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ABSTRACT
Introduction  Previous investigations have suggested that 
evening chronotypes may be more susceptible to obesity-
related metabolic alterations. However, whether device-
measured physical behaviors differ by chronotype in those 
with type 2 diabetes (T2DM) remains unknown.
Research design and methods  This analysis reports 
data from the ongoing Chronotype of Patients with Type 
2 Diabetes and Effect on Glycaemic Control (CODEC) 
observational study. Eligible participants were recruited 
from both primary and secondary care settings in the 
Midlands area, UK. Participants were asked to wear 
an accelerometer (GENEActiv, ActivInsights, Kimbolton, 
UK) on their non-dominant wrist for 7 days to quantify 
different physical behaviors (sleep, sedentary, light, 
moderate-to-vigorous physical activity (MVPA), intensity 
gradient, average acceleration and the acceleration 
above which the most active continuous 2, 10, 30 
and 60 min are accumulated). Chronotype preference 
(morning, intermediate or evening) was assessed using 
the Morningness-Eveningness Questionnaire. Multiple 
linear regression analyses assessed whether chronotype 
preference was associated with physical behaviors and 
their timing. Evening chronotypes were considered as the 
reference group.
Results  635 participants were included (age=63.8±8.4 
years, 34.6% female, body mass index=30.9±5.1 kg/m2). 
25% (n=159) of the cohort were morning chronotypes, 
52% (n=330) intermediate and 23% (n=146) evening 
chronotypes. Evening chronotypes had higher sedentary 
time (28.7 min/day, 95% CI 8.6 to 48.3) and lower MVPA 
levels (–9.7 min/day, –14.9 to –4.6) compared to morning 
chronotypes. The intensity of the most active continuous 
2-60 min of the day, average acceleration and intensity 
gradient were lower in evening chronotypes. The timing of 
physical behaviors also differed across chronotypes, with 
evening chronotypes displaying a later sleep onset and 
consistently later physical activity time.
Conclusions  People with T2DM lead a lifestyle 
characterized by sedentary behaviors and insufficient 
MVPA. This may be exacerbated in those with a preference 
for ‘eveningness’ (ie, go to bed late and get up late).

INTRODUCTION
Type 2 diabetes (T2DM) is a condition char-
acterized by hyperglycemia, resulting from 
defects in hepatic and peripheral glucose 
uptake, insulin secretion or both.1 In 2019, 
the global prevalence of T2DM in 20–79 year 

olds was estimated to be 463 million (11%), 
with this figure expected to rise further to 700 
million by 2040.2 Over the last three decades, 
the number of people with diabetes has more 

Significance of this study

What is already known about this subject?
►► Quantity of sleep is associated (‘U’ shaped relation-
ship) with the development of cardiometabolic dis-
ease. Beyond duration of sleep, the timing of sleep 
may also be important.

►► Chronotype, a diurnal characteristic, identifies indi-
viduals as having a preference for morning (ie, go 
to bed early and get up early), evening (ie, go to bed 
late and get up late) or neither (intermediate).

►► Evening chronotypes may be more susceptible to 
obesity-related metabolic alterations, potentially 
driven by differences in physical behaviors.

►► Adults with type 2 diabetes (T2DM) are less physical-
ly active and more sedentary than those without the 
condition.

What are the new findings?
►► Our study demonstrates that those with a preference 
for an evening chronotype have higher sedentary time, 
lower levels of light activity and lower moderate-to-
vigorous physical activity (MVPA) compared with both 
morning and intermediate chronotypes.

►► The timing of both sleep onset and physical activity 
differs across chronotypes, with evening chronotypes 
displaying a later sleep onset and consistently later 
physical activity time.

►► Average MVPA levels were 56% lower in evening chro-
notypes compared with morning chronotypes.

►► In addition to duration, differences also exist in the in-
tensity of movement between chronotypes.

How might these results change the focus of 
research or clinical practice?

►► There is a need for large-scale interventions to be 
implemented into diabetes care which support peo-
ple with T2DM to initiate, maintain and achieve the 
substantial benefits of an active lifestyle. This may be 
particular pertinent for those with an ‘eveningness’ 
preference.

►► As chronotype is potentially modifiable, future research 
should focus on these physical behaviors (and their 
timing) in order to optimize interventional responses.

http://drc.bmj.com/
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than doubled and it is the fifth leading cause of mortality 
globally.3

Healthy sleep is considered an important lifestyle 
component that is associated with chronic disease.4 
For example, an increasing number of studies have 
demonstrated that the quantity of sleep is associated 
(‘U’ shaped relationship) with the development of 
cardiometabolic disease including metabolic syndrome, 
T2DM and cardiovascular disease.5 6 Beyond duration of 
sleep, the timing of sleep may also be important. Chro-
notype, a diurnal characteristic that identifies individuals 
as having a preference for morning (ie, go to bed early 
and get up early), evening (ie, go to bed late and get up 
late) or neither (intermediate), is driven by endogenous 
circadian rhythms, environmental (eg, light), socio-
occupational (eg, employment) and lifestyle factors.7 8 
Previous investigations have demonstrated that evening 
chronotypes may be more susceptible to obesity-related 
metabolic alterations.9 10 However, in order to inform 
future lifestyle interventions, it is necessary to explore 
the role of potentially modifiable determinants (eg, 
sedentary behavior and physical activity) across different 
chronotypes.

Regular physical activity is an important lifestyle recom-
mendation for the management of T2DM that is associ-
ated with substantially lower cardiovascular and overall 
mortality risk.11 12 Individuals are encouraged to exer-
cise daily or at least every other day,12 with the aim of 
meeting the current physical activity guidelines of at least 
150 min a week of moderate physical activity or 75 min 
of vigorous intensity exercise per week.13 Reducing the 
amount of time spent sedentary is also recommended for 
the management of T2DM.12 Despite the unequivocal 
benefits of moderate-to-vigorous physical activity (MVPA) 
and deleterious effects of sedentary behavior, adults with 
T2DM are less physically active and more sedentary than 
those without the condition.14–16 The advancement of 
technology (such as accelerometry) now allows device-
measured physical behaviors to be quantified contin-
uously over a period of time (including the ability to 
timestamp physical behaviors), while addressing many of 
the limitations previously associated with self-report (eg, 
reporting bias). They also offer the opportunity to quan-
tify sleep, which is a complex and multidimensional func-
tion that encompasses independent, but related, metrics 
including duration (quantity).

Despite previous investigations suggesting that those 
with a preference for an evening chronotype may engage 
in lower levels of physical activity,17 whether device-
measured physical behaviors differ by chronotype in 
those with T2DM remains unknown. As chronotype is 
potentially modifiable,18 these common functions may 
be leveraged to individually tailor interventions targeting 
these behaviors to optimize responses. Therefore, the 
aim of this manuscript is to describe physical behaviors 
(including their timing) in a multiethnic population with 
T2DM and examine whether these differ by chronotype 
preference.

RESEARCH DESIGN AND METHODS
Participants and methods
Participants included in this analysis had data collected as 
part of the Chronotype of Patients with Type 2 Diabetes 
and Effect on Glycaemic Control (CODEC) study. Briefly, 
this is a cross-sectional, multisite observational study which 
primarily aims to investigate and describe the chrono-
type of patients with T2DM and the subsequent effect on 
glycemic control.19 Secondary aims include exploring the 
associations between glycemic control, cardiometabolic 
health and other lifestyle factors (including sedentary and 
physical activity monitoring). Detailed inclusion and exclu-
sion criteria are presented in online supplementary table 1.

Eligible participants were recruited from both 
primary and secondary care settings from four sites 
across the Midlands, UK (Leicester, Nottingham, 
Derby, Northampton). All participants provided written 
informed consent.

Outcomes of interest were collected following informed 
consent at the data collection appointment. These included 
date of birth, sex (male/female), ethnicity (self-reported) 
and body mass index (BMI) (kg/m2). BMI was calculated 
to the nearest 0.1 kg/m2. Medical history (including dura-
tion of T2DM) was collected by a study clinician, research 
nurse or healthcare professional. Occupation type was also 
collected via questionnaire (self-report).

Chronotype
Chronotype preference was determined using the 
Morningness-Eveningness self-assessment questionnaire 
(MEQ).20 This validated questionnaire consists of 19 items 
on sleep habits and fatigue and assesses individual differ-
ences in the degree to which respondents are active and 
alert at certain times of day. The scale item responses deter-
mine preferences in sleep and waking times and subjective 
‘peak’ times at which respondents feel their best. Individ-
uals were classified as either evening type (score of ≤52), 
intermediate type (53-64) or morning type (≥65).21

Physical behaviors: sleep, sedentary behavior and physical 
activity
Participants were asked to wear an accelerometer (GENE-
Activ, ActivInsights, Kimbolton, UK) on their non-dominant 
wrist to quantify habitual levels of sleep, sedentary time and 
physical activity. The GENEActiv was initialized to collect 
data at 100 Hz. Participants wore the GENEActiv accel-
erometer 24 hours/day for up to 7 days. Alongside this, 
participants also completed a wake and sleep log for the 
days they wore the device. The device was fitted on the 
day of their appointment and they were provided with a 
prepaid envelope to return the device and the wake/sleep 
log at the end of the assessment period.

Accelerometer data processing
On return, data were downloaded using GENEActiv PC 
software V.3.2. The ​GENEActiv.​bin files were processed 
using R-package GGIR V.1.8–1 (http://​cran.​r-​project.​org) 
and a sleep detection algorithm was applied to derive sleep 

https://dx.doi.org/10.1136/bmjdrc-2020-001375
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duration.22–25 Sleep logs were used to guide the algorithm 
to identify this sleep window.

Signal processing in GGIR includes autocalibration 
using local gravity as a reference,23 detection of sustained 
abnormally high values, detection of non-wear and calcu-
lation of the average magnitude of dynamic accelera-
tion, corrected for gravity averaged over 5 s epochs and 
expressed in milligravitational units (mg). Participants 
were excluded if their accelerometer files showed postcali-
bration error greater than 0.01 g (10 mg), fewer than 3 days 
of valid wear (defined as >16 hours per day22 26) or wear 
data were not present for each 15 min period of the 24 
hours cycle. Detection of non-wear has been described in 
detail previously.23 The default non-wear setting was used, 
that is, invalid data were imputed by the average at similar 
time-points on different days of the week. Sleep duration 
was calculated using automated sleep detection (HDCZA 
sleep detection algorithm).25 The average of all valid days 
was used for all outcome variables.

The following sedentary behavior and physical activity 
characteristics were obtained: average time accumulated in 
sedentary behavior (defined as time accumulated during 
the waking day below 40 mg),26 light activity (defined as 
time accumulated with an acceleration between 40 and 
100 mg),27 MVPA in 1 min bouts (defined as time accumu-
lated in 1 min bouts above an acceleration of 100 mg),28 29 
average acceleration in mg (a proxy for overall physical 
activity) and the average acceleration of the most active 
continuous 2, 10, 30 and 60 min bouts). In addition, we 
also derived the time at which the MX metrics were under-
taken, allowing analysis of when the most intensive periods 
of activity were occurring. MX is a novel accelerometer 
metric that captures the intensity (acceleration) during a 
person’s most active period of the day.30

In addition, we report the intensity gradient, which 
reflects the distribution of physical activity intensity across 
the 24 hour day and has been described in detail else-
where.31 In brief, it describes the negative curvilinear rela-
tionship between physical activity intensity and the time 
accumulated at that intensity during the 24 hour day. The 
intensity gradient is always negative, reflecting the drop in 
time accumulated as intensity increases; a more negative 
(lower) gradient reflects a lower amount of time accumu-
lated at mid-range and higher intensities, while a less nega-
tive (higher) gradient reflects more time spread across the 
intensity range.31 MX and the intensity gradient metrics do 
not rely on population-dependent and protocol-dependent 
cut-points to estimate intensity of physical activity.

The following sleep characteristic was obtained: sleep 
duration (total accumulated sleep within the sleep 
window), discounting any wake time and daytime sleep 
and the time of sleep onset.

Statistical analysis
Demographic, anthropometric, biochemical and acceler-
ometer derived variables are presented as numbers (mean 
(SD), median (IQR)) or percentages for categorical 

groups. All physical behaviors are reported as average 
minutes per day. Acceleration variables are reported as 
mg.

Multiple linear regression analyses assessed whether 
time spent in physical behaviors or the timing of physical 
behaviors differed by chronotype preference, both unad-
justed and independent of covariates (age, sex, ethnicity, 
employment status, duration of diabetes and sleep dura-
tion). Given the non-linear association between sleep 
and physical activity, sleep duration was split into tertiles 
before being entered into the linear model as a covariate. 
When examining the potential differences in the timing 
of physical behaviors, the continuous MX bouts were 
used.

A main effect of chronotype was followed by posthoc 
contrasts. Given that previous investigations have demon-
strated a less favorable cardiometabolic profile in evening 
chronotypes,9 10 these individuals were considered as the 
reference group. Due to the right-skewed distributions of 
positive values, MVPA was analyzed using a gamma distri-
bution with an identity link.

Interaction terms with chronotype were entered 
simultaneously into the same model to investigate 
whether the effect of chronotype was modified by sex, 
ethnicity, age, BMI or employment status independently 
to the other factors. All data were analyzed using SPSS 
(V.24.0). P<0.05 was considered statistically significant 
for main effects and p<0.1 for interactions. Results of 
the multiple linear regression are reported as mean 
(95% CI).

RESULTS
Participant characteristics
Of the 808 currently enrolled onto the CODEC study, 
accelerometer files were available for 696 participants. Of 
these, 8 were excluded (4 technical issues, 4 insufficient 
wear) resulting in 688 with valid accelerometer data. 
Of these, 635 had valid MEQ and covariate data (age 
63.8±8.4 years, 34.6% female, BMI=30.9±5.1 kg/m2), 
which equated to 78.6% of the cohort. Those included 
in this analysis had a similar age, BMI, HbA1c, sex and 
ethnic breakdown compared with those who did not 
reach the minimum accelerometer criteria or those who 
did not complete the MEQ.

Table 1 displays the demographic, anthropometric and 
biochemical characteristics of all included participants 
and when stratified by chronotype preference. In total, 
25% (n=159) of the cohort identified as morning chro-
notypes, 52% (n=330) intermediate and 23% (n=146) 
evening chronotype. Online supplementary table 2 
displays the accelerometer derived physical behavior 
metrics for all included participants and when strati-
fied by chronotype preference. Overall, 759.2±97.7 min 
(73.4%) were spent in sedentary behavior, 172.9±52.1 
min (24.5%) in light activity and 14.6 (23.7) min (2.1%) 
in MVPA. The average sleep duration was 403.9±63.9 min.

https://dx.doi.org/10.1136/bmjdrc-2020-001375
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Timing of physical behaviors
The timing of both sleep onset and physical activity 
differed across chronotypes (figure  1, online supple-
mentary table 2), with evening chronotypes displaying 
a later sleep onset and consistently later physical activity 

time. For example, there was a 1 hour 44 min difference 
between average sleep onset time for morning (22:52 
(22:38 to 23:06)) vs evening chronotypes (00:36 (00:24 
to 00:48)). Similarly, the most active 30 min of the day 
(M30 value), on average, occurred 1 hour 42 min earlier 
in morning (11:14 (10:50 to 11:39)) vs evening (12:56 
(12:31 to 13:20)) chronotypes. These findings reiterate 
the results of the MEQ.

Table  2 displays the time spent in different physical 
behaviors by chronotype, with figure  2 displaying the 
average time spent engaged in sedentary, light or MVPA. 
The unadjusted values are also presented in online 
supplementary table 3. There was no main effect of chro-
notype on sleep duration.

After adjustment for tertiles of sleep duration, those 
with an evening chronotype spent 774.7 (754.8 to 794.6) 
min per day engaged in sedentary time. This level was 
higher than that for intermediate and morning types 
which were −37.6 (−55.0 to –20.3) and −28.7 (−48.3 to 
–8.6) min per day lower, respectively. Similarly, those 

Figure 1  Timing of sleep onset and continuous bouts of 
physical activity across all chronotypes.

Table 1  Participant characteristics of all included individuals and when stratified by chronotype

All (n=635) Morning (n=159) Intermediate (n=330) Evening (n=146)

Demographic variables

 � Age 63.8±8.4 64.3±7.7 64.9±7.6 60.5±9.9

 � Sex (female) 220 (34.6) 57 (35.8) 96 (29.0) 67 (45.9)

 � Ethnicity (white European) 534 (84.1) 152 (95.6) 258 (78.2) 124 (84.9)

 � Current smokers 35 (5.5) 6 (3.8) 20 (6.1) 9 (6.2)

Employment status

 � Employed 214 (33.7) 62 (39.0) 100 (30.3) 52 (35.6)

 � Retired 366 (57.6) 89 (56.0) 209 (63.3) 68 (46.6)

 � Other 55 (8.7) 8 (5.0) 21 (6.4) 26 (17.8)

Medication

 � Insulin 166 (26.1) 32 (20.1) 89 (27.0) 45 (30.8)

 � Biguanides 454 (71.5) 114 (71.7) 227 (68.8) 113 (77.4)

 � SGLT2i 56 (8.9) 12 (7.5) 29 (8.8) 15 (10.3)

 � DPP-4 92 (14.5) 21 (13.2) 48 (14.5) 23 (15.8)

 � GLP-1RA 36 (5.7) 8 (5.0) 15 (4.5) 13 (8.9)

 � Sulfonylureas 138 (21.8) 38 (23.9) 81 (24.5) 19 (13.0)

 � Lipid lowering 453 (71.4) 76 (47.8) 267 (80.9) 110 (75.3)

 � Anti-hypertensive 427 (67.3) 76 (47.8) 256 (77.6) 95 (65.1)

 � Duration of diabetes 11±8 10.2±7.5 11.3±7.9 10.5±8.2

 � Depression 143 (22.5) 39 (24.5) 52 (15.8) 52 (35.6)

Anthropometric variables

 � BMI (kg/m2) 30.9±5.1 30.5±5.0 30.6±4.7 32.3±5.7

Cardiometabolic variables

 � HbA1c (%) 7.1±1.2 6.9±1.1 7.1±1.2 7.2±1.3

 � HbA1c (mmol/mol) 54±14 52±12 54±13 55±14

Data presented as mean±SD, median (IQR) or number (column percentage).
BMI, body mass index; DPP-4, dipeptidyl-peptidase 4; GLP-1RA, glucagon-like peptide-1 receptor agonists; SGLT2i, sodium-glucose 
cotransporter 2 inhibitor.

https://dx.doi.org/10.1136/bmjdrc-2020-001375
https://dx.doi.org/10.1136/bmjdrc-2020-001375
https://dx.doi.org/10.1136/bmjdrc-2020-001375
https://dx.doi.org/10.1136/bmjdrc-2020-001375
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with a preference for an evening chronotype spent 155.7 
(144.6 to 166.8) min in light intensity physical activity, 
which was lower than both the intermediate (26.0 (16.3 
to 35.7) min per day) and morning (33.5 (22.5 to 44.6) 
min per day) chronotypes. Evening chronotypes also 
displayed the lowest levels of MVPA (12.5 (7.4 to 17.7) 
min per day) after adjustment for covariates. The greatest 
disparity was observed when compared with morning 
chronotypes, who engaged in (9.7 (4.6 to 14.9) more 
MVPA minutes per day (56% difference)).

Average acceleration, MX values and intensity gradient
Average acceleration was lower in the evening chrono-
types (19.5 (18.0 to 20.9) mg), when compared with 
both intermediate (22.4 (21.2 to 23.6) mg) and morning 
chronotypes (23.5 (22.0 to 24.9) mg) (both p<0.001). 
The MX metrics (M2, M5, M10, M30, M60) were consis-
tently lower in evening chronotypes compared with both 
intermediate and morning chronotypes. For example, 
the M30 value demonstrated that the acceleration for 

evening chronotypes was 22.4% lower than morning 
types (84.0 (73.8 to 94.3) vs 105.2 (94.9 to 115.5) mg), 
where an intensity value ≥100 mg is equivalent to a slow 
walk or higher.32

Figure 3 presents radar plots illustrating continuous 
MX metrics for (clockwise) the most active 60 min 
(M60), 30 min (M30), 10 min (M10), 5 min (M5) and 
2 min (M2) for morning, intermediate and evening 
chronotypes. The dashed circles show approximate 
accelerations associated with a slow (blue) and brisk 
(red) walk.30 33 This difference in intensity between 
chronotypes is also reflected in the intensity gradient 
value, where those with an evening chronotype (−2.80 
(-2.84 to –2.76)) had a lower gradient compared with 

Table 2  Mean (95% CI) differences in physical behaviors and acceleration variables by chronotype

Morning Intermediate Evening

Main 
effect for 
chronotype

Sleep duration (min) 383.8 (369.4 to 398.2) 391.4 (379.3 to 403.4) 376.1 (361.8 to 390.5) 0.127

Sedentary time (min) 746.3 (726.1 to 766.4)* 737.1 (720.4 to 753.8)† 774.7 (754.8 to 794.6) 0.001

Light activity (min) 189.2 (178.0 to 200.4)† 181.6 (172.4 to 191.0)† 155.7 (144.6 to 166.8) <0.001

MVPA (min) 22.3 (17.1 to 27.5)† 19.2 (14.9 to 23.5)* 12.5 (7.4 to 17.7) 0.001

Daily acceleration (mg) 23.5 (22.0 to 24.9)† 22.4 (21.2 to 23.6)† 19.5 (18.0 to 20.9) <0.001

Continuous M2 (mg) 169.5 (154.5 to 184.4)† 156.9 (144.5 to 169.3)* 140.4 (125.6 to 155.2) 0.001

Continuous M5 (mg) 152.2 (138.7 to 165.6)† 138.7 (127.5 to 149.8)* 124.5 (111.1 to 137.8) <0.001

Continuous M10 (mg) 136.5 (124.2 to 148.8)† 124.4 (114.2 to 134.6)* 111.5 (99.3 to 123.7) <0.001

Continuous M30 (mg) 105.2 (94.9 to 115.5)† 95.5 (86.9 to 104.0)* 84.0 (73.8 to 94.3) <0.001

Continuous M60 (mg) 83.2 (74.5 to 92.0)† 76.4 (69.2 to 83.6)* 67.2 (58.6 to 75.8) 0.002

Intensity gradient −2.73 (−2.77 to –2.69)* −2.76 (−2.79 to −2.73)* −2.80 (−2.84 to −2.76) 0.007

Adjusted for age, sex, ethnicity, employment status, duration of diabetes and sleep duration (tertiles). Tertile cut points were 381.3 min and 
432.28 min.
*P<0.05 vs evening chronotype.
†P<0.001 vs evening chronotype.
MVPA, moderate-to-vigorous physical activity.

Figure 2  Average time spent engaged in sedentary, light or 
MVPA across all chronotypes. MVPA, moderate-to-vigorous 
physical activity.

Figure 3  Radar plot illustrating MX metrics (continuous) 
for (clockwise) the most active 60 min (M60), 30 min (M30), 
10 min (M10), 5 min (M5) and 2 min (M2) for morning, 
intermediate and evening chronotypes.



6 BMJ Open Diab Res Care 2020;8:e001375. doi:10.1136/bmjdrc-2020-001375

Epidemiology/Health Services Research

both morning (−2.73 (−2.77 to –2.69)) and interme-
diate (−2.76 (−2.79 to –2.73)) types, indicating lower 
time accumulated at mid-range and higher intensity 
activities.

There were no significant interactions for ethnicity, 
age, sex, BMI or employment by chronotype for any of 
the accelerometer variables (all p>0.1) (online supple-
mentary table 4).

CONCLUSION
This is the first study to investigate the effect of chrono-
type on device-measured physical behaviors in those with 
established T2DM. The results demonstrate that, after 
adjustment for total sleep duration, those with a prefer-
ence for an evening chronotype had higher sedentary 
time, lower levels of light activity, lower MVPA and lower 
mean daily acceleration compared with both morning and 
intermediate chronotypes. For example, average MVPA 
was 56% lower in evening chronotypes compared with 
morning chronotypes, representing an absolute differ-
ence of ~10 min. The MX metrics and intensity gradient 
also suggest that, in addition to duration, differences also 
exist in the intensity of movement between chronotypes. 
For example, the M30 value for morning chronotypes 
was greater than 100 mg, which suggests that 30 min was 
spent at an intensity equivalent to a slow walk or higher,34 
whereas the evening chronotypes accumulated their most 
active 30 min at a lower intensity (<100 mg, equivalent to 
‘pottering around’).32 Those who reported a preference 
for an evening chronotype were also confirmed to have a 
later sleep onset time using accelerometer data. In addi-
tion, as well as evening chronotypes having lower levels 
of physical activity overall, the physical activity that was 
conducted occurred later on in the day.

The chronotype preference in this study (morning=25%, 
intermediate=52%, evening=23%) is broadly similar 
to that observed in the general population, although 
with a slightly larger representation of evening chrono-
types in our cohort. For example, a large prospective, 
population-based cohort study (UK Biobank) demon-
strated that 27% of individuals identified themselves 
as morning types, 63.9% as neither/intermediate and 
9.1% as evening types.35 The average sleep duration in 
this cohort (morning=6.7 hours, intermediate=6.8 hours, 
evening=6.6 hours) is marginally lower (~0.5 hour) than 
other population based cohort studies that have used 
accelerometers to quantify sleep duration.36 Overall 
physical activity volume and intensity (MX metrics) were 
between 20% and 60% lower than those reported in office 
workers or other population based cohorts.33 37–40 Taken 
together, these collective results indicate that people with 
T2DM lead a lifestyle characterized by excessive seden-
tary behaviors and insufficient physical activity volume, 
with 97.9% of waking time spent in either sedentary 
behavior or light physical activity, which may be further 
exacerbated by an eveningness preference.

Our results also extend those from other studies that 
have examined both chronotype preference and self-
reported physical activity. For example, Wennman et al 
examined the association between chronotype prefer-
ence, leisure time physical activity and sitting time in 
~5000 Finnish men and women.41 They reported that a 
self-assessed ‘evening type’ was typically associated with 
greater odds of engaging in higher amounts of sitting 
when compared with ‘morning types’. This difference 
in chronotype was also evident for total physical activity, 
where evening types had higher odds of engaging in low 
levels or negligible amounts of physical activity when 
compared with morning types.41 Similarly, a later bedtime 
and wake time, both evident in this cohort, have been 
associated with lower levels of device measured, free-
living physical activity (MVPA) in young adults and self-
reported physical activity levels in working women.17 42

Although the underlying mechanisms are not 
completely understood, an evening preference may 
exacerbate the clustering of unhealthy behaviors (eg, 
physical inactivity), resulting in an increased preva-
lence of hypertension,10 a higher BMI, increased odds 
of developing T2DM9 and poorer glycemic control in 
those with established T2DM.43 This was evident in our 
cohort, as those with an evening chronotype had the 
highest BMI and HbA1c levels, when compared with 
morning and intermediate chronotypes. The lower 
physical activity levels seen in evening chronotypes may 
also be influenced by social (ie, activities not coinciding 
with regular social schedules) and physical environ-
ment aspects (ie, safety concerns). Moreover, personal/
socially imposed alterations in sleep, as demonstrated 
by the differences in sleep and physical activity timing, 
may result in a ‘circadian misalignment’.44 For example, 
an enforced early wakeup may reduce the likelihood of 
engaging in physical activity due to the resulting tired-
ness or time constraints of family responsibilities in 
the evening. This may make a natural preference for 
engaging in physical activity later in the day more diffi-
cult to achieve.

Due to its wide-ranging health benefits, minimal cost 
and side effects and accessibility, physical activity may 
be an attractive non-pharmacological treatment option 
that could also theoretically improve circadian misalign-
ment, through alterations in temperature regulation 
and/or hormone levels.45 46 In humans, the circadian 
clock is divided into two distinct parts, the master clock 
in the suprachiasmatic nucleus (SCN) of the hypothal-
amus and peripheral clocks, situated in the peripheral 
tissues (eg, skeletal muscle).47 The peripheral clocks are 
entrained by the light-dependent regulation of the SCN 
and by other non-photic zeitgebers (eg, physical activity) 
for the human circadian system,48 thus acting in an SCN-
independent manner.49 Therefore, in many individuals, 
especially in people with a late chronotype, an advance of 
the internal circadian rhythm through informed timing 
of physical activity may be useful as an adjunct thera-
peutic strategy to foster chronobiological homeostasis 
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and better align internal rhythms with the environment 
and standard social schedules.

This analysis has strengths and limitations. Most 
notably, it provides novel evidence in a T2DM popula-
tion recruited primarily through primary and secondary 
care using device measured quantification of physical 
behaviors. The research-grade monitors used to quantify 
these physical behaviors also allowed for the generation 
of high resolution raw data, which subsequently facili-
tated the development of novel activity metrics used in 
conjunction with more traditional outputs and allowing 
the physical behaviors to be timestamped. In addition, 
participants were phenotyped with regard to anthro-
pometric and demographic variables. As such, we were 
able to investigate and adjust for potential confounders. 
That said, although cross-sectional data are convenient 
for hypothesis generation, it does limit the scope of the 
results and precludes the ability to make causal inference.

In this analysis of 635 participants with T2DM, an 
evening chronotype was associated with lower physical 
activity across a range of metrics and higher sedentary 
time. Overall, there is a need for large-scale interventions 
to be implemented into diabetes care which support 
people with T2DM to initiate, maintain and achieve the 
substantial benefits of an active lifestyle. This may be 
particular pertinent for those with an ‘eveningness’ pref-
erence, where personalized physical activity interventions 
may need to place additional emphasis on a whole-day 
approach, as emphasized by their later sleep onset time 
and consistently later physical activity time compared 
with morning and intermediate chronotypes. The focus 
on low intensity activity is likely to be important in these 
individuals, as our results suggest that purposeful MVPA 
is likely to be on the outer reaches of the normal day to 
day experiences. Even small increases in the percentage 
of time spent in such activities would be useful toward 
increasing the volume and distribution of activity.
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