
micromachines

Article

Design and Analysis of a Novel Flexure-Based Dynamically
Tunable Nanopositioner

Zeying Li 1, Pengbo Liu 1,* and Peng Yan 2,3,*

����������
�������

Citation: Li, Z.; Liu, P.; Yan, P.

Design and Analysis of a Novel

Flexure-Based Dynamically Tunable

Nanopositioner. Micromachines 2021,

12, 212. https://doi.org/10.3390/

mi12020212

Academic Editor: Nicola Pio Belfiore

Received: 20 January 2021

Accepted: 17 February 2021

Published: 19 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy
of Sciences), Jinan 250353, China; zeying729@gmail.com

2 Key Laboratory of High-Efficiency and Clean Mechanical Manufacturing, Ministry of Education,
School of Mechanical Engineering, Shandong University, Jinan 250061, China

3 Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
* Correspondence: pengbo@qlu.edu.cn (P.L.); pengyan2007@gmail.com (P.Y.)

Abstract: Various tools, such as biomedical manipulators, optical aligners, and ultraprecision man-
ufacturing tools, implement nanopositioners that must be dynamically tunable to satisfy the re-
quirements of different working conditions. In this paper, we present the design and analysis of a
flexure-based nanopositioner with dynamically tunable characteristics for the implementation of
a high-performance servomechanism. The nanopositioner is composed of four flexure beams that
are positioned in parallel and symmetric configurations sandwiched between magnetorheological
elastomers (MREs). The properties of MREs impart dynamicity to the nanopositioner, allowing the
workspace, stiffness, and damping characteristics in particular to be tuned under the action of an
external magnetic field. By utilizing elastic beam theory and electromagnetic field coupling analysis,
kinetostatic and dynamic models of the proposed nanopositioner were established to predict the
variable stiffness property and dynamically tunable characteristics. The models were validated by
performing a finite element analysis. Herein, it is shown that the proposed nanopositioner model
can actively adjust the trade-offs between the working range, speed, and sustained load capability
by changing the magnetic field. The proposed dynamic tuning method offers new insight into the
design of flexure-based nanopositioners for real applications.

Keywords: nanopositioning; compliant mechanism; tunable dynamics; variable stiffness;
magnetorheological elastomers

1. Introduction

Owing to the advantages of an ultrahigh accuracy and response speed, compliant
mechanism-based nanopositioning systems [1,2] have emerged as one of the key enabling
components in nanomeasurement, manipulation, and manufacturing instruments, such as
atomic force microscopes [3], semiconductor lithography [4], and fast tool servo-assisted
machining instruments [5]. However, their limited working range significantly limits the
applicability of nanopositioning systems. Thus, the amount of research focused on the optimal
design and control of nanopositioning systems has increased in recent decades [6–10].

The trade-off between motion stroke precision and mechanical bandwidth is known
to be unavoidable; it exists because nanoscale-precision motion is realized through the
elastic deformation of compliant mechanisms [11–13]. Various designs of nanopositioners
with large workspaces (i.e., millimeter range) have been developed at the cost of a low
stiffness [14–16], which reduced the load-carrying capability and response speed. Con-
versely, more flexibility also poses a significant challenge to high-precision nanopositioning
control. Owing to the performance limitations of compliant mechanisms, research efforts
have been devoted to exploring dynamic tuning technologies. Nanopositioning systems
with tunable stiffness enable adjustment of the working range and mechanical bandwidth
according to the operating conditions. Several controllable stiffness solutions, including
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cross-section shaping [17], the implementation of multilayer beams [18], preloading and
boundary condition adjustment [19], layer jamming [20], and fluid-based approaches [21],
have been applied in the design of compliant mechanisms and nanopositioning systems.
However, the essential tuning mechanisms significantly affect the mechanical structure of
the nanopositioning systems. Currently, the primary solution to the problem of variable
stiffness is to change the elastic properties of the materials (e.g., the elastic modulus). Thus,
magnetorheological elastomers (MREs), whose rheological and mechanical properties
can be changed according to the externally applied magnetic field, provide a means of
overcoming the disadvantages of the abovementioned methods [22–24].

With this as a motivation, we developed a novel dynamically tunable nanopositioner
that exploited the advantages of MREs. In particular, the nanopositioner is driven by a
voice coin motor (VCM) with a large actuation stroke. The sandwiched guiding mechanism
composed of flexure beams and MREs was designed to be positioned on both sides of
the central motion platform so that the variables affecting the mechanical properties,
including the workspace, damping, and stiffness, as well as the dynamical behavior of
the nanopositioner, could be actively controlled by an external magnetic field. Theoretical
modeling and finite element analysis (FEA), as well as experiments were conducted to
verify the proposed design concept.

The remainder of this paper is organized as follows. In Section 2, the mechanical
structure of the developed dynamically tunable nanopositioner is described. In Section 3,
kinetostatic and dynamic models are established to describe the variable stiffness and dy-
namically tunable properties. Section 4 outlines the FEA and experiment-based validation
of the proposed design. Last, concluding remarks are provided in Section 5.

2. Motivation

The dynamic performance of a compliant mechanism-based nanopositioner is deter-
mined by its natural frequency, which is compromised by the workspace requirements.
This means that a high natural frequency for compliant mechanisms can only be achieved
at the expense of the working range. For example, a millimeter-range flexure-based nanopo-
sitioner typically performs at a resonant frequency of less than 100 Hz [14,15]. Various
tools, such as biomedical manipulators, optical aligners, and ultraprecision manufacturing
tools, require the dynamically tunable characteristics of nanopositioners to satisfy the
requirements of different working conditions. Thus, for this study, we aimed to develop a
dynamically tunable flexure-based nanopositioner that optimized the trade-off between
the mechanical bandwidth (natural frequency) and working range (stroke).

3. Materials and Methods
3.1. Design Overview

As illustrated in Figure 1, a VCM isadopted as the actuator for the nanopositioner
owing to its high resolution and fast response time. The moving coil is connected to the
central motion platform, which is guided by a sandwiched guiding mechanism composed
of flexure beams and MREs. Owing to the characteristics of a high longitudinal stiffness
and low transverse stiffness as well as its ability to ensure a low stress concentration in
the flexure beams, the nanopositioner can achieve large strokes and excellent robustness
against parasitic motion. The rheological and mechanical properties of MREs, particularly
the elastic modulus, can be changed according to the external magnetic field. Furthermore,
the stiffness of the guiding mechanism, as well as the dynamic performance of the nanopo-
sitioner, can be dynamically adjusted by controlling the magnetic field. Note that due to the
temperature-dependent mechanical properties of MREs, the magnetic-induced modulus
of the MREs decreases with the heat generation from the MREs in the presence of the
magnetic field, which leads to significant adverse effects on the dynamical performance of
the nanopositioner. For real applications, water-cooling should be considered by designing
channel structures inside the compliant mechanisms.
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Figure 1. Schematic diagram of the proposed nanopositioner configuration.

3.2. Kinetostatic Model of Guiding Mechanism

This section describes the kinetostatic model of the developed nanopositioner, which
is constructed by applying the elastic beam theory and performing an MRE electromagnetic
field coupling analysis under the condition of an accurate prediction of the variable stiffness.
According to Lagrange’s equation, the dynamic model of the nanopositioner can then be
derived by incorporating the action of a magnetic field.

3.2.1. Deformation of the Flexure Beam

As depicted in Figure 1, the guiding mechanism is composed of four flexure beams
sandwiched between the MREs. First, we will describe the analysis procedure for the
flexure beams. Owing to the symmetric structure and identical working conditions, only
one flexure beam needs to be analyzed to establish the mathematical model. Because of
the slender structure, we disregard the shear deflections of the flexure beam. Note that
the transverse deformations of the flexure beams are an order of magnitude less than the
beam length; this means that the axial stretch deformations of the flexure beams can be
ignored. Accordingly, we perform a mechanical analysis of one flexure beam, as illustrated
in Figure 2, where Fb and Mb are the transverse force and bending moment applied at the
endpoint, respectively. According to the Euler–Bernoulli equation, we have:

M(x) = EI
dθ

ds
= EI

d2y
dx2 = Mb + Fb(L− x) (1)

where M(x) is the equivalent bending moment applied at the arbitrary cross section, x is
the length along the undeflected beam axis, y is the transverse deflection, θ is the angular
deflection, dθ/ds is the rate of change of angular deflection along the beam, E is the elastic
modulus, I = (bbtb)

3/12 is the moment of inertia, and bb, tb, and L are the width, thickness,
and length of the beam, respectively.
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At the fixed end, the rotation and deflection are zero (i.e., θ(0) = 0, y(0) = 0). At the
guiding end, the rotational angle is zero (i.e., θ(L) = 0). These boundary conditions can
then be applied to solve Equation (1) and obtain the deflection equation for the flexure
beam, as follows:

y(x) =
Fbx2(3L− 2x)

12EI
(2)

Accordingly, we derive the guiding displacement δ as follows:

δ = y(L) =
FbL3

12EI
(3)

3.2.2. Analytical Model of MREs

Next, we describe the procedure for modeling MREs, which are composed of magnetic
particles and polymer bodies. Because of the magnetic dipole interactions that occur
between particles, the shear modulus of MREs varies according to the applied external
magnetic field. According to [25], we can assume that the magnetic particles can be
idealized as chains of particles locked in the elastomer, as shown in Figure 3. Therefore,
because of the coupled magneto-elastic interactions, the shear modulus is larger under the
action of a magnetic field; this can be represented by the following equations:

∆G =
9
8

ΦCm2(4− γ2)

r3
0π2a3µ0µ′(1 + γ2)7/2 (4)

m =
4
3

πa3µ0µ1χH0

[
1

1− 4
3 χC(a/r0)

3

]
(5)

H0 =
B

µ0(1 + χ)
(6)

where m is the magnetic dipole moment of the particles, a is the particle radius, χ is the
susceptibility of iron particles, µ0 = 4π × 10−7H/m is the absolute permeability, µ1 is

the permeability of the MRE, C =
n
∑

j=1

(
1/j3

)
, r0 is the initial spacing between the two

adjacent dipoles, H0 is the intensity of the applied magnetic field, Φ is the volume fraction
of particles in the MRE, and γ is the shear strain.
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Because of their material properties, we assume that the MREs in the guiding mecha-
nism are susceptible to shear forces that result in shear deformation. Owing to a structural
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constraint, the MREs generate the same transverse displacement as the guiding flexure
beams. Thus, we have the following relationship:

γ = tan β =
δ

L
(7)

Fm = GγAm = Amγ(G0 + ∆G) (8)

where β is the shear deformation angle for the MREs, Am is the shear area, and G0 is the
initial shear modulus of the zero field.

3.2.3. Modeling of the Sandwiched Guiding Mechanism

By substituting Equation (3) into Equation (7) and then substituting the resulting
equation into Equation (8), it can be understood that the forces applied to the guiding
flexure beams and MREs should satisfy the relationship described by Equation (9):

Fm =
(G0 + ∆G)AmL2

12EI
Fb (9)

Correspondingly, the driving force applied to the guiding mechanism should be:

Fd = 4Fb + 2Fm =

(
4 +

(G0 + ∆G)AmL2

6EI

)
Fb (10)

Note that Fb = 12EI
L3 δ according to Equation (3). Thus, by substituting Fb into Equation

(10), we have:

Fd =

(
48EI

L3 +
2(G0 + ∆G)Am

L

)
δ (11)

Then, we can determine the equivalent stiffness of the guiding mechanism as a
function of the external magnetic field, as follows:

Kg = Fd
δ = 48EI

L3 + 2(G0+∆G)Am
L

= 48EI
L3 + 2Am

L

(
G0 +

2φC(4−γ2)a3µ1χ2B2

r03µ0(1+χ)2(1+γ2)
7
2 [1− 4

3 χC( a
r0 )

3]
2

)
(12)

From Equation (12), it is clear that the equivalent stiffness of the guiding mechanism
increases with the square of the magnetic field intensity.

3.3. Dynamic Analysis of Compliant Mechanisms

This section describes the process of using the Lagrange method to establish a dynamic
model of the compliant mechanism. Because the flexure beams and MREs are subject
to damping dissipation, we introduce Rayleigh’s dissipation function R = 1

2 c
.
q2

i into
Lagrange’s equation. Subsequently, Lagrange’s equation can be rewritten as:

d
dt

(
∂L
∂

.
qi

)
− ∂L

∂qi
+

∂R
∂

.
qi

= Qi (13)

where qi is the generalized coordinate, Qi is the generalized force without the conservative
force, and L = T − V is the Lagrange term, which is the difference between the kinetic
energy T and potential energy V of the system.

Next, we select the output displacement δ(t) of the central motion platform as the
generalized coordinates. The kinetic energy of the entire mechanism is sourced from
the movement of the central motion platform, flexure beams, and MREs, which can be
described as:

T =
1
2

Mc
.
δ

2
+ 4

∫ L

0

1
2

ρb Ab
.
y2dx + 2

∫ L

0

1
2

ρm Am
.
h

2
dx (14)
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where Mc is the mass of the central motion platform, ρb and Ab are the density and cross-
sectional area of the flexure beam, respectively, y is the transverse displacement at the
arbitrary cross section of the flexure beam, ρm and Am are the density and cross-sectional
area of the MREs, respectively, and h is the transverse displacement at the arbitrary cross
section of the MREs.

Combining Equations (2) and (3), we obtain the following relationship between y
and δ:

y =
x2(3L− 2x)

L3 δ (15)

Taking into account the shear deformation of the MREs, we can easily derive the
relationship between h and δ:

h =
x
L

δ (16)

By substituting Equations (15) and (16) into Equation (14), we obtain the total kinetic
energy as:

T =

(
1
2

Mc +
26
35

ρb AbL +
1
3

ρm AmL
)

.
δ

2
(17)

The potential energy is sourced from the deformations of the flexure beams and MREs,
and is given as:

V = 4
∫ L

0
1

2EI

(
∂2y
∂x

)
dx + 2

∫ L
0

1
2 (G0 + ∆G)γ2 Amdx

=
(

24EI
L3 + (G0+∆G)Am

L

)
δ2 = 1

2 Kgδ2
(18)

Note that the generalized force Qi is the driving force Fvcm applied to the guiding mech-
anism of the VCM. By substituting T, V, R, and Qi into Lagrange’s equation (i.e., Equation
(13)), the dynamic equation for the entire micromotion platform can be expressed as:(

Mc +
52
35

ρb AbL +
2
3

ρm AmL
)

..
δ + c

.
δ + Kgδ = Fvcm (19)

Correspondingly, the natural frequency ωn of the compliant mechanism can be de-
rived as:

ωn =

√
Kg

Mc+
52
35 ρb Ab L+ 2

3 ρm Am L

=

√√√√√√ 48EI+2Am L2

G0+
2ΦC(4−γ2)a3µ1χ2B2

r3
0µ0(1+χ)2(1+γ2)

7
2
(

1− 4
3 χC( a

r0 )
3
)2


Mc L3+ 52

35 ρb Ab L4+ 2
3 ρm Am L4

(20)

3.4. Validation via Finite Element Simulations

The critical parameters and material parameters listed in Tables 1 and 2 were used
to conduct the FEA of the proposed nanopositioner model using the ANSYS 17.0 Work-
bench (Canonsburg, PA, USA), as shown in Figure 4. The static and modal analyses were
carried out under the conditions of different magnetic fields to verify the variable stiffness
capability and dynamic tunable performance of the MRE-based nanopositioner model.
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Table 1. Material parameters of the nanopositioner.

Parameter Symbol Value

Young’s modulus of flexure beams E (GPa) 2.2
Poisson’s ratio of flexure beams µ 0.39

Density of flexure beams ρm (kg/m3) 1190
Initial shear modulus of

magnetorheological elastomers (MREs) G0 (MPa) 0.8

Permeability of MREs µ1 (H/m) 3.5
Density of MREs ρb (kg/m3) 1100

Table 2. Geometric parameters of the nanopositioner.

Parameter Symbol Value

Length of flexure beams L (mm) 25
Width of flexure beams bb (mm) 20

Thickness of flexure beams tb (mm) 1
Width of MREs bm (mm) 14

Thickness of MREs tm (mm) 20
Cross-sectional area of the MREs Am (mm2) 280

Length of central motion platform lc (mm) 20
Width of central motion platform wc (mm) 20
Height of central motion platform hc (mm) 20
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4. Results and Discussion
4.1. Stiffness Validation

We first performed a static analysis to verify the variable stiffness of the developed
nanopositioner model. Displacement constraints were applied to the four fixing holes, and
a driving force was applied to the input surface of the central motion platform. Figure 5
demonstrated the simulation results of the deformation (Figure 5a,b) and stress distribu-
tions (Figure 5c). A large working range (2.5 mm) was enabled by the developed compliant
mechanism of the nanopositioner model.
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ticular, relative to the condition of no applied magnetic field, the stiffness improved by 
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of the developed static model of the nanopositioner to accurately predict the variable stiff-
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Figure 5. Static analysis results for the micromotion platform: (a) Output displacement; (b) Strain cloud diagram; and
(c) Stress cloud diagram.

By applying external magnetic fields with different intensities, we were able to con-
struct the load-displacement curves illustrated in Figure 6. It is clear that the developed
nanopositioner model exhibited a constant stiffness in the presence of a magnetic field
with a certain intensity. As the intensity of the magnetic field increased, the equivalent
stiffness of the nanopositioner model sharply increased, as indicated in Figure 7. In par-
ticular, relative to the condition of no applied magnetic field, the stiffness improved by
69.05% in the presence of a magnetic field with an intensity of 1 T. In addition, the good
agreement between the theoretical results and FEA simulations demonstrates the ability
of the developed static model of the nanopositioner to accurately predict the variable
stiffness characteristics.
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4.2. Dynamic Analysis

A modal analysis and harmonic response analysis were also conducted to verify the
dynamic tunability of the developed nanopositioner model. The simulated results for the
first three mode shapes, which were derived under the condition of no applied magnetic
field, are illustrated in Figure 8; the corresponding frequencies are listed in Table 3. It can
be seen that the first mode (Figure 8a) represents the deflection motion along the working
axis and has a natural frequency of 247.58 Hz. The nanopositioner rotated around the
z-axis in the second mode (Figure 8b) and translated outside the plane in the third mode
(Figure 8c).
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Table 3. ANSYS results for the frequency modes in the absence of an applied magnetic field.

Modes 1st 2nd 3rd

Frequency (Hz) 247.58 909.31 958.87

The equivalent stiffness of the proposed nanopositioner model increased under the
action of an external magnetic field. Correspondingly, the natural frequency, which deter-
mines the mechanical bandwidth and dynamic behavior, also significantly increased, as
indicated by the frequency response results illustrated in Figure 9. Table 4 lists the natural
frequencies of the nanopositioner model that were determined in the presence of various
magnetic fields. Given that the discrepancy between the FEA and theoretical results was
less than 4.7%, it is clear that the developed dynamic model was highly congruent with
the simulated results. If the nanopositioner model is placed in a magnetic field with an
intensity of 1 T, the natural frequency is expected to increase by 30.38% relative to that
corresponding to an environment without a magnetic field. It is also worth mentioning
that the damping performance of the nanopositioner model can also be influenced by the
magnetic field because of changes in the material properties of the MREs, which were
found to isolate vibrations better in the developed nanopositioner model.
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Table 4. Natural frequency under different magnetic fields.

Magnetic Field
Intensity B = 0 T B = 0.5 T B = 1.0 T

Theoretical 236.46 259.89 315.73
FEA 247.58 262.95 316.05

4.3. Experiemental Validations

Based on the structure parameters listed in Table 2, a prototype of the developed
nanopositioner was machined by additive manufacturing, as illustrated in Figure 10. MREs
were fabricated with carbonyl iron powder, silicone oil, and silicone rubber and were
mounted inside the guiding beams. The VCM (BEI LA15-16-024) (Sensata Technologies,
Attleboro, MA, USA) driven by a high bandwidth current amplifier was adopted to actuate
the compliant stage. A linear encoder (Mercury II™ 6000) (Celera Motion, Bedford, MA,
USA) with a resolution of 1.2 nm was used to measure the displacement information.
Accordingly, an experimental system was set up through the software Matlab (R2016b,
MathWorks.Inc, Natick, MA, USA) using the control package Simulink Real-Time, with
National Instruments data acquisition hardware (PCI 6259) (National Instruments, Austin,
TX, USA), for the purpose of test and control implementations.

The dynamic-tunable performance of the developed nanopositioner was examined
by the frequency response method under the action of various external magnetic fields.
A swept-sine signal ranging from 1 Hz to 150 Hz was applied to the VCM, and the
responding output displacements were recorded. Based on the Fourier transformation, the
Bode plots of the frequency responses of the developed prototype were obtained, as shown
in Figure 11. Note that the moving mass of the VCM, which is not considered in the FEA
simulations, significantly affects the natural frequency of the nanopositioner, resulting in
the discrepancy between the experimental and simulated results. Under the action of the
external magnetic field, the natural frequency of the prototype is significantly improved,
which results from the increased stiffness. On the other hand, the decrease of the system
magnitude at low frequencies indicates the cost of motion range. By changing the magnetic
field, the proposed nanopositioner prototype is capable of adjusting the trade-offs between
the working range, speed, and sustained load capability.
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5. Conclusions

To satisfy diverse requirements for the dynamic performance of nanopositioners, we
exploited the material properties of MREs to develop a dynamically tunable nanopositioner.
The elastic properties of the MREs were found to change under the action of an external
magnetic field; this resulted in significant variations in the stiffness and natural frequency
of the sandwiched guiding mechanism. Consequently, the proposed nanopositioner can
be dynamically controlled to adjust the trade-off between the mechanical bandwidth and
working range. Specifically, the developed nanopositioner can not only become more rigid
when a higher positional accuracy or a larger load is required, but it can also become
compliant in order to increase the working range. Theoretical models were also established
to predict the variable stiffness characteristics and dynamically tunable properties of the
nanopositioner; these models were validated by performing FEA. The noncontact tuning
method, which uses an external magnetic field, has the potential to be used in various
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extreme applications. In the future, we plan to conduct experimental studies using the
developed nanopositioner.
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