
odate oxidized carbohydrate cis-diol
groups[6]) and then, prior to LC-MS/MS
analysis, subjected to enzymatic de-
glycosylation. This key reaction, cat-
alyzed by peptide-N4-(N-acetyl-beta-glu-
cosaminyl) asparagine amidases
(i.e., PNGases), results in the spe-
cific cleavage of N-glycans from the
polypeptide-backbone and thus allows to
identify the former N-glycopeptides as
non-glycosylated peptides. Additionally,

the enzymatic hydrolysis of the N-glycosidic bond results in
the deamidation of formerly N-glycosylated asparagine residu-
es. This PNGase induced conversion of asparagine to aspar-
tic acid results in a mass increment (i.e., 0.984 amu), and has
been suggested to provide means for the specific localization of
N-glycosylation sites.[7]

Although these seminal studies were intrinsically limited to
the analysis of enzymatically de-N-glycosylated peptides, they
greatly contributed to our current knowledge of N-glycosylation
site occupancy within the proteome and provided the basis for
many advanced N-glycosylation-site prediction algorithms. For
example, using this approach in a single large-scale study, more
than 6000 N-glycosylation sites within themurine proteome have
been mapped site specifically.[4] Importantly, however, early bio-
chemical characterizations of PNGases also reported on subtle
substrate requirements of these enzymes, particularly with re-
spect to the primary structure of substrate N-glycopeptides.[8–10]

More specifically, the key enzyme PNGase F has been reported of
not being able to remove N-glycans from peptide-N- and peptide-
C-terminal asparagine residues.[8,9] As these long-standing ob-
servations suggest important technical limitations to the com-
prehensive characterization of the N-glycoproteome in PNGase
F-dependent workflows, we were prompted to evaluate their im-
pact on the analysis of the N-glycoproteome by identifying and
analyzing PNGase F-resistant N-glycopeptides using the recently
developed SugarQb platform.[11]

Aiming at a comprehensive characterization of intact gly-
copeptides from complex samples, we recently developed a col-
lection of data interpretation tools, which allows for the auto-
mated identification of intact glycopeptides from high-resolution
HCDMS/MSdatasets, usingwell-established proteomicMS/MS
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search engines (e.g., MASCOT, SEQUEST-HT, MS Amanda[12]).
SugarQb (www.imba.oeaw.ac.at/sugarqb) analyses MS/MS spec-
tra for the presence of potential [peptide + HexNAc]+ frag-
ment ions. For this, the mass of the respective precursor ion
is iteratively reduced by the masses represented in a user-
defined glycan mass database (Table S1, Supporting Informa-
tion), −203.0794 amu. In cases where a corresponding po-
tential [peptide + HexNAc]+ fragment ion is detected the
respective spectra are duplicated, with the original precursor ion
mass being set to the mass of the potential [peptide+HexNAc]+
fragment ion. Subsequently, the preprocessed MS/MS spectra
are searched using commonly used MS/MS search engines for
peptide sequence identification. In addition to this core func-
tionality, SugarQb also provides a range of other computational
tools for the automated identification of glycopeptide MS/MS
spectra (i.e., G-score), charge deconvolution, and de-isotoping
(i.e., MS2 spectrum processor), as well as the specific removal
of highly abundant glycan-derived fragment ions (i.e., Reporter
Ion Filter). SugarQb is freely available as Node to the Pro-
teome Discoverer Platform and thus readily integrated into typ-
ical shot gun proteomic data interpretation workflows. It allows
for taking advantage of modern MS instrumentation (i.e., high-
resolution and high-mass accuracy mass analyzers, high sen-
sitivity, high speed in data acquisition), quantitative proteomic
tools (e.g., isotope encoded labeling techniques), and the ret-
rospective analysis of untargeted MS/MS datasets. Addition-
ally, we now also migrated SugarQb to the new, freely available
Proteome Discoverer 2.1 platform (https://portal.thermo-brims.
com/).
To identify potentially PNGase F-resistant N-glycopeptides, we

first generated tryptic digests from whole cell lysates of mouse
embryonic stem cells (mESC), desalted them using SPE C18
cartridges and subjected them to enzymatic de-glycosylation by
incubation with 1 U of PNGase F (from Elizabethkingia miri-
cola) per milligram peptide in 200 mM Tris/HCl, pH 8.0, at
37 °C for 18 h. Then, we enriched the remaining glycopeptides
using IP-HILIC and analyzed them by RP-nLC-ESI-MS/MS[11,13]

using stepped collision energy HCD (i.e., SCE-HCD, using 35%
NCE +/−5%) on an Orbitrap Fusion LUMOS instrument.[14]

The MS/MS data were preprocessed and analyzed as reported
previously,[11] using the SugarQb platform in the Proteome Dis-
coverer 2.1 environment in conjunction with the two MS/MS
search engines MASCOT and MS Amanda,[12] searching the
Uniprot mouse reference proteome set (UP00000589, release-
2016 08, 47 435 entries; as concatenated forward and reverse
database; Figure 1A). In this study, for allMS/MS search engines,
the proteolytic cleavage rules were set to those of trypsin, allow-
ing for up to two missed cleavage sites. Carbamidomethylation
of cysteines was set as fixed modification, and the oxidation of
methionine was considered as variable modification. Addition-
ally, all asparagine, serine and threonine side chains could be
variably modified with a single hexosamine residue. The precur-
sor mass tolerance was set to 10 ppm, the fragment mass tol-
erance was set to 25 mmu. Amino acid sequence identification
was based on matching singly-charged b- and y-fragment ion se-
ries, considering ammonia and water losses, as well as the neu-
tral loss of HexNAc.[11] The resulting peptide spectrum matches
(PSMs) were manually prefiltered (i.e., best scoring search en-
gine rank 1 PSMs only, peptide length greater than six amino

acids), sorted by the respective search engine score value and then
filtered to 1% FDR using the concatenated forward and decoy
approach.[15] Site localization of N-glycans was performed using
ptmRS.[16]

The analysis of the PNGase F-treated samples led to the
identification of 365 and 242 unique, glycosylated peptide
sequences, using MASCOT and MS Amanda, respectively
(Tables S2 and S3, Supporting Information). Surprisingly, de-
spite extensive enzymatic de-N-glycosylation of the samples,
next to 183 O-glycosylated glycopeptides, we also identified
the amino acid sequences of 186 “PNGase F-resistant,” intact
N-glycopeptides, using MASCOT. Of note, this compares to 1110
N-glycopeptide sequences identified by MASCOT in the control
samples, which were not treated with PNGase F (Table S4, Sup-
porting Information). MS Amanda was performed similarly (i.e.,
1047 N-glycopeptide sequences identified; Table S5, Supporting
Information). Detailed amino acid sequence analysis of “PN-
Gase F-resistant” tryptic N-glycopeptides (using “motif-x”[17]), re-
vealed them to predominantly bear N-terminal N-glycosylated
asparagine residues (i.e., 131 of 186 N-glycopeptide sequences;
50-fold enrichment of the sequence motif K/R-N-!P-S/T over the
control sample as background; Figure 1B–D), corroborating pre-
viously reported substrate specificities of PNGase F.[8,9] Impor-
tantly, we did neither observe selective depletion nor enrichment
of specific glycans on PNGase F-resistant peptides. This sug-
gests that PNGase F-resistance was largely independent of the
N-glycan structures attached.
To more precisely quantify the susceptibility of the N-glyco

proteome to PNGase F-treatment, we used a comparative gly-
coproteomic approach.[11] For this, we labeled tryptic digests
of mESC whole cell lysates with TMT-6plex (Thermo; 200 mg
of tryptic peptides per TMT channel), desalted and treated
them with increasing amounts of PNGase F (i.e., 0, 0.5 U
and 5 U PNGase F mg−1 protein in 200 mM Tris/HCl,
pH 8.0) for 18 h at 37 °C. After incubation, the individual
samples were adjusted to pH 2 by the addition of 10% formic
acid, pooled and desalted using SPE C18 cartridges. Eventu-
ally PNGase F-resistant peptides were enriched using IP-HILIC
(Figure 2A).
From our subsequent analysis by RP-nLC-ESI-MS/MS,

we identified and comparatively quantified 985 glycopeptide
sequences upon PNGase F-treatment (Tables S6 and S7, Sup-
porting Information). In contrast to the previous, TMT label-free
experiment, we did not observe an important resistance of
TMT-labeled N-terminally N-glycosylated peptides. Indeed, 5 U
PNGase F mg−1 protein were able to remove N-glycans from
N-terminal asparagine residues of TMT-labeled N-glycopeptides
to a large extent (Figure 2B). In contrast to historically important
dabsyl- or dansyl-labelling,[9] NHS-ester-based labelling of
amino-terminal primary amine groups reconstitutes amide
bonds, N-terminally to the glycosylated asparagine residues.
We speculate that the presence of this additional amide bond
effectively abolishes the PNGase F-resistance of this glycopeptide
population, warranting further experiments using alternative
amine reactive labeling reagents (e.g., other NHS esters, or
organic acid anhydrides).
Furthermore, the quantitative glycoproteomic data highlighted

N-glycosylated asparagine residues, which lie at the penulti-
mate position of tryptic glycopeptides, to be poor substrates for
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Figure 1. A) Workflow for the analysis of PNGase F-resistant N-glycopeptides, using the SugarQb platform in the Proteome Discoverer 2.1
environment. B) Sequence motif analysis of 1110 unique N-glycopeptide sequences of the untreated control sample confirms the specific
enrichment of the N-glycosylation motif N-!P-S/T. C) Motif analysis corroborates N-terminal, glycosylated asparagine residues of tryptic gly-
copeptides as “PNGase F-resistant.” D) PNGase F-treatment results in the specific enrichment of intact N-glycopeptide spectrum matches
(PSMs), exhibiting N-terminal, glycosylated asparagine residues. All experiments shown have been performed in duplicate, with very similar
results.

PNGase F (eightfold enrichment of the sequence motif N-K/R-
S/T over the control sample as background; Figure 2C). Despite
extensive PNGase F-treatment, at least 80% of their initial abun-
dance was recovered. Of note, since the use of trypsin results in
the accumulation of lysine and arginine at the c-terminal end
of glycopeptides, a clear delineation of the specific impact of
these positively charged amino acids on PNGase F activity ne-
cessitates further investigations of non-tryptic N-glycopeptides.
Sequence-specific differences in the susceptibility to the enzy-
matic deglycosylation are further highlighted by the observa-
tion of N-glycopeptide variants which become more abundant
upon PNGase F-treatment (Figure 2B). This intriguing glycopep-
tide population consists of N-glycopeptides which carry more
than one N-glycan. PNGase F-resistance of one of these multiple
N-glycosylation sites resulted in the increased abundance of par-
tially deglycosylated N-glycopeptides identified in our analysis.
Also, in the comparative glycoproteomic experiments, we did not
observe selective depletion or enrichment of specific N-glycan
species found on PNGase F-resistant peptides.
Importantly, our analysis also revealed N-glycopeptide se-

quences, which comprise the established N-glycosylation mo-
tif, followed by proline (i.e., N-!P-S/T-P), to be highly resistant
to the deglycosylation by PNGase F. This observation sheds

new light on previously published glycoproteomics data. For ex-
ample, Zielinska et al.,[4] analyzing the amino acid sequences
of 6367 N-glycosylation sites of the PNGase F-sensitive mouse
N-glycoproteome, also reported an unexpected depletion of
proline in position 4 in the mouse glycoproteome. Similarly, Kaji
et al.,[18] analyzing 1495 PNGase A-sensitive N-glycosylation sites
from Caenorhabditis elegans, merely identified a single site com-
prising the motif N-!P-S/T/C-P. Based on our analysis of intact
N-glycopeptides frommESC, we could not only confirm the exis-
tence of N-glycosylated peptides comprising this motif, but also
provide a rational for their apparent depletion in large-scale PN-
Gase F-dependent glycoproteomic datasets.
In summary, we here report on the analysis of intact

N-glycopeptides from mESC, which are insensitive to the
enzymatic deglycosylation with different concentrations of PN-
Gase F. Our analyses were performed using the recently
developed SugarQb platform within the freely available Pro-
teome Discoverer 2.1 environment. The results of our anal-
ysis of intact glycopeptides highlight subtle technical limita-
tions intrinsic to PNGase F-dependent glycoproteomic work-
flows at the proteome level, and warrant a reinterpretation of
these seminal datasets in the context of N-glycosylation site
prediction.
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Figure 2. A) Comparative glycoproteomic workflow quantifying the sensitivity of N-glycopeptides to PNGase F-treatment, using the SugarQb platform
in Proteome Discoverer 2.1. B) Volcano plot of the comparative glycoproteomic dataset shows a large population of N-glycopeptides (green) to be
sensitive to the incubation with 1 U PNGase F (i.e., 5 U PNGase F mg−1 protein). Non-glycosylated peptides and O-glycopeptides (orange) were not
sensitive to PNGase F-treatment. Of note, a small population of multiple N-glycosylated peptides became more abundant upon PNGase F-treatment.
C) Motif analysis of TMT-labeled, PNGase F-resistant N-glycopeptide sequences reveals glycosylated asparagine in the penultimate position of tryptic
glycopeptides and those being part of the consensus sequence N-!P-S/T-P as poor substrates. All experiments shown have been performed in duplicate,
with very similar results.

Supporting Information
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