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SUMMARY

Temperature and precipitation changes are among the vital climatic driving
forces of global vegetation change. However, the strategy to separate the rela-
tive contributions of these two critical climatic factors is still lacking. Here, we
propose an index CRTP (contribution ratio of temperature and precipitation) to
quantify their impacts on vegetation and then construct the CRTP classification
prediction models based on climatic, geographic, and environmental factors us-
ing the Random Forest classifier. We find that precipitation predominates more
than 70% of the significant vegetation change, mainly located in the low and mid-
dle latitudes during 2000–2021. Precipitation will remain the dominant climatic
factor affecting global vegetation change in the coming six decades, whereas
areas with temperature-dominated vegetation change will expand under higher
radiative forcings. Hopefully, the promising index CRTP will be applied in the
research about climatic attribution for regional vegetation degradation, moni-
toring drought-type conversion, and alarming the potential ecological risk.

INTRODUCTION

Terrestrial ecosystems and climate systems interact and are closely coupled.1,2 Global warming profoundly

impacts the global terrestrial ecosystem, specifically vegetation change. Most global vegetated regions

are greening, dominated by climate change and CO2 fertilization effects.3 Warming temperature increases

the biomass across all the terrestrial plants,4 lengthens the green cover season,5 and reshapes the global

biodiversity.6 Meanwhile, climate related vegetation change has many negative consequences for both the

natural environment and human society,7 such as increasing wildfire hazards,8 raising the likelihood of sea-

sonal allergies,9 dieback of the rainforest,10 and decoupling species interactions.11 Therefore, how vege-

tation responds to climate change is paramount to explicitly disclose the relationship between climate

and vegetation at global and regional scales.

Temperature and precipitation can accurately describe the hydrothermal conditions affecting vegetation

growth, so they are commonly considered essential climatic factors influencing global vegetation

change.12,13 Temperature change is usually responsible for the regional ensemble vegetation change,14

whereas the difference in precipitation explains most of the annual variation in spatial patterns.15 Mean-

while, the supremacy of temperature and precipitation on vegetation change is interchanged with regions,

seasons, and vegetation species.16 The temperature dominates the vegetation change in the northern

middle to high latitudes or high altitudes,12,17 yet precipitation is the critical climatic factor impacting vege-

tation in southern semiarid regions.12,18 The vegetation’s sensitivity to temperature and precipitation in

summer is higher than in other seasons.19 In addition, precipitation may become grasslands’ primary vege-

tation growth-limiting factor, especially in the growing season; the mean temperature is the dominant

growth-limiting factor for forest16 and alpine vegetation.20

Despite the research improvements mentioned above, the quantitative strategy to separate the relative

contributions of temperature and precipitation, or whether temperature or precipitation dominates vege-

tation change in a specific region, is still lacking. Research on the dominant climatic factor affecting vege-

tation change is indispensable for ecosystem management.21,22 Projected temperature and precipitation

change will have potentially negative consequences for the ecosystem, such as increasing wildfire23 and

decreasing biodiversity.6 In turn, vegetation responses to climate change are complex and chaotic,24
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challenging the quantification of climatic factors’ contribution to global vegetation change. Hence, sepa-

rating the impact of precipitation and temperature will help develop an integrated adaptation approach to

mitigate climate change influences on vegetation and prevent or delay undesired vegetation shifts.25

On the other hand, the research on quantifying the impacts of temperature and precipitation on vegetation

change has significant implications for vegetation-related disaster prevention.26 The vegetation decrease

caused by increasing temperature or decreasing precipitation corresponds to atmospheric aridity and soil

drought,27–29 respectively, whose tangible influence and management solutions consequently differ.30,31

At the same time, regional hydrothermal conditions and vegetation coverage are critical for forming typical

mountainous disasters.32,33 Therefore, the research on climatic attribution of vegetation changes, espe-

cially abnormal changes, can contribute to disaster monitoring and risk prevention.34,35

More complex is not necessarily better in large-scale modeling of the relationship between vegetation

change and climatic change. Thus, we propose an innovative index CRTP with explicit physical meaning

to simplify the complex problem, aiming to provide a concise and standardized approach to judge which

is the dominant growth-limiting factor among the water and thermal condition in the global vegetated re-

gions, using meteorological reanalysis data and remote sensing vegetation data. Moreover, we adopt

Random Forest (RF) classification algorithms to identify the main factors affecting CRTP and construct

the correlation model between screened climatic factors and CRTP, by which the possible CRTP changes

in multiple climate scenarios are projected. The innovative work will hopefully provide theoretical support

for future ecosystem management and disaster prevention.

RESULTS

Global vegetation and climate change

The world has been greening and warming over the past two decades (Figure 1). Remote sensing data

shows that the global FVC increases with an average rate of 0.1%/10a (Figure 1A). We found that 24.3%

of the world was significantly greening, much larger than browning (3.8%), which was consistent with the

previous research.3 Particular attention should be paid to the apparent vegetation improvement in China

and India, which accounted for most global greening. In addition, vegetation degradation occurred mainly

in the Arabian Peninsula, Central Siberia, and the boundary between Europe and Asia.

The global temperature has increased remarkably since the industrial revolution (Figure 1B). Global warm-

ing was striking from 2000 to 2021 with an average rate of 0.32�C/10a, much higher than before the 2000s.

The regions with the most significant warming (>0.6�C/10a) were primarily located in the high latitudes of

the northern hemisphere, the sensitive areas to climate change (Figure 1C). In contrast, the temperature

decreased slightly (>–0.2�C/10a) in some regions, such as the parts of West and South Asia.

By contrast, the regime of global annual precipitation change was more complex. The annual precipitation

has increased insignificantly with a rate of 10 mm/10a over the past two decades (Figure 1D). On the one

hand, the precipitation increased in 40.7% of the world, one-fifth of which was significant. The areas with the

most significant increase in precipitation were mainly located in the Indian Peninsula, Southeast Asia, and

the Eastern US. On the other hand, 58.1% of the world experienced a precipitation decline, with a fifth of

significant changes. Themost significant decrease in precipitation appeared in Central Africa, the Northern

Territory in Australia, and most parts of South America.

Global CRTP distribution over the past two decades

Horizontal distribution

The CRTP distribution was illustrated in regions where climatic factors dominated the vegetation change

from 2000 to 2021 to quantitatively evaluate how precipitation and temperature have influenced global

vegetation change (Figure 2). Precipitation dominated vegetation change in more than 70% of the area

with significant CRTP, half of which was simultaneously influenced by temperature. The other half was

Figure 1. Global vegetation and climate change

Global vegetation and climate change, including the distribution of global vegetation change from 2000 to 2021 (A), global temperature changes from 1880

to 2021 (B), and the distribution of global temperature and precipitation change from 2000 to 2021 (C, D). Regional greening occurred in areas with an FVC

increase, while browning appeared in areas with an FVC decrease (A). Over the past two decades, the world has been warming and greening. In particular,

compared with the warming since the industrial revolution, the recent two decades of warming were unprecedented (B).
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entirely controlled by precipitation. By contrast, the temperature was the dominant climatic factor affecting

less than 30% of the vegetation change, with nearly 95% concurrently affected by precipitation.

In the meantime, the same type of CRTP tended to spatial aggregation. Regions with vegetation change

dominated by temperature were distributed mainly in the high northern latitudes (north of 60 �N) and

the Northern Territory in Australia. Although precipitation-dominated vegetation primarily appeared in

the low and middle latitudes (between 60 �S and 60 �N), especially in southwestern North America, Central

Asia, the Mongolian Plateau, and the southern regions of South America, Africa, and Australia.

Three-dimensional distribution

Although the global CRTP distribution seemed chaotic from 2000 to 2021, the spatial differentiation of

climate-driving forces follows a regular pattern to a certain degree. The CRTP distribution varied signifi-

cantly with longitude, latitude, and altitude (Figure 3).

Firstly, the dominant CRTP types differed significantly with longitudes or distances from the sea (Figure 3A).

In particular, the proportion of negative CRTP increased first and then decreased eastward and westward

from 30 �W, the rough boundary between the African-Eurasian and American continents, indicating the

apparent decrease of the precipitation’s influence on FVC change from the coast to inland areas. Besides,

CRTP varied significantlywith latitudebecause of the differentiation in heat conditions and radiation. Vegetation

coverage in cold regions was more sensitive to the warming climate, like high latitudes and altitudes. Take the

FVC change in the northern hemisphere as an example (Figure 3B). The influence of temperature on vegetation

change overwhelmed precipitation in high latitudes (north of 60 �N), the relatively cold regions. By contrast, pre-

cipitation dominated the vegetation change in the middle and low latitudes, the relatively warm areas.

However, there was no significant proportions pattern of the four types of CRTP at different altitudes on the

global scale (Figure 3C), indicating the complex impacts of elevation on climate factors.

CRTP classification model and projected global CRTP distribution

CRTP classification model

TheCRTPdistribution showed remarkable spatial regularity. So, it is feasible toexplore its influencing factors and

build relatedmodels. Basedon the RFmethod, we here constructed the CRTP classificationmodel according to

climatic, geographic, and environmental factors and displayed the accuracy of classification models with

different sets of input variables (Table 1). Among the thirteen models, Model 1, based on only temperature

and precipitation, can achieve 59.89% accuracy. Then, we gradually added new variables with these two climatic

Figure 2. Global CRTP distribution from 2000 to 2021

The CRTP is an index comparing the relative contribution of temperature and precipitation to vegetation change within a

certain period. The vegetation change in the color-covered areas in this figure is dominated by climatic factors (including

temperature, precipitation, wind speed, air pressure, evaporation, and potential evaporation). The blank area indicates

that CRTP is not statistically significant or data is missing in this region.
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factors to form newmodels (Models 2 to 13). Finally, the optimal model with only climatic variables (i.e., temper-

ature, precipitation, wind speed, air pressure, and evaporation) was Model 4 (accuracy: 65.22%).

In addition, we found that the model could be optimized significantly with more geographic and environ-

mental information variables introduced (Table 1). As a result, the model accuracy improved remarkably,

ranging from 65.98% (Model 7) to 66.61% (Model 9) with geographic variables (i.e., longitude, latitude, alti-

tude, and distance from the sea) continually input (Models 7 to 10). This phenomenon further confirms our

conclusions about the impacts of longitude, latitude, and altitude on CRTP distribution (Figure 3). Further-

more, the introduction of environmental variables (i.e., FVC and LUCC) also improved the model accuracy

(Models 11 to 13), with the FVC alone behaving best (Model 11).

To summarize, the optimal classification model was Model 11, with an accuracy of 67.07% and a kappa

coefficient of 0.54. According to the error matrix of Model 11 (Table 2), the classification accuracy

of Type 4 was the highest (75.0%), with Type 2 the lowest (58.5%). Besides, the dominant climatic factor

affecting FVC was precipitation in Type 1 and Type 2, whereas in Type 3 and Type 4 was temperature.

Notably, this RF Model had high accuracy (88.7%) in distinguishing the dominant climatic factors to vege-

tation change.

However, we gave up the optimal classification Model 11 in the CRTP prediction because the future FVC

and the land cover type are hard to predict. Instead, we screened Model 9, the optimal climate-geography

model, for prediction, comprehensively considering the input variable’s availability and reliability and the

RF classifier’s accuracy.

Projected global CRTP distribution

Based on the CRTP classification model, we can predict the CRTP distribution using future projections of

multiple input variables. Here, we input CMIP6 climate projection with a resolution of 100 km into the

Figure 3. Three-dimensional distribution of CRTP

Variation of CRTP with longitude (A), latitude (B), and altitude (C). Here the cell statistics indicate the grid numbers

corresponding to different CRTP types. Figure 3C displays the change in the proportion of different CRTP types with

altitude. Longitudes, latitudes, and altitudes affect the CRTP via water vapor, heat, and hydrothermal conditions,

respectively.
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CRTP classification model to predict the global CRTP distribution. We predicted the CRTP distribution

under four SSP scenarios (i.e., SSP 1–2.6, SSP 2–4.5, SSP 3–7.0, and SSP 5–8.5) from 2021 to 2080

(Figures 4A–4F). Limited by the length of the sample sequence selected for model construction (22 years),

we divided the future sixty years into three 20-year periods (2021–2040; 2041–2060; 2061–2080) (Fig-

ure 4H) and discussed the impact of temperature and precipitation on vegetation within different

periods.

We could find one roughly zonal dividing line between the negative and positive values of projected global

CRTP distribution. Consistent with the past two decades, precipitation will remain the predominant

climatic factor influencing vegetation change in most of the world in the coming six decades

(Figures 4A–4F). The precipitation will predominate vegetation changes in middle and low latitudes,

whereas the temperature will dominate in high latitudes.

Moreover, the proportion of negative CRTP will decrease with higher radiative forcings. For example,

precipitation will dominate the vegetation change in about 82% of the world from 2041 to 2060 in SSP

1–2.6, the scenario representing sustainable development in the future (Figure 4E). However, the corre-

sponding proportion will reduce sharply to 66% in SSP 5–8.5, assuming an energy-intensive, fossil-based

economy (Figure 4F). Simultaneously, vegetation change dominated by precipitation in SSP 1–2.6 will be

replaced by temperature in SSP 5–8.5 in many regions, such as Southeast Asia, West and Central Africa,

and north-central Australia. Consequently, the dividing line between the negative and positive CRTP

values from 2041 to 2060 in SSP 5–8.5 will move southward significantly compared to SSP 1–2.6

(Figures 4E and 4F).

Equally significantly, the global distribution of CRTP will vary greatly in different periods (Figures 4A–4F,

4H). For instance, the proportion of temperature-dominated vegetation change will decrease over time in

SSP 2–4.5 and SSP 3–7.0, contrasting with the increase in SSP 5–8.5 (Figure 4H). Besides, the disparities

between the CRTP proportion in SSP 1–2.6 and SSP 5–8.5 will be the least significant within 2021–2040

because of the insignificant temperature variation between these scenarios (Figure 4G). Nevertheless,

the discrepancies in CRTP proportion will gradually amplify over time (Figure 4H) as the global temper-

ature difference between the four climate scenarios increases (Figure 4G). Therefore, the difference in

CRTP proportion between the low and high radiative forcing scenarios will reach its maximum from

2061 to 2080 (Figure 4H).

Table 1. Thirteen representative RF models with different input variables and their corresponding accuracy and kappa coefficient

Input variables RF Model

Category Variablea 1 2 3 4 5 6 7 8 9 10 11 12 13

Climatea Temperature 3 3 3 3 3 3 3 3 3 3 3 3 3

Precipitation 3 3 3 3 3 3 3 3 3 3 3 3 3

Wind speed 3 3 3 3 3 3 3 3 3 3 3 3

Air pressure 3 3 3 3 3 3 3 3 3 3 3

Evaporation 3 3 3 3 3 3 3 3 3

Potential evaporation 3 3

Geography Longitude 3 3 3 3 3 3 3

Latitude 3 3 3 3 3 3 3

Altitude 3 3

Distance from sea 3 3 3 3 3

Environment FVCb 3 3

LUCC 3 3

Accuracy (%) 59.89 64.15 64.62 65.22 65.13 65.06 65.98 66.18 66.61 66.45 67.07 66.49 66.7

Kappa coefficient 0.44 0.50 0.50 0.51 0.51 0.51 0.52 0.53 0.53 0.53 0.54 0.53 0.53

aEach set of climatic variables (temperature, precipitation, wind speed, air pressure, evaporation, and potential evaporation) consists of climatic factors’ average

value and change rate. Environmental variables (FVC and LUCC) represent multi-year averages. The symbol 3 identifies the variables selected in each model.
bFVC here represents the average FVC from 2000 to 2021 in each sample.
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DISCUSSION

What modulates the CRTP distribution

The construction and rationality of CRTP

Temperature and precipitation dominate the vegetation change in many parts of the world to some de-

gree.12,13 Furthermore, many studies have pointed out that the impact of these two factors on vegetation

varies significantly in different regions.12,17,18,20 However, a reliable strategy to quantitatively distinguish

whether temperature or precipitation dominates vegetation change in a specific region is still lacking.

One of the first difficulties in giving this strategy is that the relationship between temperature, precipita-

tion, and vegetation is quite complex.24 Hence, an index is urgently needed to simplify this complex rela-

tionship and quantitatively compare the contribution of temperature and precipitation to vegetation

change. The relative contribution is one of the most widely used indexes to separate the impact of different

factors on vegetation change.36–38 Hence, we constructed the innovative index by comparing the relative

contribution of temperature and precipitation to FVC change. Moreover, we considered other important

climatic factors (e.g., wind speed, air pressure, evaporation, and potential evaporation) when calculating

the relative contribution using ANOVA to extract a more realistic individual impact of temperature or pre-

cipitation. With the index CRTP, we could initially display the intuitive global distribution of the dominance

between temperature and precipitation influencing vegetation change.

Notably, the distribution of the dominance between temperature and precipitation from 2000 to 2021

described by CRTP was highly consistent with existing research conclusions, largely verifying the rational-

ity of this index. Firstly, temperature dominated the FVC change in the northern hemisphere’s high lati-

tudes, compared with the dominance of precipitation in the relatively low latitudes (Figure 2), correspond-

ing with the previous research.12 Although on a smaller scale, precipitation dominated the vegetation

change in most Mongolian Plateau, corresponding to the regional greening caused by increasing rain-

fall.39 Besides, precipitation and drought are projected to be the most critical factors in most temperate

deserts of Central Asia in the 21st century,40 which is also clearly displayed by CRTP. Furthermore, unlike

existing research, CRTP provides a normative and quantitative scheme to distinguish the dominant factor

affecting FVC between temperature and precipitation at different scales. Equally importantly, referring to

the construction roadmap of CRTP, we can develop similar parameters related to other environmental in-

dicators, such as phenology, biomass, or biodiversity, which will provide new strategies and methods for

research in these fields, hopefully providing more comprehensive theoretical support for ecosystem man-

agement. Finally, given the innovative index’s concise physical meaning, practical application, and low

barrier to utilization, we hope that CRTP and other relevant indexes initiated soon are worth populariza-

tion and could be developed into a widely used tool for studies related to climate and its ecological

impacts.

Factors affecting CRTP distribution

Wepreliminarily filtered the factors that affect CRTP and screen the optimal RF classificationModel 11 (Table 1).

Then, takingModel 11 as an example, we could discuss the relative contribution of input variables to CRTP clas-

sification based on the ranking of normalized variable importance (Figure 5).

There were six factors with normalized variable importance larger than one, including three climatic and

three geographic variables. Among these, annual average temperature ranked first. The three most crit-

ical climatic variables contributing to CRTP classification were annual average temperature, temperature

change, and annual precipitation, which could roughly describe regional hydrothermal conditions.

Table 2. CRTP classification error matrix of Model 11, the optimal RF model

Prediction

Reference

Accuracy Dominant factor AccuracyaType 1 Type 2 Type 3 Type 4

Type 1 3096 1222 217 72 67.2% Temperature dominated 88.7%

Type 2 1561 4547 1397 264 58.5%

Type 3 363 1850 8621 2747 63.5% Precipitation dominated

Type 4 81 331 3174 10778 75.0%

aAccuracy here distinguishes the dominant climatic factors (temperature or precipitation) to vegetation change.
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Besides, the importance of all the geographic variables input to the model was considerable, with latitude

and longitude ranking second and third, respectively.

This result corresponded well with the previous research conclusions. On the one hand, the relationship

between vegetation and temperature/precipitation varied regularly with latitude and longitude.12,41 On the

other hand, the spatial differences of the dominant climatic factors affecting vegetation depended on the het-

erogeneity of hydrothermal conditions and the magnitudes of climate change.24,42 Comprehensively consid-

ering the six critical factors affecting CRTP, we can conclude that CRTP distribution will change locally with

climate and environment under a relatively fixed distribution pattern determined by longitude and latitude.

Notably, three variables (i.e., potential evaporation, altitude, and LUCC) were involved in the model simu-

lation but not adopted in the optimal Model 11 (Table 1). Firstly, we found that the evaporation and poten-

tial evaporation had similar effects on improving the model accuracy (Models 4 and 5) while simultaneously

inputting these two factors would reduce the model accuracy (Model 6) (Table 1). However, potential evap-

oration in the ERA5-land dataset is computed as open-water evaporation, differing from the potential

evapotranspiration predicted in the CMIP 6 data. Therefore, we selected total evaporation (including sub-

limation and transpiration) as the last input climatic variable.

Secondly, altitude contributed less to CRTP distribution than latitude and longitude, well corresponding to

the three-dimensional differentiation of CRTP (Figure 3). We proposed that altitude indirectly affected the

CRTP distribution through other factors, such as temperature, precipitation, and terrain. In addition, the

influence tends to be scale-dependent.17,43 So, the effects of altitude on CRTP seem challenging to

describe quantitatively (Figure 3).

Finally, land use cover/change also significantly impacted regional CRTP type. Nevertheless, LUCC

seemed to become a secondary substitute in the simulation. We have excluded the regions related to

Figure 4. CRTP projection over the next 60 years

(A–F) Projected future CRTP distribution in SSP 1–2.6 and SSP 5–8.5 from (A, B) 2021 to 2040, (C, D) 2041 to 2060, and (E, F) 2061 to 2080.

(G) Temperature projection in different scenarios in CMIP 6 models. The black square dots and curves in Figure 4G represent the actual global temperature

change from 2000 to 2020 based on ERA5 data. The blue, green, yellow, and red dots and curves show the temperature projection in the future 60 years in

different scenarios.

(H) The proportion of different types of CRTP in different scenarios and periods. Precipitation will remain the dominant climatic factor affecting vegetation

change in most of the world. The contributions of temperature to vegetation change will increase with radiative forcing over time.
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human activities from samplings in the model simulation. At the same time, the remaining LUCC informa-

tion of natural land can be extracted from remote sensing images and almost covered in FVC.44,45

CRTP’s application in vegetation degradation monitoring

Although global vegetation was generally improving because of the warming and CO2 fertilization,46

regional vegetation degradation may reduce ecosystem services and health, especially in dryland. There-

fore, we used the index CRTP to discuss the impacts of hydrothermal condition change on global vegeta-

tion degradation. Here, we identified the areas with the most significant vegetation degradation in

different continents based on FVC change (Figure 6).

Climate change, particularly precipitation (CRTP<0), led to regional vegetation degradation in North

America, especially in southeast Canada (Figure 6A). During the past few decades, the increasing impact

of warm droughts reduced plant productivity and carbon sequestration in North America.47,48 Further-

more, rapid climate change promoted vegetation conversion, including trees to savannas and grasslands,

accounting for decreased vegetation coverage.49

Although in Europe and Asia, vegetation changes in dryland were mixed with regions experiencing vege-

tation improvement and degradation.50,51 The vegetation degradation around the boundary between

Europe and Asia was primarily distributed in Russia and the Volga Federal District regions in eastern

Kazakhstan with negative CRTP, meaning the declined precipitation was responsible for this phenomenon

(Figure 6B). We also found the vegetation browning in higher latitudes in Central Siberia Highlands with

a mainly positive CRTP (Figure 6C). This phenomenon well corresponded to the degradation of grass-

lands52 and boreal forests53 in many regions of Asia during recent decades caused by drought and

overgrazing.53,54

Besides, vegetation coverage decreased remarkably in some desert regions in low latitudes with positive

CRTP as a result of increasing evaporation with warming temperatures, especially in northern Africa and the

Arabian Peninsula in Asia (Figure 6D). Moreover, it is worth noting that decreasing precipitation led to

vegetation loss on the west coast in the middle and low latitudes (CRTP<0) (15�S to 45�S) of Africa and

South America (Figures 6E and 6F). Research suggested that these regions’ precipitation reduction might

be related to the variation of radiative forcing55 and ENSO.56

In addition, although widespread greening was found over much of Australia because of wetter condi-

tions,57 there were still large areas with decreasing vegetation affected by droughts.58 Current research

emphasizes precipitation’s dominant role in the dryland’s dramatic vegetation change.59 The CRTP distri-

bution verified that regional drying resulted in vegetation degradation in Western Australia in the past

two decades (Figure 6G). At the same time, vegetation coverage decreased in north-central Australia

Figure 5. Normalized variable importance of all input variables in Model 11

The variables with the same color represent the same type of climatic, geographic, or environmental factors. There

are six factors with normalized variable importance larger than one, including three climatic and three geographic

variables.
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because of dramatic warming. Under similar climatic warming and drying conditions, the magnitude of

temperature and precipitation change will jointly determine the vegetation growth-limiting factor in

Australia.

Figure 6. CRTP distribution in areas with significant vegetation degradation from 2000 to 2021

(A–G) In this figure, the vegetation degradation responds to the FVC decrease in Figure 1; red dotted frames indicate seven regions with the most significant

vegetation degradation in each continent; Figures 6A–6G zoom in on the areas in the red dotted frames and demonstrate the spatial distribution of

degradation in detail. Over the past two decades, precipitation decline accounts for the vegetation degradation in North America, the boundary between

Europe and Asia, and the west coast of the southern hemisphere. Meanwhile, warming temperature or anthropogenic perturbance contributes to the

vegetation decrease in Arabian Peninsula, northern Africa, central Siberia Highlands, and north-central Australia.
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In short, the index CRTP can help make quick climatic attribution when discussing regional desertification

or vegetation degradation. However, if the vegetation change mechanism explained by CRTP could not

match the actual climate change, a disturbance of non-climatic factors, such as anthropogenic activities

and natural hazards, should be taken into consideration.

CRTP’s application in disaster prevention and ecosystem management

In the context of continued warming, losses from natural disasters, including extreme weather events and

mountain hazards, have increased intensely over the last decades.60 More and more adaptation evidence

has disclosed that both seasonal and dynamic forecast and ecosystem-based and climate-adaptive man-

agement are feasible and effective.61–63 CRTP projections are expected to make contributions to

ecosystem management and disaster prevention. Here, we took drought prevention and forest manage-

ment as examples for further discussion.

Utilization in drought prevention

Soil drought and atmospheric aridity are considered the leading cause of desertification aggravation in

many regions worldwide, whereas different types of drought correspond to diversified consequences

and climatic conditions.28,64 The soil drought emphasizes the low soil moisture content, mainly in areas

with a prolonged lack of precipitation.27,29 Although the high atmospheric vapor pressure deficit, an essen-

tial indicator of atmospheric aridity, often is accompanied by high temperatures and low relative humidi-

ty.65 Different types of drought restrictions on vegetation productivity vary significantly.66 Moreover,

scholars have assessed the relative contribution of water availability and temperature to the ecosystem

based on the limitation analysis of different drought types on carbon flux.67

Here, we can use reverse thinking first to judge the dominant climatic factors leading to vegetation change

in arid areas and then infer the regional drought type to a certain extent. This method should be effective in

the prediction of drought-type conversion. For example, regions with positive CRTP will expand over time

under SSP 5–8.5 in some arid areas, such as southern Africa and south-central Australia, implying the

regional drought type will change from soil drought to atmospheric aridity. The corresponding prevention

and management will differ with drought types.30 Hence, our research will provide theoretical support for

regional drought prevention in the future.

Utilization in forest management

Research on the dominant climatic factor affecting vegetation change has significant implications for

ecosystem management.21,22 Hence, separating the impact of precipitation and temperature will help

develop an integrated adaptation approach to mitigate climate change influences on vegetation and pre-

vent or delay undesired vegetation shifts.25

Projected temperature and precipitation change will have potentially negative consequences for the forest

ecosystem, such as increasing wildfire,23,68 decreasing biodiversity,6 and insect and pathogen outbreaks.69

Furthermore, the vulnerability of forest ecosystems to climate change is shifting rapidly against the back-

drop of global warming.70,71 However, appropriate ecosystem management can help mitigate climate

change impacts on vegetation25 and restrain the occurrence of disasters.72

Reasonable forest management alternatives based on future climate projections are of great significance in

conserving biodiversity,73 mitigating biospheric greenhouse gas emissions,22 and reducing the wildfire

risk,74 which highly depends on the climate and vegetation change pattern.22,75 According to CRTP projec-

tion, we could monitor the global vegetation change and analyze its climatological attribution. Therefore,

regional vegetation fluctuation’s ecological instability or disaster risk could be monitored, predicted, and

controlled. Risky vegetation change, such as an abnormal increase in vegetation coverage with positive

CRTP in regions at high risk of wildfire, should be real-time monitored and warned early.

Limitations of the study

The study limitations in the optimal model and CRTP prediction are summarized below.

First, the response of vegetation to temperature and precipitation was complex.24 Except for existing fac-

tors adopted in our model, many other factors such as CO2,
46,76 vegetation species,6 and tree age77 also
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influenced the vegetation response to climate change. Although it is unrealistic to consider all possible

driving forces in one model, the model accuracy may be further improved with all these factors covered.

Second, we screened the samples and artificially filtered out the impact of human activities in the simulation

and prediction. However, human activities like logging, farming, ecological management, and afforesta-

tion had multiple (positive or negative) effects on regional vegetation.3,78,79 Therefore, if we can solve

the bottleneck problem that human activities are challenging to quantify and predict, we will establish

a better prediction model that comprehensively considers natural and human factors.

Besides, there were certain limitations and deficiencies in describing the global CRTP distribution using

a single model. Hence, it might be an excellent method to improve the simulation’s accuracy to classify

the global samples according to specific indicators, such as vegetation types, and then construct models

independently under different classifications.

Finally, the low spatial resolution of CMIP6 data accounted for the uncertainty of CRTP prediction, espe-

cially for the absolute value of CRTP larger than one. These two kinds of CRTP usually correspond to a rela-

tively extreme temperature or precipitation. However, prediction data with a low resolution could not pro-

vide local information about extremely low or high climates. Hence, high-resolution climate prediction is

necessary to improve prediction accuracy.
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Further information for data and code files should be directed to and will be fulfilled by the lead contact,

Xueqin Zhang (zhangxq@igsnrr.ac.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

DATA: All datasets used in this study are publicly available: MODIS EVI (MOD13C2), land cover

(MCD12Q1), and DEM (ASTER GDEM V3) data used in this study were obtained from the National Aero-

nautics and Space Administration (MOD13C2: https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/

MOD13C2–6, MCD12Q1: https://ladsweb.modaps.eosdis.nasa.gov/search/order/1/MCD12Q1–6; ASTER

GDEM V3: https://lpdaac.usgs.gov/products/astgtmv003/). The meteorological data used in this study

included the ERA5-Land reanalysis data provided by European Centre for Mesoscale Weather Forecasts

(ECMWF) (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means) and

the CMIP 6 climate projection data developed by Chinese Academy of Sciences (https://esgf-node.llnl.

gov/projects/cmip6/).

CODE: This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

REAGENT or RESOURCE SOURCE IDENTIFIER
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Global meteorological reanalysis data (ERA5-

Land)

European Centre for Mesoscale Weather

Forecasts

https://cds.climate.copernicus.eu/cdsapp#!/

dataset/reanalysis-era5-land-monthly-means

MODIS Vegetation Indices data (MOD13C2) National Aeronautics and Space

Administration

https://ladsweb.modaps.eosdis.nasa.gov/

search/order/1/MOD13C2–6

Terra Advanced Spaceborne Thermal Emission

and Reflection Radiometer Global Digital

Elevation Model data

National Aeronautics and Space

Administration

https://lpdaac.usgs.gov/products/

astgtmv003/

MODIS Land Use/Cover Change data

(MCD12Q1)

National Aeronautics and Space

Administration

https://ladsweb.modaps.eosdis.nasa.gov/

search/order/1/MCD12Q1–6

Global climate projection in CMIP6 simulations

(FGOALS-f3)

Chinese Academy of Sciences https://esgf-node.llnl.gov/projects/cmip6/

Software and algorithms

ArcGIS ESRI https://www.arcgis.com/index.html

MATLAB 2018a Mathworks https://www.mathworks.com/products/

matlab.html

Origin 2022b OriginLab https://www.originlab.com/

OriginProLearning.aspx

MRT National Aeronautics and Space

Administration

https://lpdaac.usgs.gov/tools/

modis_reprojection_tool/
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METHOD DETAILS

Climatic and environmental data

The climate and environmental data mainly include ERA5 (ECMWF’s Reanalysis 5) and MODIS (The Mod-

erate Resolution Imaging Spectroradiometer) data in this research. ERA5 data is produced by ECMWF

(https://cds.climate.copernicus.eu), providing records of the global land surface with a horizontal resolu-

tion of 0.1�30.1� since the 1980s.80 Here we adopted the monthly averages of temperature, precipitation,

wind speed, air pressure, evaporation, and potential evaporation from 2000 to 2021.

MODIS data also describes the features of the land surface on a global scale (https://ladsweb.modaps.

eosdis.nasa.gov/). Therefore, we used the MODIS Vegetation Indices data (MOD13C2), a set of vegetation

index data that provides NDVI (Normalized Differential Vegetation Index), EVI (Enhanced Vegetation In-

dex), VIQA (Vegetation Index Quality Assessment), and reflectance data with a spatial resolution of 0.05

degree CMG (Climate Modeling Grid) (https://modis.gsfc.nasa.gov/data/). We adopted EVI data to calcu-

late the fractional vegetation coverage (FVC).

Furthermore, we used the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER) Global Digital Elevation Model (GDEM) data (ASTER GDEM V3, https://lpdaac.usgs.gov/

products/astgtmv003/) and theMODIS LUCC (Land Use/Cover Change) (MCD12Q1) to describe the global

elevation and land cover change, respectively. In addition, we resampled the vegetation and LUCC data

based on bilinear (for EVI data and GDEM) and the nearest neighbor (for LUCC) interpolations to the

same resolution (0.1�30.1�) as ERA5 data, ensuring the consistency of multi-source data resolution.

CMIP6 simulations

The Coupled Model Intercomparison Project (CMIP) has become the foundational element of modern

climate science and is now in its sixth phase (CMIP6).81 We here used the future (2021 to 2080) temperature,

precipitation, wind speed, air pressure, and evaporation data from the CMIP6 simulations produced by the

CAS FGOALS-f3 (Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System Finite-

Volume version 3) (https://esgf-node.llnl.gov/projects/cmip6/), the latest version of the Chinese Academy

of Sciences climate system model designed for CMIP6. This model mainly includes the atmospheric

component (Finite-volume Atmospheric Model version 2, FAMIL2),82,83 oceanic component (LASG-IAP

Climate System Ocean Model version 3, LICOM3),84 land surface component (Community Land Model

version 4.0, CLM4),85 and sea ice component (Los Alamos Sea Ice Model version 4.0, CICE 4.0) (http://

oceans11.lanl.gov/trac/CICE). Besides, the Community Earth System Model (CESM) is also introduced to

couple these four components. Here, we adopted the low-resolution (about 100 km) FGOALS-f3 model

(FGOALS-f3-L) to predict the future global CRTP distribution.

Meanwhile, CMIP6 data proposes a shared socioeconomic pathways (SSPs) framework describing future

society’s five alternative evolutions (SSP 1 to 5).86 Combined with four representative concentration path-

ways (RCPs) in CMIP5, CMIP6 develops radiative forcing pathways. We selected four representative path-

ways: SSP 1–2.6, SSP 2–4.5, SSP 3–7.0, and SSP 5–8.5, corresponding to RCP 2.6, RCP 4.5, RCP 7.0, and RCP

8.5, respectively. The radiative forcing increases from SSP 1–2.6 to SSP 5–8.5. SSP 1–2.6 represents the low

forcing sustainability pathway with a radiative forcing of 2.6 W m�2, while SSP 5–8.5 represents the high

radiative forcing scenario (8.5 W m�2).87

FVC calculation

The maximum value composite (MVC) method and a filter based on the land cover types and the continuity

were utilized to control the quality of remote sensing data and extract the annual maximum EVI value at

each pixel.39,88 Then, based on the maximum EVI, we calculated FVC, the proportion of the vertical projec-

tion of vegetation to the total area, to describe the regional vegetation coverage. FVC in the limited region

can be calculated with the following Equation89:

FVC =
EVI � EVIsoil

EVIveg � EVIsoil
(Equation 1)

Where EVIsoil and EVIveg represent the EVI value in bare soil and pure vegetation areas, respectively. For the

multi-year global data, here we replaced the EVIsoil and EVIveg with the value in the theoretical ideal state

(0 and 1) to ensure the applicability to various conditions.
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Trend of vegetation and climate change

We used linear regression based on the ordinary least square method (OLS) to calculate the trend of the

climate and vegetation. The sequence of temperature, precipitation, or FVC in each grid from 2000 to

2021 is considered independent sequence samples. OLS is adopted to seek the best-fitting result by mini-

mizing the sum of squared errors.90 Additionally, we adopted the F-test method to test the statistical sig-

nificance of the regression regarding the slope of the fitting straight line as the trend of FVC or climatic

factors.

CRTP calculation and classification

We proposed an innovative index CRTP to quantitatively compare the impacts of temperature and precip-

itation on vegetation change. We first selected a group of climatic factors (temperature, precipitation, wind

speed, air pressure, evaporation, and potential evaporation). Then we introduced the Analysis of Variance

(ANOVA) method91 to quantify the relative contribution of each climatic factor to vegetation change. The

CRTP value is the logarithm of the ratio of the relative contribution of temperature (Rtemp) and precipita-

tion (Rprep):

CRTP = log10

�
Rtemp

Rprep

�
(Equation 2)

Since the relative contribution of temperature and precipitation to vegetation change (Rtemp) and precip-

itation (Rprep) is equal to the ratio of the sum of square deviations (SS) to the total sum of square (SST), CRTP

can be simplified as follow:

CRTP = log10

�
SStemp

�
SST

SSprep

�
SST

�
= log10

�
SStemp

SSprep

�
(Equation 3)

where SStemp and SSprep represent the sum of square deviations of temperature and precipitation, respec-

tively. CRTP in different thresholds corresponds to various vegetation changemechanisms. Hence, we clas-

sified global vegetation change into four types according to the CRTP value: Type 1 (CRTP less than �1,

precipitation dominates FVC change), Type 2 (CRTP from �1 to 0, FVC is mainly affected by precipitation

and supplemented by temperature), Type 3 (CRTP from 0 to 1, FVC is primarily influenced by temperature

and supplemented by precipitation), and Type 4 (CRTP greater than 1, temperature dominates FVC

change). Precipitation tends to predominate the vegetation change in regions with CRTP negative (Type

1 and 2). Similarly, the temperature is more likely to dominate vegetation coverage in areas with CRTP pos-

itive (Type 3 and 4). Besides, the CRTP value greater than 1 (or less than �1) indicates that the impact of

temperature (precipitation) is more overwhelming than that of precipitation (temperature).

Noteworthy, we designed the index CRTP to simplify the complex relationship between vegetation and

climate. To eliminate interference from non-climatic factors, such as human activities, we defined this index

as statistically significant only for regions where climatic factors dominate the vegetation change.

Random forest optimal model for CRTP classification and prediction

The supremacy of temperature and precipitation on vegetation change is interchanged with regions, sea-

sons, and species.12,16 So, we can deduce that regional CRTP type highly depends on the local climatic,

geographic, and environmental conditions. Assuming a stable and reliable relationship exists between

CRTP and some constant (e.g., longitude, latitude, and altitude) or predictable factors (e.g., climatic fac-

tors), we could build the CRTP classification model based on these predictable factors. Then, we could pre-

dict the future CRTP type by predicting these climatic, geographic, or environmental factors.

Here, we utilized the RF ("randomForest" package in R92) classifier to construct the CRTP classification pre-

diction models based on predictable climatic, geographic, and environmental factors. The RF algorithm

depends on decision tree classification,93 which has been extensively applied in climate and ecological

research.94,95 We fitted a predefined number of classification trees to a dataset (500 in this research) and

combined the predictions from all trees, achieving an output determined by a majority vote among the de-

cision trees.96 Multiple data sets with different numbers and climatic and environmental data combinations

were selected as the input variables. Each pixel with statistically significant CRTP was considered a single

sample. Then, we used the "Caret" package in R to sample the data with 80% as the training set and the rest

as the test set. The classification accuracy of the test set was considered the accuracy of each model. Here,
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the overall accuracy, kappa coefficient, and error matrix were adopted for the accuracy assessment of RF

classification.

We performed the overall accuracy and kappa coefficient on all classification results with different input

variables and displayed the error matrix on the optimal classification model. As indicators to measure clas-

sification accuracy, the overall accuracy and kappa coefficient can be extracted from the error matrix.97 The

overall accuracy is the proportion of the number of correctly classified samples to the number of all sam-

ples. The kappa coefficient can be calculated as follows:

pe =
a1 3b1+a2 3b2+.+ac 3bc

n3 n
(Equation 4)

Kappa =
p0 � pe

1 � pe
(Equation 5)

In these formulas, a1, a2, ., ac, are the numbers of correctly classified samples of each category, while b1,

b2,., bc, are the predicted samples of each category. Kappa represents the kappa coefficient, and p0 is the

overall accuracy. The value range of the kappa coefficient is usually [0, 1]. The larger this coefficient, the

higher the classification accuracy.

Here, we built the CRTP classification model according to different climatic (temperature, precipitation,

wind speed, air pressure, evaporation, and potential evaporation), geographic (longitude, latitude, alti-

tude, and distance from sea), and environmental (FVC, LUCC) factors based on machine learning. Given

the relative contributions of different climatic factors to vegetation change highly depending on the hydro-

thermal conditions and the magnitudes of climate change,24,42 we extracted the climatic information of

these two aspects to analyze its attribution to CRTP distribution. First, we calculated the annual average

of climatic factors to describe the regional climatic condition and extracted the change rate using the

OLS method. Then, different climatic factors’ average values and change rates are input into the RF model

as variables representing each independent climatic factor. Besides, we selected the average FVC from

2000 to 2021 and the land cover type in themiddle of the period (2010 in this research) as the input variables

to ensure that environmental variables can represent the environmental characteristics in a certain period.

We also screened the global samples according to the land cover type before inputting them into the

model. Samples corresponding to croplands and settlements are removed because CRTP and related

models at the present stage only consider the natural processes.

We first input climatic variables with different combinations and obtained the temporary best model by

comparing the accuracy to achieve the optimal set of input variables. Secondly, we gradually added

geographic variables to form new models and got an optimal climatic-geographic model. Then, we added

environmental variables and produced the final optimal model. Notably, multiple (usually five) simulations

were repeatedly run on the same set of variables, screening the model with the highest accuracy. In

particular, over ten simulations were repeated on two sets of variables with similar model accuracy to

help precisely pick out the better model.
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