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Abstract

Immobilized Metal Affinity Chromatography (IMAC) has been used for decades to purify proteins on the basis of amino acid
content, especially surface-exposed histidines and ‘‘histidine tags’’ genetically added to recombinant proteins. We and
others have extended the use of IMAC to purification of nucleic acids via interactions with the nucleotide bases, especially
purines, of single-stranded RNA and DNA. We also have demonstrated the purification of plasmid DNA from contaminating
genomic DNA by IMAC capture of selectively-denatured genomic DNA. Here we describe an efficient method of purifying
PCR products by specifically removing error products, excess primers, and unincorporated dNTPs from PCR product
mixtures using flow-through metal-chelate affinity adsorption. By flowing a PCR product mixture through a Cu2+-
iminodiacetic acid (IDA) agarose spin column, 94–99% of the dNTPs and nearly all the primers can be removed. Many of the
error products commonly formed by Taq polymerase also are removed. Sequencing of the IMAC-processed PCR product
gave base-calling accuracy comparable to that obtained with a commercial PCR product purification method. The results
show that IMAC matrices (specifically Cu2+-IDA agarose) can be used for the purification of PCR products. Due to the
generality of the base-specific mechanism of adsorption, IMAC matrices may also be used in the purification of
oligonucleotides, cDNA, mRNA and micro RNAs.
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Introduction

Current methods of PCR product purification include electro-

phoretic separation, enzymatic degradation of single-stranded

DNA with Exonuclease I and Shrimp Alkaline Phosphatase, and

adsorption on silica matrices. Smith et al. have demonstrated the

removal of mismatch sequences from PCR products using

mutHLS proteins [1]. These methods can be expensive, time

consuming, and/or difficult to automate. Enzyme-based tech-

niques also can be complicated by the dependence of enzymatic

activity on storage and reaction conditions.

We have developed a technique for removing PCR error

products, unincorporated primers and dNTPs from a PCR

product mixture using immobilized metal affinity chromatography

(IMAC). IMAC is widely employed for the purification of both

native and histidine-tagged recombinant proteins [2]. Transition

metal ions such as Cu2+, Ni2+, and Zn2+ immobilized on chelators

such as iminodiacetic acid (IDA) and nitrilotriacetic acid (NTA)

have been shown to interact with histidine and tryptophan

residues [3]. The purine bases of DNA/RNA contain aromatic

and imidazolyl nitrogens similar to those of histidine and

tryptophan. These aromatic nitrogens are shielded in double-

stranded DNA, but are free and sterically-accessible in dNTPs,

single-stranded DNA, mRNA and micro RNA. We previously

speculated that IMAC could be extended from protein purification

to the purification of nucleic acids, by separating nucleotides and

single-stranded DNA/RNA from double-stranded DNA. In fact,

mononucleotides were long ago shown to bind to IMAC matrices

[4,5]. We subsequently showed that metal-chelate binding can

separate single-stranded RNA from double-stranded DNA by

adsorption, or by selective precipitation with ‘‘smart’’ polymers

[6,7] and can be used in the separation of genomic DNA from

plasmid DNA with selective renaturation [8]. We also found that

the addition of neutral osmolytes enhances the binding of RNA

and oligonucleotides to metal-chelate matrices [9], raising the

possibility of water elution of nucleic acids from IMAC adsorbents

under-loaded with metal, creating a repulsive surface charge

through the unloaded anionic chelators [10]. Tan et al. recently

reported that a combination of IMAC and metal affinity

precipitation can be used to purify plasmid DNA by removing

RNA and endotoxin [11,12], and Luo et al. used IMAC to remove

endotoxin from biological solutions [13]. Nastasijevic et al.

demonstrated the use of a PCR-added dA20 tail as an affinity

tag for capturing double-stranded PCR products on metal-chelate

matrices and also proposed a method of IMAC purification of

polyA-tailed mRNA [14]. In this work, we describe the
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purification of PCR products using Cu2+-IDA spin columns, with

substantial reduction of erroneous PCR products, unincorporated

primers and dNTPs.

Results and Discussion

The use of a spin column allows the efficient use of small

amounts of adsorbent and sample. The columns can be

equilibrated with the appropriate buffer in a few minutes with a

few centrifugation steps. With the appropriate equipment, e.g.,

filter-bottom plates, most steps are automatable.

Previously, it was determined that single-stranded DNA binds to

IMAC adsorbents whereas double-stranded DNA does not

[6,11,12,14]. Also, we have previously reported that mismatches

in a heteroduplex oligonucleotide were captured by IMAC, and

that single-stranded oligonucleotides were readily separated from

double-stranded DNA [6]. However, the base content of an

oligonucleotide is known to have a strong influence on its ability to

bind to metal-chelate adsorbents. The purines, adenine and

guanine, have a strong affinity for the Ni-IDA matrix, while the

pyrimidines, cytosine and thymine, have a much weaker affinity

[6]. These results can be understood by reference to X-ray

crystallographic studies [15] of nucleotide-metal ion binding sites

(Figure 1). Adenine, with its two metal binding sites, should show

the best affinity, whereas thymine, with no strong metal binding

sites, should show little or no affinity. While guanine and cytosine

each have one binding site, the guanine site is less sterically-

hindered than that of cytosine. Consistent with these structural

results, it was found that guanine has greater affinity for an

immobilized metal than cytosine [6]. Thus, it can be expected that

an oligonucleotide (e.g., a PCR primer) with typical purine content

should be readily separable from double-stranded DNA (though

primers with very low purine content might not be well resolved

from dsDNA).

Removal of Primers and Error Products from a PCR
Product Mixture

20 mL of a Taq PCR reaction product mixture from a lambda

bacteriophage genomic DNA template was applied to each of two

125 mL Cu2+-IDA IMAC spin columns. The pooled flow-through

product from two identical columns was loaded onto a 1.2%

agarose SB (sodium boric acid) gel stained with SYBR Gold

Nucleic Acid Gel Stain (Molecular Probes, Eugene, OR, USA) for

analysis by electrophoresis. Figure 2A, lane 2 shows the purified

PCR product; no primer band is visible in the product, indicating

that both forward and reverse primers have been removed.

Figure 2B, lane 2 also illustrates the removal of the higher-mobility

error products from the product mixture. The first column was

then washed with three consecutive 20 mL aliquots of non-eluting

buffer A. Each wash was collected and analyzed on the same gel

(Figure 2A, lanes 3–5) showing that additional fractions of pure

double-stranded product can be obtained if desired. To charac-

terize the contaminants captured by IMAC, 20 mL of eluent

(500 mM imidazole in buffer A) was added to the second column

and incubated for 15 min, then centrifuged for 2 min at 1100 xg.

For the 2nd and 3rd elutions, 20 mL of eluent was added and

centrifuged for 2 min at 1100 xg (no incubation). The primer is

eluted from the column in the first two elutions, along with more

double-stranded product (Figure 2A, lanes 6–9). In Figure 2A,

lanes 7–9 were concentrated 16-fold by ethanol precipitation to

enhance sensitivity. Eluates from four Cu2+-IMAC columns were

pooled together (total volume 80 mL), and DNA precipitated using

1/10 volume of 3 M potassium acetate, pH 5.0 and 2.5 volumes of

absolute ethanol. The pellet was washed with 250 mL of 70%

ethanol, air dried and then dissolved in 5 mL of water and loaded

into the gel.

In addition to the primers, in the concentrated eluates a smear

of Taq PCR error products can be seen below the 280 bp product

(Figure 2B, lane 7); these are effectively removed by IMAC

(Figure 2B, lane 2). Error fragments are commonly produced in

Taq PCR by insertion of mismatched bases [16]. Taq has difficulty

extending the DNA chain past a mismatch, resulting in sticky-

ended products [17], which have sufficient single-stranded regions

to bind the Cu2+ column. Similar results as shown for lambda

DNA were obtained for removal of PCR error products from

products of PCR amplification of a 1.1 kbp D-alanine-D-alanine

ligase A gene from E.coli genomic DNA (data shown in Figure S1).

Removal of dNTPs from a PCR Product Mixture
Each dNTP (as 60 mL of a 100 mM solution) was loaded onto

triplicate 100 mL Cu2+ spin columns, which were processed as

described above. The flow-through was collected from each

column and analyzed on a UV spectrophotometer. Approximately

99% of the dATP and dGTP was removed - 9960.5% (0.9060.00

absorbance) and 9960.2% (1.5060.01 absorbance), respectively.

The deoxy pyrimidine triphosphates dCTP and dTTP bound to

the column less stringently - 9562% (0.8860.02 absorbance) and

9461% (1.3660.00 absorbance) bound, respectively. In each case,

the concentration of dNTPs was reduced from 100 mM to less

than 6 mM, a level that should not inhibit subsequent sequencing

or other enzymatic reactions [18].

Sequencing of IMAC-processed PCR Mixtures
Contaminants such as excess salts, PCR primers, and dNTPs

have a detrimental effect on sequencing of PCR products. In the

sequencing reaction, primers and nucleotides will compete with

the sequencing primer and ddNTPs. This results in additional

products which, when analyzed on the sequencing gel, make it

difficult or impossible to determine the correct bases, causing a

‘‘no-call’’, the number of which can be used to judge the relative

Figure 1. Metal ion binding sites of the DNA bases.
doi:10.1371/journal.pone.0014512.g001
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quality of a PCR product. Phred quality scores also can be used to

assess the quality of the sequence, with a Phred quality score of 20

implying a 1-in-100 probability that the base is incorrectly

assigned [19,20].

SeqWright (Houston, TX, USA) performed dideoxynucleotide

sequencing reactions on three sets of samples – the products of

PCR amplification of a 1.1 kbp D-alanine-D-alanine ligase A

encoding region of the E.coli genomic DNA, this PCR product

after purification by IMAC, and this PCR product purified using

the QIAquick PCR Purification kit (Qiagen, Valencia, CA, USA).

Four independent PCR reaction samples were sequenced after

each treatment, for a total of 12. Each product was sequenced

from each end (using primers designated CT and NT), for a total

of 24 reactions. Sequencing used BigDyesTM ddNTPs (Applied

Biosystems, Foster City, CA, USA), according to the manufactur-

er’s directions. The average no-calls ‘N’s observed after 10

correctly called consecutive bases in the first 800 bases for

unpurified PCR products, QIAquick purified and IMAC purified

samples were 38624, 262 and 764 respectively using CT primer

(Table S1) and 73638, 462 and 1468 respectively using NT

primer (Table S2). Raw sequence traces are provided in Figure S2

- CT primer and Figure S3 - NT primer and ClustalW alignment

of the sequences are shown in Figure S4. Also, Phred quality scores

for each base were provided by SeqWright. The numbers of Phred

20 bases for unpurified PCR products, QIAquick purified and

IMAC purified samples were 590679, 795613 and 815629

respectively using CT primer and 596645, 713614 and 732628

respectively using NT primer (Table 1). Figure 3, showing a plot of

the average Phred score versus base position obtained using the

NT primer (and a plot of the results using the CT primer shown in

Figure S5), demonstrates that the sequence quality is greatly

improved for IMAC purified samples compared to that of

unpurified samples, and is at least comparable to the quality

observed for QIAquick purified samples. These results show that

unoptimized IMAC purification can yield purified product

comparable in quality to that obtained using the commercial

silica gel membrane QIAquick PCR Purification kit.

From these results, it is clear that IMAC can remove primers,

error products and dNTPs from PCR product mixtures,

suggesting that IMAC (specifically Cu2+-IDA) is a promising

approach to the purification of PCR products.

IMAC purification might also improve the results of PCR

product cloning, and sequencing by non-Sanger methods. In

addition to purifying double-stranded PCR products, IMAC

should be applicable to the purification of double-stranded

DNA amplicons generated by other in vitro DNA amplification

methods such as Loop mediated isothermal amplification

(LAMP), Helicase-dependent amplification (HDA) and Multiple

Figure 2. Cu2+-IMAC purification of PCR product mixture from
amplifying a region of lambda bacteriophage genomic DNA.
(A) Gel picture showing Cu2+-IMAC purification of PCR product mixture
from amplification of a 280 bp region of lambda bacteriophage
genomic DNA. Lane 1: 5 mL of unpurified PCR product; Lane 2: 5 mL
of purified PCR product, flow-through after direct application of PCR
product mixture to Cu2+-IMAC column; Lanes 3–5: 5 mL of consecutive
20 mL column washes with 250 mM NaCl, 20 mM HEPES, pH 7.0; Lane 6:
5 mL of first elution with 20 mL 500 mM imidazole in 250 mM NaCl,
20 mM HEPES, pH 7.0; Lanes 7–9: 5 mL of first, second and third
elutions, respectively with 20 mL 500 mM imidazole in 250 mM NaCl,
20 mM HEPES, pH 7.0. Lanes 7–9 were concentrated 16-fold by ethanol
precipitation to enhance sensitivity. (B) Expanded views of 280 bp
product from selected lanes of Figure 2A. Lane 1: Unpurified PCR
product, corresponding to Lane 1 of Figure 2A; Lane 2: Purified flow-
through PCR product, corresponding to Lane 2 of Figure 2A; Lane 3:
First wash with 250 mM NaCl, 20 mM HEPES, pH 7.0, corresponding to
Lane 3 of Figure 2A; Lane 6: First elution with 500 mM imidazole in
250 mM NaCl, 20 mM HEPES, pH 7.0, corresponding to Lane 6 of
Figure 2A; Lane 7: 16 times concentrated product of first imidazole
elution, corresponding to Lane 7 of Figure 2A.
doi:10.1371/journal.pone.0014512.g002

Table 1. Number of Phred 20 bases obtained after various treatments.

CT Primer NT Primer

Sample Unpurified PCR
QIAquick purified
PCR IMAC purified PCR Unpurified PCR QIAquick purified PCR

IMAC purified
PCR

1 539 787 826 638 699 704

2 526 795 800 630 704 714

3 699 814 851 549 726 763

4 597 785 784 565 726 748

Mean6SD 590679 795613 815629 596645 713614 732628

doi:10.1371/journal.pone.0014512.t001

IMAC PCR Purification

PLoS ONE | www.plosone.org 3 January 2011 | Volume 6 | Issue 1 | e14512



displacement amplification (MDA). These results also suggest the

application of IMAC in the purification of cDNAs, mRNAs and

microRNAs.

Materials and Methods

A 280 bp region of lambda bacteriophage genomic DNA (USB

Corporation, Cleveland, OH, USA) was amplified in 50 mL PCR

reactions containing 2 pg of lambda genomic DNA template, 1X

PCR buffer, 200 mM each dNTP, 1 U GoTaq Flexi DNA

Polymerase (Promega, Madison, WI, USA), 1.3 mM magnesium

chloride and 2 mM each of the primers, 59-GGCTTCG-

GTCCCTTCTGT-39 and 59-CACCACCTGTTCAAACTC-

TGC-39. The reactions were carried out in a MJ Mini Personal

thermal cycler (Bio-Rad, Hercules, CA, USA) as follows: 35 cycles

of 45 s at 95uC (denaturation), 45 s at 55uC (annealing), 45 s at

72uC (elongation), followed by a final elongation step at 72uC for

5 min.

For other experiments, an 1.1 kbp D-alanine-D-alanine ligase A

encoding region of the E.coli genomic DNA was amplified in

50 mL PCR reactions containing 10 ng of the genomic DNA, 1X

PCR buffer, 200 mM each dNTP, 1 U GoTaq Flexi DNA

Polymerase (Promega, Madison, WI, USA), 1 mM Magnesium

chloride and 1 mM each of the primers, 59- GGGGCATATG-

GAAAAACTGCGGGTAGGAATCG -39 (NT primer) and 59-

GGGGGGATCCGGGCGTTAAAATATTACATTGTGGTT -

39 (CT primer). The reactions were carried out in a MJ Mini

Personal thermal cycler (Bio-Rad, Hercules, CA, USA) as follows:

30 cycles of 45 s at 95uC (denaturation), 1 min at 66.5uC
(annealing), 1 min at 72uC (elongation), followed by a final

elongation step at 72uC for 5 min.

Adsorbent Preparation
2 mL of Chelating Sepharose Fast Flow (GE Healthcare,

Piscataway, NJ, USA) in 20% ethanol was added to a 2 mL

polypropylene tube. The tube was centrifuged in a tabletop

microcentrifuge at 11,000 xg for 2 min, the supernatant was

decanted, and the beads were washed three times with DI H2O to

remove residual ethanol. Then, 0.6 mL of 50 mM CuCl2 was

added and the tube was mixed end-over-end on a Cole-Parmer

rotor for 15 minutes. Finally, the beads were washed three times

with 20 mM HEPES, 250 mM NaCl, pH 7.0 (‘‘Buffer A’’) to

remove excess unchelated metal ions and to equilibrate the matrix.

Spin Column Preparation and Use
Using a 1 ml pipette tip with the bottom quarter cut off to

accommodate the ca. 90 mm adsorbent particles, 250 mL of vortex-

suspended metal-charged matrix slurry (125 mL buffer A, 125 mL

wet adsorbent) was added to a Micro Bio-Spin Chromatography

column (Bio-Rad, Hercules, CA, USA). The column was then

inserted into a 2 mL polypropylene microcentrifuge tube and

centrifuged for 2 min at 1100 xg in a tabletop microcentrifuge,

leaving 125 mL of packed wet beads.

The receiving microcentrifuge tube was replaced with a fresh

one. Then, 20 mL of the PCR mixture was added to the prepared

spin column and after allowing 15 min for adsorption, the column

Figure 3. Average Phred score (using NT primer) versus base position. IMAC purified (red) and QIAquick purified (green) samples have
better quality scores than unpurified (blue) samples.
doi:10.1371/journal.pone.0014512.g003
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was centrifuged for 2 min at 1100 xg. The PCR mixture passes

through the column and is depleted of primers, nucleotides and

error products, producing purified double-stranded product. Some

double-stranded product is trapped in the interstitial space of the

column and can be recovered if desired by washing the column

with non-eluting buffer A.

Supporting Information

Figure S1 Cu2+-IMAC purification of PCR product mixture

from amplifying a region of E.coli genomic DNA. Lane 1: normal

loading (0.5 mL) of unpurified PCR product; Lane 2: overloading

(4 mL) of unpurified PCR product; Lane 3: normal loading

(0.5 mL) of purified PCR product, flow-through after direct

application of PCR product mixture to Cu2+-IMAC column;

Lane 4: overloading(4 mL) of purified PCR product Lanes 5-7:

4 mL of consecutive 20 mL column washes with 250 mM NaCl,

20 mM HEPES, pH 7.0; Lane 8: 4 mL of first elution with 20 mL

500 mM imidazole in 250 mM NaCl, 20 mM HEPES, pH 7.0;

Lanes 9-11: 4 mL of first, second and third elutions, respectively

with 20 mL 500 mM imidazole in 250 mM NaCl, 20 mM

HEPES, pH 7.0. Lanes 9-11 were concentrated 10-fold by ethanol

precipitation to enhance sensitivity.

Found at: doi:10.1371/journal.pone.0014512.s001 (1.42 MB TIF)

Figure S2 Raw sequence trace using CT primer.

Found at: doi:10.1371/journal.pone.0014512.s002 (5.44 MB

PDF)

Figure S3 Raw sequence trace using NT primer.

Found at: doi:10.1371/journal.pone.0014512.s003 (5.62 MB

PDF)

Figure S4 ClustalW alignment of sequence data generated using

NT and CT Primers.

Found at: doi:10.1371/journal.pone.0014512.s004 (0.08 MB

DOC)

Figure S5 Average Phred score (using CT primer) versus base

position. IMAC purified (red) and QIAquick purified (green)

samples have better quality scores than unpurified (blue) samples.

Found at: doi:10.1371/journal.pone.0014512.s005 (0.36 MB

PDF)

Table S1 Number of no-calls using CT primer.

Found at: doi:10.1371/journal.pone.0014512.s006 (0.03 MB

DOC)

Table S2 Number of no-calls using NT primer.

Found at: doi:10.1371/journal.pone.0014512.s007 (0.03 MB

DOC)
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