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Background-—CD34+ stem/progenitor cells are involved in vascular homeostasis and in neovascularization of ischemic tissues.
The number of circulating CD34+ stem cells is a predictive biomarker of adverse cardiovascular outcomes in diabetic patients.
Here, we provide evidence that hyperglycemia can be “memorized” by the stem cells through epigenetic changes that contribute to
onset and maintenance of their dysfunction in diabetes mellitus.

Methods and Results-—Cord-blood–derived CD34+ stem cells exposed to high glucose displayed increased reactive oxygen
species production, overexpression of p66shc gene, and downregulation of antioxidant genes catalase and manganese superoxide
dismutase when compared with normoglycemic cells. This altered oxidative state was associated with impaired migration ability
toward stromal-cell–derived factor 1 alpha and reduced protein and mRNA expression of the C-X-C chemokine receptor type 4
(CXCR4) receptor. The methylation analysis by bisulfite Sanger sequencing of the CXCR4 promoter revealed a significant increase
in DNA methylation density in high-glucose CD34+ stem cells that negatively correlated with mRNA expression (Pearson r=�0.76;
P=0.004). Consistently, we found, by chromatin immunoprecipitation assay, a more transcriptionally inactive chromatin
conformation and reduced RNA polymerase II engagement on the CXCR4 promoter. Notably, alteration of CXCR4 DNA methylation,
as well as transcriptional and functional defects, persisted in high-glucose CD34+ stem cells despite recovery in normoglycemic
conditions. Importantly, such an epigenetic modification was thoroughly confirmed in bone marrow CD34+ stem cells isolated from
sternal biopsies of diabetic patients undergoing coronary bypass surgery.

Conclusions-—CD34+ stem cells “memorize” the hyperglycemic environment in the form of epigenetic modifications that collude to
alter CXCR4 receptor expression and migration. ( J Am Heart Assoc. 2019;8:e010012. DOI: 10.1161/JAHA.118.010012.)
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D iabetes mellitus (DM) is a chronic and complex disease
characterized by hyperglycemia and associated with a

broad spectrum of micro- and macrovascular complications
that constitute a major health burden in Western countries.1

Despite the progresses of pharmacological therapy, the
cellular and molecular mechanisms underlying diabetic com-
plications are not entirely understood and the associated
cardiovascular risk is still far from eliminated.2,3

Endothelial dysfunction induced by hyperglycemia is rec-
ognized as the major causal factor in the development and
progression of diabetic vascular complications. Since the
early 2000s, numerous studies showed a linear correlation
between the decline in number and function of circulating
progenitor cells such as CD34+ cells, severity of diabetic
disease, and presence of vascular complications.4,5 CD34+

stem cells are bone marrow (BM)-derived stem cells, both
representative for hematopoietic stem cells and endothelial
progenitor cells contributing to preservation of an intact
endothelial layer and neorevascularization of ischemic tis-
sues.6,7 The dramatic numeric and functional decay of these
cells in the diabetic metabolic environment8,9 is linked to
severe endothelial dysfunction and elevated risk of adverse
cardiovascular events. Consistently, level of the circulating
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CD34+ stem cell population has recently proved to be an
efficient clinical-grade–independent biomarker of cardiovas-
cular risk in diabetic patients, capable of predicting long-term
development or progression of microangiopathy and cardio-
vascular events in type 2 DM (T2DM).10

A consistent body of literature has shown that diabetic
patients can develop diabetic vascular complications even
after intensive glycemic control, a phenomenon known as
“metabolic memory.”11–14 Hyperglycemia appears to be
remembered in organs, such as blood vessels, heart, kidneys,
and eyes, and the underlying mechanisms seem to rely on
epigenetics. Epigenetics plays a critical role in regulating
tissue-specific gene expression; hence, alterations in its
mechanisms may induce long-term changes in gene function
and metabolism, which can persist after the return to
normality. Mechanistically, recent studies clearly indicated
that DM drives epigenetic changes, such as DNA methylation
and histone modifications, that result in aberrant and long-
lasting expression of pathological genes in a plethora of cell
types, such as vascular smooth muscle cells, endothelial cells,
and leukocytes,15–20 which may play a substantial role in the
pathophysiology of vascular complications associated with
DM. Persistence of functional defects in a variety of
progenitor cell populations, described in both preclinical and
human DM after glucose normalization, suggests the pres-
ence of this phenomenon also in stem cells.21 However, to

date, no studies have established, at a single-gene level, the
implication of epigenetic mechanisms in hyperglycemia-
induced dysfunction of CD34+ stem cells. Here, we investi-
gated, by an in vitro model, whether epigenetic mechanisms
contribute to C-X-C chemokine receptor type 4 (CXCR4)/
stromal-cell–derived factor 1 alpha (SDF-1a) axis impairment,
which has a critical function in revascularization processes, in
diabetic patients.

We show, for the first time, that umbilical cord blood
(UCB)-derived CD34+ stem cell alterations induced in vitro by
hyperglycemia are not completely reversible and that epige-
netic modifications resulting from high-glucose (HG) challenge
are involved in persistent downregulation of the CXCR4 gene
and impaired migratory capacity despite recovery to normo-
glycemia (NG). Moreover, we have confirmed identical epige-
netic findings in BM-CD34+ stem cells isolated from sternal
biopsies from diabetic patients undergoing coronary bypass
surgery.

Methods
The data that support the findings of this study are available
from the corresponding author upon reasonable request.
Additional methods can be found in Data S1.

Study Design
We aimed the present study at investigating the epigenetic
mechanisms contributing to the dysfunctional phenotype of
CD34+ stem cells in diabetic patients. To avoid readout
misinterpretations derived from aging or other risk factors, we
first evaluated the effects of HG on the epigenetic makeup of
na€ıve UCB-derived CD34+ stem cells (Figure 1). This allowed
the discrimination between epigenetic modifications estab-
lished as a direct consequence of hyperglycemia exposure,
rather than those related to confounding variables such as
age and cardiovascular risk factors. As depicted in Figure 1,
we expanded CD34+ stem cells in HG conditions until CD34+

stem cells lost glucose tolerance. Afterward, in order to
reproduce metabolic memory in vitro, cells were recovered in
NG for 3 days, as previously described.22 We then performed
molecular and epigenetic analyses of the gene(s) involved in
CD34+ stem cell dysfunction upon HG and NG recovery.
Results have been validated in BM-derived CD34+ stem cells
isolated from patients with coronary artery disease
(CAD)�DM.

Study Participants
All experiments have been carried out upon approval of local
ethic committees (No. 2015/ST/232 and R196/14—CCM

Clinical Perspective

What Is New?

• Human CD34+ stem cells “memorize” metabolic stress in
the form of epigenetic changes that contribute to the self-
perpetuating alteration of gene expression.

• Epigenetic mechanisms might contribute to C-X-C chemo-
kine receptor type 4/stromal-cell–derived factor 1 alpha
axis impairment of CD34+ stem cells in diabetic patients,
which has a critical function in revascularization processes.

What Are the Clinical Implications?

• Epigenetic mechanisms contribute to the self-perpetuating
alterations of genes involved in progenitor cell function, with
direct implications on tissue homeostasis and repair in
diabetes mellitus.

• Presence of molecular modifications potentially inherited by
daughter cells dramatically reduce the translational poten-
tial of these cells in regenerative medicine.

• Investigation of epigenetic mechanisms underlying meta-
bolic memory may be relevant in understanding the barriers
that prevent the pharmacological regression of diabetes
mellitus cardiovascular complications despite optimal man-
agement of hyperglycemia.
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205). Informed written consent was obtained from all patients
before BM harvesting. CAD (n=7) and CAD-DM (n=7) subjects
have been selected by stringent matching of: age,

pharmacological treatments, and major risk factors. At
admission, CAD-DM patients were treated with sulfonylureas
or metformin�insulin. Clinical characteristics of patients are
shown in Table.

UCB CD34+ Stem Cell Isolation and Expansion
UCB was collected from the umbilical cord of healthy full-
term deliveries. CD34+ stem cells were isolated and
expanded as previously described, with some slight modifi-
cation.23 Briefly, mononuclear cell fraction was isolated from
UCB by density gradient centrifugation using Ficoll-Paque
(Lymphoprep; Sentinel Diagnostics, SpA, Milan, Italy). CD34+

stem cells were then magnetically sorted from the mononu-
clear cell fraction using the MidiMACS system (CD34
Microbead Kit; Miltenyi Biotec GmbH, Bergisch Gladbach,
Germany). Isolated cells were expanded up to 20 days in
SFEM medium (Voden Medical Instruments, SpA, Meda,
Italy) containing 20 ng/mL of interleukin-6, 20 ng/mL of
interleukin-3, 50 ng/mL of fms-like tyrosine kinase 3, and
50 ng/mL of stem cell factor (PeproTech EC Ltd., London,
UK), in hyperglycemic (30 mmol/L of glucose; HG) and
normoglycemic (30 mmol/L of mannitol; NG) conditions. To
reproduce the metabolic memory phenomenon in vitro, HG-
CD34+ stem cells were returned to physiological glucose
conditions for 3 days (exHG-CD34+), as previously
described.22

Figure 1. Experimental design. Schematic representation of the study. UCB-derived CD34+ stem cells were expanded in HG conditions for up
to 20 days. Afterward, part of the HG-CD34+ stem cell population was returned to NG conditions for 3 days. At the end of the experiment, cells
were used for functional and molecular characterization. CAD�DM indicates coronary artery disease with or without diabetes mellitus; exHG, ex-
high-glucose conditions; HG, high-glucose; NG, normal-glucose; UCB, umbilical cord blood.

Table. Clinical Characteristics of Patients

CAD (n=7) CAD-DM (n=7) P Value

Age, y 64�4 68�3 0.44

BMI, kg/m2 26.7�1.1 25.6�0.7 0.41

Glycemia, mg/dL 110�3 162�13* 0.0021

LDL, mg/dL 112�18 91�15 0.39

HDL, mg/dL 42�4 50�5 0.27

Total cholesterol, mg/dL 176�21 162�15 0.6

Cardiovascular comorbidities

Hypertension (n) 5 5

Dyslipidemia (n) 4 5

Glucose-lowering drugs

Insulin (n) 0 2

Oral antidiabetic drug (n) 0 5

Other therapies

Antihypertensive drugs (n) 3 4

Lipid-lowering drugs (n) 4 5

CAD�DM, coronary artery disease with or without diabetes mellitus; BMI indicates body
mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
*P<0.01 vs CAD.
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Sternal BM Biopsy and CD34+ Stem Cell Isolation
Sternal blood from the BM of 14 patients with CAD�DM was
obtained by needle aspiration. Aspirates were suspended in
saline buffer. Mononuclear cell fraction as well as CD34+ stem
cells were isolated as aforementioned.

CD34+ Stem Cell Growth Curves
CD34+ stem cells were seeded at an initial density of
2.09105 cells/well and cultured for up to 30 days in HG and
NG conditions. Cells were counted on days 10, 20, and 30.

Migration Assays
Cell migration was determined by the use of Transwell culture
inserts (5-lm pore membrane; Corning Incorporated, Corning,
NY), according to the manufacturer’s instructions. In brief,
19105 cells/well CD34+ stem cells were seeded onto the
upper chamber and allowed to migrate toward the lower
chamber containing, or not, SDF-1a (50 ng/mL; PeproTech
EC Ltd.). Transwells were incubated at 37°C, 5% CO2, for
4 hours. Migrated cells were counted and results are
expressed as a migration index.

Flow Cytometric Assays
CD34+ stem cells were incubated for 30 minutes with
allophycocyanin-conjugated monoclonal antihuman CXCR4
antibody (BD Biosciences, San Jose, CA), Annexin V (BD
Biosciences), and a CellROX green fluorescent assay kit (Life
Technologies Italia, Monza, italy) for detection of the CXCR4
receptor, early apoptosis, and reactive oxygen species (ROS),
respectively. The Becton-Dickinson FACS Calibur platform
(Becton-Dickinson, Franklin Lakes, NJ) was used to analyze
samples by use of appropriate physical gating. At least 104

events in the indicated gates were acquired.

Western Blot Analyses
Protein kinase B (AKT) phosphorylation was evaluated by
stimulating for 15 minutes CD34+ stem cells (1.29106/
sample) with 50 ng/mL of SDF-1a. Cells were then lysed in
Laemmli buffer and 30 lL of proteins resolved on 10% SDS-
PAGE. Whole-cell lysate (80 lg) was used to evaluate
manganese superoxide dismutase, catalase, p66shc, DNA
methyltransferase 1 (DNMT1), and DNA methyltransferase 3B
(DNMT3B) expression. Proteins were transferred to PVDF
membranes (Millipore, Merck SpA, Milan, Italy) and then
incubated with the relevant primary antibody (Table S1). After
washing, membranes were incubated with secondary anti-
body, which was linked to horseradish peroxidase (Pierce

Antibody; Pierce Biotechnology, Rockford, IL) and revealed by
ECL detection (Pierce). Results were quantified using the
Alliance 9.7 Western Blot Imaging System 8 (UVItec Ltd.,
Cambridge, UK).

DNA Extraction and Bisulfite Modification
Genomic DNA was isolated by the PureLink Genomic DNA kit
(Invitrogen, Carlsbad, CA), following the manufacturer’s pro-
tocols. Nucleic acid samples were quantified by NanoDrop,
and integrity was analyzed by 1% agarose gel electrophoresis.
Bisulfite conversion and subsequent purification was per-
formed with the MethylCode Bisulfite Conversion Kit (Invitro-
gen), starting from 300 ng of total DNA.

RNA Extraction, cDNA Preparation, and
Quantitative Polymerase Chain Reaction
Reactions
Total RNA from CD34+ stem cells was isolated by use of the
Direct-zol RNA Kit (Zymo Research, Irvine, CA), following the
manufacturer’s protocols. Total RNA (500 ng) was converted
to cDNA with the Superscript III kit (Life Technologies,
Carlsbad, CA), according to the manufacturer’s protocol.
Retrotrascribed RNA was used to quantify gene expression.
Data, expressed as fold-change (2�DDCT) over NG after
normalization to each housekeeping gene, were log2-
trasformed before analysis. Primers are reported in
Table S2. All reactions were performed with SYBR Green
Supermix 2X (Bio-Rad Laboratories, Hercules, CA) on CFX96
Real–Time System PCR (Bio-Rad).

Quantitative Polymerase Chain Reaction Analysis
of CXCR4 Promoter Methylation
Methylation of the CXCR4 promoter was evaluated on
bisulfite-treated DNA by “2-step SYBR Green–based poly-
merase chain reaction (PCR),” a new technique devised by our
laboratory and described in detail by Bianchessi et al.24

CXCR4 Promoter Sequencing
The CXCR4 promoter was amplified from bisulfite-treated
DNA as previously described.24 Converted DNA was cloned
into the pCR4-TOPO-TA cloning vector (Invitrogen) and
transformed in Escherichia coli strain DH5a. Ten colonies
for each sample were randomly picked and directly used for
PCR amplification to verify vector insertion by T3 and T7
primers. PCR products were Sanger sequenced with the T3
primer with the help of an external service (GATC Biotech,
Konstanz, Germany). Alignment (multiple sequence ClustalW
alignment) and analysis of sequences was performed with
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BioEdit software and data analyzed and represented by QUMA
software (http://quma.cdb.riken.jp/) for CpG methylation
and Methtools 2.05 (http://genome.imbjena.de/methtools/)
for non-CpG methylation.

Evaluation of Bisulfite Conversion Efficiency and
Normalization of Non-CpG Methylation
Genomic DNA extracted from primary UCB-derived CD34+

stem cells was whole-genome amplified by using the REPLI-g
Mini Kit (Qiagen, Hilden, Germany), according to the manu-
facturer’s protocol. The whole-genome amplified product was
purified by the QIAquick PCR Purification Kit (Qiagen) and
quantified with NanoDrop. The whole-genome amplified
product was used as fully unmethylated DNA.25 After bisulfite
conversion, the CXCR4 promoter was amplified, cloned, and
Sanger sequenced as before.24 Results were analyzed by
Methtools 2.05 software and used for normalization of non-
CpG methylation data with the formula:

Sample nonCpG%
WGA nonCpG%

Chromatin Immunoprecipitation Assays
Treated cells were washed and cross-linked using 1%
formaldehyde for 20 minutes. After stopping cross-linking
by addition of 0.1 M of glycine, cell lysates were sonicated
with Episonic 2000 (Epigentek Group Inc., Farmingdale, NY)
and centrifuged for 10 minutes at 10 000g. Supernatants
were immunoprecipitated using the EpiTect ChIP OneDay Kit
(Qiagen), following the manufacturer’s protocols. The list of
antibodies used is reported in Table S1. Recovered DNA
fragments were amplified for the CXCR4 gene by qPCR with 3
couples of primers spanning 3 different regions of the gene.
qPCR values were normalized to input DNA and to the values
obtained with immunoglobulin G isotype. The data are
expressed as fold-change over NG.

Statistical Analysis
Results are given as mean�SEM. All experiments were
performed at least in triplicate, unless stated otherwise. All
data expressed as fold-change were log2-transformed before
analysis. The data were tested for the normality by using the
Shapiro–Wilk normality test. Differences between data were
evaluated by paired or unpaired Student t test (2-group
comparisons), 1-way, 2-way repeated-measures ANOVA fol-
lowed by the post-hoc Newman–Keuls multiple comparison
test, as appropriate. Correlations were calculated using Pear-
son’s coefficient. A value of P≤0.05 was considered significant.

All statistical analysis was performed using GraphPad Prism
software (GraphPad Software Inc., La Jolla, CA).

Results

HG Affects Proliferation and Oxidative State of
CD34+ Stem Cells
In order to establish standard conditions under which HG
effects may be reliably reproduced in vitro, cells were cultured
in 30 mmol/L of glucose and counted after 10, 20, and
30 days. The analysis of cellular growth curves revealed
significant differences between HG-CD34+ and NG-CD34+

stem cells. Twenty days after seeding, HG-CD34+ stem cells
showed a significant decrease in proliferation rates when
compared with their osmotic controls (30 mmol/L of manni-
tol; Figure 2A). This loss of glucose tolerance was associated
with a significant increase in mitochondrial ROS production
(Figure 2B and 2C). Consistently, we found a significant
reduction of the antioxidant enzymes, catalase and man-
ganese superoxide dismutase, expression (Figure 3A, 3B, 3D,
and 3E), whereas p66shc, a gene involved in ROS generation
and linked to hyperglycaemic memory, was upregulated26

(Figure 3C and 3F).

HG Induces Persistent Impairment of CXCR4/
SDF-1a Axis in CD34+ Stem Cells
The CXCR4/SDF-1a axis is primarily involved in CD34+ stem
cell mobilization and migration from the BM to sites of
ischemia and endothelial injury.27 A large body of evidence
shows that expression and downstream pathways of CXCR4
receptor are impaired in diabetic patients.28–30 In our hands,
after 20 days, HG-CD34+ stem cells exhibited a significant
reduced migration toward human recombinant SDF-1a
(50 ng/mL; Figure 4A). The analysis of CXCR4 downstream
signaling by western blot revealed a significant decrease of
AKT phosphorylation in HG-CD34+ stem cells after SDF-1a
stimulation (Figure 4B and 4C). In addition, expression of
CXCR4, both at mRNA and protein levels, was also found to
be significantly downregulated, as assessed by qPCR and flow
cytometry, respectively (Figure 4D through 4F). Taken
together, these findings indicated that an HG challenge
induces a profound SDF-1a/CXCR4/phosphoinositide 3-
kinase/AKT signaling pathway impairment in na€ıve UCB-
derived CD34+ stem cells. Notably, upon recovery for 3 days
in NG conditions, CD34+ stem cells (exHG-CD34+ stem cells)
still displayed functional and molecular alterations (Figure 4A
through 4F), which was associated with enduring high ROS
production (Figure S1). These data represent the first
evidence of in vitro–induced metabolic memory in na€ıve
CD34+ stem cells.
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HG Increases DNA Methylation of the CXCR4
Promoter in CD34+ Stem Cells

Numerous studies in tumor biology have demonstrated that
DNA methylation, an epigenetic modification associated with
gene silencing, regulates CXCR4 expression in cancer

cells.31–33 We therefore postulated that such a repressive
epigenetic modification was also involved in the downregu-
lation of CXCR4 mRNA in HG-CD34+ stem cells. Thus, we
evaluated the CpG methylation status (5mCpG) of a region of
the CXCR4 gene promoter encompassing �1349 to �738
nucleotides relative to the +1 transcription start site

Figure 2. Effect of HG on proliferation and oxidative state of CD34+ stem cells. A, Proliferation curves of CD34+ stem cells exposed to HG
concentrations (30 mmol/L; n=6; *P<0.05; **P<0.01; 2-way rmANOVA). B, Flow cytometric quantification of ROS production in HG-treated cells.
Data are reported as log2 fold-change (FC) ofMFI over control (NG; n=6; **P<0.01 vsNG; paired t test).C, Representative flow cytometry histograms
of ROS quantification. HG indicates high glucose; MFI, mean fluorescence intensity; NG, normal glucose; ROS, radical oxygen species.

Figure 3. Effect of HG on antioxidant gene expression in CD34+ stem cells. A through C, Expression of MnSOD, CAT, and p66shc genes
evaluated by qPCR. Data are from at least 6 independent experiments (*P<0.05; **P<0.01 vs NG; paired t test) and are expressed as log2 fold-
change (FC). D through F, Evaluation of MnSOD, CAT, and p66shc protein expression by western blot. Analysis of at least 3 independent
experiments. Data after loading normalization (b-actin) are expressed as log2 FC over control (NG; *P<0.05; **P<0.01 vs NG; paired t test). G,
Representative immunoblot images are shown. CAT indicates catalase; HG, high glucose; MnSOD, manganese superoxide dismutase; NG,
normal glucose; p66shc, Src homolog and collagen homologs (shc) adaptor protein.
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(Figure 5A). Bisulfite-treated DNA from HG and NG-CD34+

stem cells was first analyzed for CXCR4 methylation density
by a 2-step qPCR methylation method. This assay, designed
in our laboratory for the quantitative evaluation of DNA
methylation status of genes,24 showed a significant increase
of CXCR4 promoter methylation in HG-CD34+ stem cells
(Figure 5B). Results were then validated by bisulfite Sanger
sequencing, the “gold-standard” technology for DNA methy-
lation studies. In accord with our method, bisulfite sequenc-
ing gave similar readouts (Figure 5C and 5D). Remarkably,
after normalization against bisulfite conversion efficiency,
sequencing data analysis by Methtools 2.05 (http://ge
nome.imbjena.de/methtools/) revealed a 1.8-fold increase
of non-CpG methylation (5mCpN) in HG-CD34+ stem cells

when compared with NG-CD34+ stem cells (Figure 5E and
5F).

Notably, both CpG and non-CpG methylation changes,
although the latter did not reach statistical significance, were
still present after 3-days in NG concentrations (exHG-CD34+

stem cells; Figure 5B through 5F).

Increased DNA Methylation Associates With a
More-Inactive Chromatin Conformation and
Reduced Engagement of RNA Polymerase II to the
CXCR4 Promoter
DNA methylation and histone modification systems are highly
inter-related and mechanistically rely on each other for

Figure 4. Evaluation of CXCR4/SDF-1a axis in HG and exHG-CD34+ stem cells. A, Migration ability of NG, HG, and exHG-CD34+ stem cells
toward SDF-1a chemokine (n=3; *P<0.05; **P<0.01 vs NG). B, Evaluation of CXCR4 downstream AKT signalling pathway activation after SDF-
1a stimulation in NG, HG, and exHG-CD34+ stem cells. Analysis of at least 3 independent experiments are shown (*P<0.05 vs NG).
Quantification of western blot was normalized on total AKT expression, and data are expressed as pAKT log2 fold-change (FC) over basal
(unstimulated). C, Representative western blot image. D, qPCR analysis of CXCR4 mRNA expression in NG, HG, and exHG-CD34+ stem cells
(n=6; ***P<0.001 vs NG). Data are reported as log2 FC. E, CXCR4 membrane expression level in NG, HG, and exHG-CD34+ stem cells by flow
cytometric analysis (n=16; ***P<0.001 vs NG). Data are expressed as percentage of positive cells. F, Representative flow cytometry dot-plots of
CXCR4 quantification. Significant differences were evaluated by 1-way ANOVA followed by Newman–Keuls post-hoc analysis. AKT indicates
protein kinase B; CXCR4, C-X-C chemokine receptor type 4; exHG, ex-high-glucose; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; HG,
high-glucose; NG, normal-glucose; pAKT, phospho-AKT; SDF-1a, stromal-cell–derived factor 1 alpha.
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chromatin function. Hence, we evaluated whether increased
methylation of the CXCR4 promoter was associated with
alterations in histone modification pattern. To this end, we
performed a chromatin immunoprecipitation assay to assess
changes on repressive histone 3 lysine 9 trimethylation and
histone 3 lysine 27 trimethylation (often associated with DNA
methylation) and activating acetyl-H4 histone modifications.
We found that whereas histone 3 lysine 9 trimethylation was
not affected by HG exposure (Figure S2), there was a

significant increase in repressive histone 3 lysine 27
trimethylation modification and reduced pan-acetyl-H4 level
in HG-CD34+ stem cells (Figure 6B and 6C). Taken together,
these results provide evidence that DNA methylation at the
CXCR4 promoter correlates with a more-inactive chromatin
conformation that better explains reduced gene expression.
Indeed, when we plotted the qPCR data of CXCR4 expression
against their respective DNA promoter methylation percent-
age and performed correlation analysis, we found that CXCR4

Figure 5. HG IncreasesCXCR4promotermethylation inCD34+ stemcells.A, Schematic representation of the humanCXCR4gene. TheCXCR4gene
contains a promoter region (1460 nt) and 3 exons separated by intronic sequences. The analysis of the CXCR4 promoter with MethPrimer software
shows themain CpG island (from�1334 to�811 bp)within the promoter and part of the second CpG island (represented in gray). The black line in the
CpG island indicates the analyzed region (from�1349 to�738 bp). B, Quantification of CpGmethylation density of the CXCR4 promoter by a 2-step
qPCRmethod in NG, HG, and exHG-CD34+ stem cells (n=8; *P<0.05 vs NG). Data are expressed as log2 fold-change (FC) over NG. C, Quantification of
CXCR4 promoter methylation levels by bisulfite Sanger sequencing in NG, HG, and exHG-CD34+ stem cells (n=8; ***P<0.001 vs NG). The data,
expressed as log2 FC over NG, are the result of 8 independent experiments where 10 colonies for each single sample were sequenced. D,
Representative visualization of 5-bisulfite sequencing results as analyzed by QUMA software (http://quma.cdb.riken.jp/). E, Non-CpG methylation
density of theCXCR4 promoter inNG, HG, and exHG-CD34+ stemcells (n=7; *P<0.05 vsNG). The data, expressed as log2 FC over NG, are the results of
Methtools 2.05 software analysis after normalization on bisulfite conversion efficiency. As reported for panel C, 10 clones for each cell treatment of 8
independent experiments were sequenced. F, Representative visualization of 9-bisulfite sequencing results. Significant differences were evaluated by
1-way ANOVA followed by Newman–Keuls post-hoc analysis. CXCR4 indicates C-X-C chemokine receptor type 4; 5mCpG, methylation at the carbon 5
position of a cytosine ring inCpG (50-cytosine-phosphate-guanine-30); 5mCpN,methylation at the carbon5 position of a cytosine ring in 50-C-phosphate-
nucleotide-30; exHG, ex-high-glucose; HG, high-glucose; NG, normal-glucose; qPCR, quantitative polymerase chain reaction.

Figure 6. CXCR4 promoter methylation associates with a closer chromatin conformation. A, Schematic representation of the CXCR4 gene
with mapped sequences (arrows, region I, II, and III). B and C, ChIP of the CXCR4 promoter by H3K27me3 and pan-acetyl H4 after HG exposure
of CD34+ stem cells. The data after input normalization are expressed as log2 fold-change (FC) over the NG (n=3; *P<0.05 vs NG; paired t test).
ChIP indicates chromatin immunoprecipitation; CXCR4, C-X-C chemokine receptor type 4; H3K27me3, trimethylation on lysine 27 of histone H3;
pan-acetyl H4, acetyl-histone H4; HG, high-glucose; NG, normal glucose.
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mRNA content negatively correlated with promoter methyla-
tion in CD34+ stem cells (Pearson r=�0.76; P=0.004;
Figure 7A). Moreover, to determinate whether overall epige-
netic modifications reduced RNA polimerase II recruitment to
the CXCR4 promoter in HG-CD34+ stem cells, we performed
chromatin immunoprecipitation assay with an antibody
specific for RNA polymerase II. Quantitative real-time PCR
analysis of the CXCR4 gene after chromatin immunoprecip-
itation assay, with 3 couples of primers landing up- and
downstream of the transcription start site, displayed a
significant reduction of RNA polymerase II binding to the
CXCR4 gene in HG-CD34+ stem cells compared with NG-
CD34+ stem cells (Figure 7B).

HG Affects Gene Expression Pattern of the “DNA
Methylation Machinery” in CD34+ Stem Cells
In mammals, the DNA methylation pattern is a fine-tuned
process in which DNA methyltransferases (DNMTs), namely
DNMT1, DNMT3A, and DNMT3B, and demethylation enzymes,
the ten eleven translocation proteins (TETs), take part.
DNMT1 associates with S-phase replication foci and acts
primarily as a maintenance methyltransferase, whereas
DNMT3A and DNMT3B are essential for de novo methyla-
tion.34,35 Based on our observations, we assessed the
variation of DNMT enzymes, in HG-CD34+ stem cells.
Surprisingly, both qPCR and western blot analyses revealed
a significant downregulation of DNMT1 (Figure 8A, 8B, and
8C) that was counteracted by an increased expression of the
DNMT3B enzyme (Figure 8D through 8F). No differences were
found for DNMT3A expression (Figure S3). On the other hand,

both mRNA expression levels of the TET2 and TET3 enzymes
were significantly reduced (Figure 8G and 8H). Nevertheless,
although these results implied an HG-induced dysregulation in
the “DNA methylation machinery,” we did not find any
changes in global DNA methylation level and DNMT activity in
HG-CD34+ stem cells (Figure S4A and S4B), suggesting a
gene-specific epigenetic modification pattern induced by
hyperglycemia.

Translation of Epigenetic Findings on CXCR4
Promoter of CD34+ Stem Cells From Diabetic
Patients
Next, to validate our in vitro observations in humans, we
investigated whether methylation of the CXCR4 promoter and
gene expression were altered in BM-derived CD34+ stem cells
from diabetic patients. A cohort of NG-tolerant and T2DM male
CAD patients (CAD�DM) undergoing bypass surgery was
enrolled in the study. Importantly, the 2 groups of patients were
age-matched in order to exclude any possible confounding
effect of age, given that aging is associated with methylation
events.36 Patients’ profiles and laboratory parameters are
shown inTabl. CD34+ stem cells isolated from sternal BM
biopsies were analyzed by flow cytometry for expression of the
CXCR4 receptor. As shown in Figure 9A, CD34+ stem cells
from CAD-DM patients showed a lower expression of the
CXCR4 receptor when compared with the normoglycemic CAD
group. We then analyzed the DNA methylation density of the
CXCR4 promoter by 2-step qPCR and bisulfite Sanger
sequencing techniques. Consistent with our in vitro results,
both methods corresponded in unveiling a significant increase

Figure 7. CXCR4 promoter methylation negatively correlates with CXCR4 mRNA expression and reduces engagement of RNA POL II to the
gene. A, Correlation analysis between normalized quantification of CXCR4 mRNA (2�DCt) and log2 percentage of methylated CXCR4 promoter
(Sanger sequencing). Pearson r and P value are indicated on the graph. B, ChIP of CXCR4 promoter by RNA POL II after HG exposure of CD34+

stem cells. The data, after input normalization are expressed as log2 fold-change (FC) over the NG (n=6; *P<0.05 vs NG; paired t test). CpG
indicates methylation in 50-cytosine-phosphate-guanine-30; ChIP, chromatin immunoprecipitation; CXCR4, C-X-C chemokine receptor type 4; HG,
high-glucose; NG, normal glucose; RNA POL II, RNA polymerase II.
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of CpG methylation density at the level of the CXCR4 promoter
in BM-derived CD34+ stem cells from CAD-DM patients
(Figure 9B through 9D). Moreover, similarly to what we found
in our in vitro model, we detected, although not significantly,
higher non-CpG methylation levels in the CXCR4 promoter in

CAD-DM patients’ CD34+ stem cells compared with the
normoglycemic CAD group (Figure 9E and 9F). Again, when
CXCR4 expression data were plotted against corresponding
promoter methylation density data, a significant negative
correlation was evident (Pearson r=�0.57; P=0.03; Figure 9G).

Figure 8. Effect of HG on gene-expression pattern of DNA methylation machinery in CD34+ stem cells. A, D, G, and H, Analysis of DNMT1,
DNMT3B, TET2, and TET3 expression in CD34+ stem cells by qPCR. The data from at least 6 independent experiments (*P<0.05; **P<0.01;
***P<0.001 vs NG; paired t test) are expressed as log2 fold-change (FC). B and E, Evaluation of DNMT1 and DNMT3B protein expression by
western blot. Analysis of at least 3 independent experiments. The data after loading normalization (b-actin) are expressed as log2 FC over the
control (NG; *P<0.05 vs NG). C and F, Representative immunoblot images are shown. DNMT1 indicates DNA methyltransferase 1; DNMT3B,
DNA methyltransferase 3B; HG, high glucose; NG, normal glucose; qPCR, quantitative polymerase chain reaction; TET2, tet methylcytosine
dioxygenase 2; TET3, tet methylcytosine dioxygenase 3.
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Overall, these results describe, for the first time, a direct
impact of hyperglycemia on methylation density of the CXCR4
promoter in human-derived CD34+ stem cells.

Discussion
Overall, our work shows that epigenetic alterations in the
CXCR4 promoter of human CD34+ stem cells induced by
hyperglycemia have detrimental effects on their functional
properties, which endure after normoglycemia recovery. This
evidence has been obtained both in UCB-derived CD34+ stem
cells exposed to hyperglycemia versus normoglycemia recov-
ery as well as in BM-derived CD34+ stem cells harvested from
CAD-DM patients undergoing state-of-the-art antidiabetic
therapy compared with age-matched normoglycemic controls.
Such findings show, for the first time, that human CD34+ stem
cells “memorize” the hyperglycemic environment in the form
of epigenetic changes that, by contributing to the self-
perpetuating alteration of gene expression, may be potentially
responsible for progression of microangiopathy and cardio-
vascular events in T2DM subjects despite glycamia correc-
tion.10 In particular, through our in vitro cell model, we
provided the first experimental evidence of an epigenetic
contribution to CXCR4/SDF-1a axis impairment.

Previous landmark articles demonstrated in vitro and
animal models mimicking metabolic memory increases in the
expression of nuclear factor kappa light chain enhancer of
activated B cells p65, oxidant stress, and inflammatory genes
in vascular cells.18,37–39 These changes, which persisted after
return of NG conditions, were dependent on epigenetic
histone modifications such as H3 lysine methylation. More-
over, numerous studies have shown different DNA methyla-
tion patterns between individuals with DM and matched
controls in multiple target tissues that may play a substantial
role in the pathophysiology of DM and its associated vascular
complications.20,40,41 However, although the interest on DM-

mediated epigenetic changes and their role in metabolic
memory is growing, no data are available with regard to
CD34+ stem cells.21 It is worth noting that the levels of
circulating CD34+ stem cells have been recently proved to be
an efficient clinical-grade independent biomarker of cardio-
vascular risk in diabetic patients,10 able to predict on the long-
term the development or the progression of microangiopathy
and cardiovascular events in T2DM.10 Our study adds
information on epigenetic mechanisms underlying the exhaus-
tion of reparative vascular homeostasis in DM.

Stem and progenitor cells are known to intrinsically express
high levels of antioxidant enzymes that make them more
resistant than mature cells to oxidative stress.42,43 The
antioxidant defense capacity explains how progenitor cells
can execute a regenerative program in an unfavourable
oxidative environment, such as that generated by ischemia
reperfusion, and inflammation and why, in our hands, CD34+

stem cells exhibited signs of metabolic exhaustion after
20 days of chronic glucose challenge. Indeed, only after this
long period of metabolic overload, cells started showing
increased ROS production along with reduced expression of
antioxidant enzyme genes catalase and manganese superoxide
dismutase. Interestingly, HG exposure also induced expression
of p66shc gene in na€ıve CD34+ stem cells. P66shc is a Src
homolog and collagen homologs (shc) adaptor protein that
plays a crucial role in development of diabetic vascular
complications and mainly contributes to phenomenon of
metabolic memory.26 The pathways described for its pro-
oxidant action operate on both mitochondrial and nuclear
levels. In mitochondria, p66shc promotes ROS generation,44

whereas in the nucleus, in agreement with our findings, p66shc

inhibits expression of the ROS-scavenging enzymes, catalase
and manganese superoxide dismutase.45 In our hands, such
dampening of intrinsic antioxidant mechanisms and increased
ROS production resulted in CD34+ stem cell dysfunction.
Specifically, HG-CD34+ stem cells displayed impaired

Figure 9. CXCR4 gene methylation and expression in CAD-DM patients. A, CXCR4 membrane expression level in CD34+

stem cells derived fromCAD and CAD-DMpatients by flow cytometric analysis (n=14). Data are expressed as a percentage of
positive cells. B, Quantification of CpG methylation density of the CXCR4 promoter by a 2-step qPCR method in CD34+ stem
cells of CAD and CAD-DM patients. The data are expressed as log2 fold-change (FC) over CAD.C, Bisulfite Sanger sequencing
quantification of CXCR4promotermethylation in CADandCAD-DMpatients. The data are expressed as log2 FC over CAD. Ten
colonies for each patient’s sample were sequenced. D, Representative visualization of 5-bisulfite sequencing results as
analyzed by QUMA software (http://quma.cdb.riken.jp/). E, Non-CpG methylation density of the CXCR4 promoter in CAD
and CAD-DM patients. The data, expressed as log2 FC over the CAD, are the results of Methtools 2.05 software analysis after
normalization on bisulfite conversion efficiency. As reported for panel C, 10 clones from each patient’s sample were
sequenced. F, Representative visualization of 9-bisulfite sequencing results. Significant differences between sample patients
were evaluated by unpaired t test (CAD, n=7; CAD-DM, n=7; **P<0.01; *P<0.05 vs CAD). G, Correlation analysis between
percentage of CXCR4 expression and log2 percentage of CXCR4 promoter methylation (Sanger sequencing). Pearson r and P
value are indicated on the graph. CXCR4 indicates C-X-C chemokine receptor type 4; 5mCpG, methylation at the carbon 5
position of a cytosine ring in CpG (50-cytosine-phosphate-guanine-30); 5mCpN, methylation at the carbon 5 position of a
cytosine ring in 50-C-phosphate-nucleotide-30; CAD�DM, coronary artery disease with or without diabetes mellitus; qPCR,
quantitative polymerase chain reaction.
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chemotaxis toward SDF-1a, and this defectwas associatedwith
decreased expression of CXCR4 receptor. Additionally, the
downstream pathway, known for mediating the effect of SDF-
1a on its respective receptor, CXCR4, was also impaired. All
these defects, that persisted despite the return in normo-
glycemic conditions, were associatedwith an endured high ROS
production. This finding, in line with the increased expression of
p66shc in HG-CD34+ stem cells, strengthened the involvement
of this gene in the mechanisms of metabolic memory in our
cells.

Expression of chemokine receptor CXCR4 is transcription-
ally regulated by DNA methylation.32 Alteration of this fine-
tuned modulation in diseases, such as cancer and primary
myelofibrosis, is responsible for the pathological phenotype of
tumor cells.33,46,47

Our findings provide evidence that HG exposure influences
per se DNA methylation of CXCR4 promoter in HG-CD34+ stem
cells and negatively affects migration ability toward SDF-1a.
Importantly, both the epigenetic modification and functional
defects persisted after a 3-day recovery in normoglycemic
conditions (exHG-CD34+). Notably, the CXCR4 promoter also
displayed a significant non-CpG methylation increase. DNA
methylation in mammals is predominantly reported on the
cytosine of the dinucleotide sequence, CpG. However, non-
CpG methylation was described in embryonic cells,48 and a
recent study by Barres et al provided evidence that non-CpG
methylation was present in skeletal muscle of T2DM sub-
jects.49 Interestingly, we found that the transcription pattern
of enzymes involved in DNA methylation was affected by HG
exposure. In particular, DNMT3B was upregulated, thus
suggesting, in agreement with Barre et al’s findings,49 the
involvement of this enzyme in increased methylation of the
CXCR4 promoter. However, further investigations will be
necessary to understand the biological role of non-CpG
methylation and DNMT3B on gene transcription regulation in
the diabetic context.

DNA methylation and histone modification systems are
known to be highly inter-related and mechanistically rely on
each other for chromatin function.50 We found, by chromatin
immunoprecipitation assay, that DNA methylation of the
CXCR4 promoter was associated with a significant increase of
repressive histone 3 lysine 27 trimethylation modification and
reduced level of activating pan-acetyl-H4 in HG-CD34+ stem
cells. Taken together, these findings provide evidence that HG
exposure promotes a more-inactive chromatin conformation,
which decreases DNA accessibility, contributing to reduction
of CXCR4 expression.

We next analyzed BM-derived CD34+ stem cells of control
CAD and CAD-DMpatients receiving antidiabetic drugs. Remark-
ably, wewere able to confirm the epigenetic changes observed in
HG-CD34+ stem cells. In CAD-DM subjects receiving pharmaco-
logical glycemia control versus age-matched nondiabetic

subjects, a significant increase of CpG methylation at the level
of the CXCR4 promoter was evident and which negatively
correlated with CXCR4 protein expression. Intriguingly, in line
with previous data, non-CpG methylation was also increased in
CAD-DM patients, although not significantly.

We acknowledge that this study, despite introducing
unprecedented information, has some limitations. First, the
sample size of CAD-DM patients and controls is relatively
small. However, in an attempt to partially overcome this
shortcoming, enrolled subjects have been selected by accu-
rate matching for age and major risk factors. We are aware
that this study does not provide a full mechanistic explanation
of the link between CXCR4 methylation, mRNA expression,
and cell migration impairment. We partly overcame this issue
by showing that increased DNA methylation is associated with
a closer chromatin structure that reduces RNA polymerase II
recruitment at the CXCR4 promoter level. Further mechanistic
insights will be the object of future studies.

In summary, the observations reported here show, for the
first time, that CD34+ stem cells are reminiscent of diabetic
milieu and that epigenetic mechanisms induced by hyper-
glycemia might concur to the pathogenesis of CD34+ stem
cell dysfunction having direct implications on tissue home-
ostasis and repair in DM. We believe this study provides a
proof of concept opening new perspectives in investigation on
epigenetic mechanisms involved in diabetic progenitor cell
dysfunction. This line of investigation may be relevant in
understanding the barriers that prevent the pharmacological
regression of DM cardiovascular complications despite opti-
mal management of hyperglycemia.
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SUPPLEMENTAL MATERIAL 



Data S1. 

 

SUPPLEMENTAL METHODS 

 

Global DNA Methylation 

Global methylation levels of CD34+ stem cell DNA were measured using the Methylflash Global 

DNA Methylation ELISA Easy kit (Epigentek, Germany) following the manufacture's 

recommendations. Briefly, 100 ng of genomic DNA was used for 5‐methyl cytosine(5‐mC) 

quantitation. The input DNA was washed and incubated with a capture antibody. The wells were 

then washed, and detection antibody was applied. Use of enhancer solution and development 

solution created a color change proportional to the quantity of 5‐mC content, and the samples were 

read colorimetrically on an automated plate reader at 450‐nm absorbance. The use of a standard 

curve enabled the quantification of 5‐mC based on absorbance measurements. The data were 

expressed 5-mC% (5-mC/total DNA (A+G+C+T)). 

DNMT Activity Assay 

Nuclear extracts of CD34+ stem cells were prepared by EpiQuik™ Nuclear Extraction Kit 

(Epigentek, Germany), and the total DNMT activity of nuclear extracts was detected according to 

the manufacturer's protocol (EpiQuik™ DNA Methyltransferase Activity/Inhibition Assay Kit, 

Epigentek, Germany), the absorbance of samples taken from each well was measured on a 

microplate reader (Synergy HT, Bio-Tek) at 450-nm. The DNMT activity was calculated and 

expressed using the following formula: (Sample OD – Blank OD) / (protein amount (ug) x hour) 

x1000 

 

 



Table S1. Antibody List. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Primer List. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S1. Flow cytometric quantification of ROS production in HG and exHG-CD34+ stem 

cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data are reported as log2 fold-change (FC) of MFI over control (NG), (n=4; *p<0.05 vs NG; 1-way 

ANOVA followed by Newman-Keuls post hoc analysis). exHG indicates ex-high glucose; HG, high 

glucose; MFI, mean fluorescence intensity; NG, normal glucose; ROS, radical oxygen species. 

 

 

 

 

 

 

 

 

 



Figure S2. A, Schematic representation of the CXCR4 gene with mapped sequences (arrows, 

region I, II and III). B, ChIP analysis of the CXCR4 promoter for H3K9me3 modification 

after hyperglycaemia exposure of CD34+ stem cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data, after input normalization are expressed as log2 fold change over NG (n=3; paired t-test). 

ChIP indicates chromatin immunoprecipitation; CXCR4, C-X-C chemokine receptor type 4; H3K9me3, tri-

methylation on lysine 9 of histone H3; HG, high glucose; NG, normal glucose. 

 

 

 

 

 

 

 



Figure S3. Analysis of DNMT3A, expression in CD34+ stem cells by qPCR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The data expressed as log2 fold change over NG are from at least 6 independent experiments (NG vs 

HG; paired t-test). DNMT3A indicates DNA methyltransferase 3A; HG, high glucose; NG, normal 

glucose. 

 

 

 

 

 

 

 



Figure S4. A, Effect of HG exposure on global 5-mC methylation level in CD34+ stem cells. 

The data are expressed as 5-mC% (5-mC/total DNA (A+G+C+T)). B, DNMT activity in HG-

CD34+ stem cells after HG exposure. 

 

 

 

 

 

 

 

 

 

 

 

 

The DNMT activity was calculated and expressed using the following formula: (Sample OD – 

Blank OD) / (protein amount (ug) x hour) x1000. The data are from at least 3 independent 

experiments (NG vs HG; paired t-test). DNMT indicates DNA methyltransferase; HG, high glucose; NG, 

normal glucose; OD, optical density. 

 

 

 

 

 

 

 

 

 


