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Abstract 

Despite the widespread use of the Research Domain Criteria (RDoC) framework in psychiatry 

and neuroscience, recent studies suggest that the RDoC is insufficiently specific or excessively 

broad relative to the underlying brain circuitry it seeks to elucidate. To address these concerns 

of the RDoC framework, our study employed a latent variable approach, specifically utilizing 

bifactor analysis. We examined a total of 84 whole-brain task-based fMRI (tfMRI) activation 

maps from 19 studies with a total of 6,192 participants. Within this set of 84 maps, a curated 

subset of 37 maps with a balanced representation of RDoC domains constituted the training set 

of our analysis, and the remaining held-out maps formed the internal validation set. External 

validation was performed with 36 peak coordinate activation maps from Neurosynth, using 

terms of RDoC constructs as seeds for topic meta-analysis. Our results indicate that a bifactor 

model with a task-general domain and splitting the cognitive systems domain into sub-domains 

better fits the current corpus of tfMRI data than the current RDoC framework. Our data-driven 

validation supports revising the RDoC framework to accurately reflect underlying brain circuitry. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.01.31.577486doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.31.577486
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

Introduction 

The study of human neurobiology is a rapidly advancing field with significant implications for 

understanding brain function and, eventually, facilitating the development of valid biological 

markers and effective treatments for psychiatric disorders. Psychiatric disorders listed in the 

Diagnostic and Statistical Manual (DSM) have been considered to be discrete and unitary; 

recent research, however, suggests that they are both highly comorbid and heterogeneous 

across clinical samples1,2. This heterogeneity may underlie the lack of well-established 

biomarkers to date for psychiatric disorders. 

The Research Domain Criteria (RDoC) framework was developed by the National Institute of 

Mental Health (NIMH) to guide the development of a psychiatric nosology based on primary 

psychological functions and their associated biological features3,4. The framework organizes 

core dimensions of behavior using a dimensional approach, viewing these aspects as varying 

along a continuum rather than in distinct categories. This approach spans multiple levels of 

analysis, from genes to behavior5. Within the RDoC framework, the fundamental neurobiological 

systems were defined and organized hierarchically into domains, with domain-specific 

constructs and sub-constructs. Now, over a decade since its inception, the framework’s 

dimensional approach to psychopathology and its integration of multiple levels of analysis have 

contributed to a more nuanced and comprehensive understanding of brain function and mental 

disorders4,6. 

While the RDoC framework has helped guide research, a recent study using text-mining and 

machine learning found that a bottom-up data-driven ontological framework generated brain 

circuit-function links that were more reproducible than the RDoC or DSM frameworks7. They 

also showed that multiple RDoC domains shared underlying neural circuits or some domains 

needed to be split. For example, Beam et al.7 showed that the RDoC domains of negative 

valence, positive valence, and arousal and regulation shared high mutual information across the 
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fronto-medial cortex and amygdala, indicating an overlap in the division of these domains. 

Further, they also showed that the RDoC negative valence domain encompassed constructs 

that, from a data-driven framework, recombine elements of memory, reward, and cognitive 

systems. These findings prompt further investigation into potential refinements to RDoC’s 

domain structure and mapping of brain function to neural circuits. 

Researchers have made significant strides in attempting to develop a data-driven ontology that 

maps brain function to neural circuits through the meta-analysis of task-based fMRI (tfMRI) 

activation maps and topic modeling. Using data mining techniques, peak brain coordinate 

activation patterns during tasks have been categorized based on latent functional domains 

derived from study texts8,9 or task descriptions10,11. While previous studies utilizing coordinate 

activation data have effectively harnessed the vast amounts of data available in databases like 

Neurosynth12 and Brainmap13, they provide a very sparse representation of whole-brain 

activation. Image-based meta-analyses can provide a richer understanding of the intricate 

patterns of activation that occur during tasks14.  It would be beneficial to compare RDoC directly 

with a data-driven model derived using image-based analyses to assess potential refinements 

to its framework.  

To expand on the RDoC framework's hierarchical structure and address any potential overlap 

between domains or lack of specificity within a domain, we leveraged a latent variable approach 

with bifactor analysis to explore circuit-function relations. Bifactor models allow one to capture 

both shared variance across a number of latent constructs as well as variance unique to specific 

constructs. Assessing both general patterns of brain activity common across tasks15,16 and task-

specific activation, Bolt et al. previously demonstrated that a bifactor model represents the 

relations between psychological constructs and underlying neural processes better than 

conventional non-hierarchical frameworks17. Using a bifactor model can help to identify shared 

and unique variance among the different constructs and provide more nuanced insight into the 
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organization of circuit-function relations. This approach can also help identify constructs that 

may be better conceptualized as part of a larger domain rather than as separate constructs. In 

this context, we used a bifactor analysis to examine the hierarchical structure of the RDoC 

framework across domains to provide data-driven evidence of complementary domain 

structures. 

Specifically, we applied a latent variable approach with bifactor analysis to whole-brain task 

activation images from Neurovault and U.K. Biobank (n=84 select activation maps from 19 

studies with a total of N=6,192 participants; adapted from Bolt et al17) to examine the 

organization of circuit-function relations. To ensure the robustness of our findings, we first 

derived our model solutions via a curated subset of the original dataset. Subsequently, we 

tested the model solution by applying it to the held-out maps, assessing its ability to generalize 

to previously unseen data. Moreover, we validated further using maps reconstructed from 

activation coordinates sourced from Neurosynth to assess the model's applicability to diverse 

data types. This comprehensive approach (Fig. 1) allows us to evaluate how well our model 

solution captures and represents brain activation patterns across various datasets and serves 

as a crucial step in advancing our understanding of circuit-function relations.  

We posit that unclear boundaries between and within RDoC domains could lead some domains 

to lack sufficient specificity; for example, one domain may show strong connections to multiple 

latent factors. Conversely, other domains may be overly specified; for instance, multiple 

domains might share robust associations on the same latent factor. This examination advances 

our understanding of circuit-function relations in the brain and informs approaches to refine the 

RDoC framework. 
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Figure 1: Approach to create and validate RDoC and data-driven factor models. (A) First, 
we divided tfMRI whole-brain activation maps into two subsets: the curated training dataset for 
building our factor models and the other as the internal validation set. Additionally, we 
processed tfMRI coordinate activation maps of peak activations to create an external validation 
set. (B) Regarding the confirmatory factor analysis (CFA) for the RDoC factor models, we 
assigned maps from the curated training dataset to specific factors corresponding to RDoC 
domains based on task associations. Before conducting a CFA, we first performed an 
exploratory factor analysis (EFA) to determine factor assignments for data-driven factor models. 
(C) We employed a validation procedure to evaluate the model's performance on unseen data. 
We assigned maps to specific factors based on factor scores derived from the original data-
driven and RDoC models. We then compared fit scores to assess the model's generalizability to 
new data. 
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Results 

RDoC models with whole-brain activation maps  

We conducted two CFAs with RDoC factors: one with only specific factors (Fig. 2Bi) and 

another with an additional general factor (bifactor model; Fig. 2Bii). Based on the task 

description of each contrast map (Supplementary Table 1), maps were grouped into specific 

factors by matching respective RDoC domains’ definitions. 

 

Figure 2: Factor model types. (A) Across all models, specific factors, F, denote brain 
activation patterns unique to a subset of tasks. In the bifactor models, the general factor, G, 
embodies brain activation patterns common across various tasks. (Bi-Bii) RDoC Models: These 
models are characterized by specific factors, each representing a distinct RDoC domain defined 
by task contrasts from whole-brain or coordinate activation maps. The Specific Factor Model 
(Bi): This model comprises specific factors. The Bifactor Model (Bii): This model is an extension 
of the specific factor model, with the addition of a general factor. (Ci-Cii) Data-Driven Models: 
These models (i & ii) are generated through EFA without predefined factors. CS and SP are 
representative RDoC domains, Cognitive Systems, and Social Processes, respectively. 
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In the specific factor model, most maps within each domain loaded significantly (i.e., |loading 

score|>=0.4) onto each factor representing their domains (cognitive systems: 11/15; negative 

valence systems: 5/5; positive valence systems: 6/7; social processes: 6/6; sensorimotor 

systems: 4/4; Fig. 3A). 

 

Figure 3: Comparison of RDoC and Data-driven models using whole-brain activation 
maps. (A-B) Heatmaps showing factor loadings of the RDoC and data-driven models across 
RDoC domain classified maps. Warmer colors = positive; Cooler colors = negative factor 
loadings shown. (C) Relative fit measures of different latent variable models from whole-brain 
activation maps. The data-driven bifactor model (DD (bifactor)) was the model with the best fit 
based on robust RMSEA, CFI, and TLI, but the data-driven specific factor model (DD) was the 
model with the best fit based on AIC. The violin plots represent the distribution of the bootstrap 
samples; the fit values from our models are highlighted with black dots. CS: Cognitive Systems; 
NV: Negative Valence systems; PV: Positive Valence systems; SS: Sensorimotor Systems; SP: 
Social Processes; G: General factor; F1-8: specific factors 1-8; and DD: Data-driven. Domain-
Constructs: Cognitive Systems-A: Attention; CC: Cognitive Control; DM: Declarative Memory; L: 
Language; P: Perception; WM: Working Memory; Negative Valence systems-AT: Acute Threat; 
L: Loss; Positive Valence Systems-RR: Reward Response; RV: Reward Valuation; Social 
Processes-PO: Perception of Others; SC: Social Communication; Sensorimotor Systems-MA: 
Motor Action. 

 

Comparing the RDoC specific factor model with the bifactor model to examine whether adding a 

general factor would improve the fit, we found that the bifactor model had a better fit according 

to all fit indices (Tukey’s test, p < .001; Table 1). This suggests that adding a general factor 

reflecting domain-general activation patterns improved the model fit of the conventional RDoC 

framework. This was also true after accounting for model complexity (with the AIC and BIC 
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score) in the additional number of parameters estimated in the bifactor model, indicating that 

adding a general factor also provided a better balance between fit and complexity. 

Table 1: Model fit comparison. This table presents the model fit statistics for the factor 
models. The models are categorized into RDoC and data-driven, each further divided into 
specific factor and bifactor models. The data-driven models generally showed better model fit 
than all the RDoC models. The data-driven bifactor model showed the best fit as measured by 
robust RMSEA, robust CFI, and robust TLI, but the data-driven specific factor model showed the 
best fit as measured by AIC and BIC. Lower RMSEA, AIC, and BIC values and higher CFI and 
TLI values signify superior model fit. Each metric is accompanied by 95% CI.  Bold values 
represent the best fit for each measure within each row (*the best fit score). 

Map Type Models 
RDoC Data-driven 

Specific Factor Bifactor Specific Factor Bifactor 

Whole-
brain 

activation 
maps 

 

Robust 
RMSEA 0.218 0.202 0.214 0.190* 

95% CI 0.212-0.222 0.196-0.206 0.208-0.219 0.183-0.194 

Robust 
CFI 0.495 0.582 0.590 0.633* 

95% CI 0.475-0.519 0.561-0.610 0.573-0.612 0.613-0.659 

Robust 
TLI 0.456 0.532 0.530 0.587* 

95% CI 0.436-0.483 0.508-0.563 0.510-0.556 0.565-0.617 

AIC 26,530 24,781 21,662* 23,770 

95% CI 25,729- 27,031 24,000- 25,230 20,962-22,031 22,953-24,224 

BIC 26,853 25,200 22,028* 24,193 

95% CI 26,053-27,354 24,420- 25,650 21,327-22,397 23,376-24,648 

 

Data-driven models with whole-brain activation maps 

In the data-driven approach, we also conducted two CFAs: one with only specific factors (Fig. 

2Ci) and another with an additional general factor (bifactor model; Fig. 2Cii). The specific factors 

for both models are latent variables derived using EFA that account for the unique variance 

among subsets of activation maps. They represent dimensions of task activation patterns that 

are not shared across all maps. Parallel analysis was first conducted to determine the 

appropriate number of factors to extract from the dataset. The parallel analysis indicated that 

models with eight factors or less had eigenvalues greater than expected by chance 

(Supplementary Figure 1). Thus, we extracted eight specific factors in the data-driven CFAs.  
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In the data-driven bifactor CFAs, all maps loaded significantly (i.e., |loading score|>=0.4) on the 

general, specific, or both factors. All but two maps across RDoC domains loaded on the general 

factor, indicating that maps across distinct studies and tasks showed overlap in activation 

patterns (Fig. 3B). Notably, the two maps that did not load on the general factor were associated 

with contrasts related to button pressing in response to an auditory cue; in contrast, the tasks in 

the dataset primarily revolved around responses to visual cues.  

Furthermore, maps labeled by RDoC domains showed divergent patterns in loadings across 

specific factors (Fig. 3B). Positive valence systems, social processes, and sensorimotor 

systems domain maps showed high loadings that were confined to relatively few specific 

factors. In contrast, cognitive and negative valence systems domain maps showed significant 

loadings spread across multiple specific factors. 

The ANOVA results indicated significant differences in fit among all the RDoC and data-driven 

model types (robust RMSEA: F(3, 19588) = 108,961, p < .001; robust CFI: F(3, 19588) = 

212,411, p < .001; robust TLI: F(3, 19588) = 209,379, p < .001; AIC: F(3, 19588) = 126,142, p < 

.001; BIC: F(3, 19588) = 87,435, p < .001). The data-driven bifactor model also had a greater 

overall fit to the data compared with both RDoC models and the data-driven specific factor 

model (Tukey’s test, p < .001; Fig. 3C). However, after accounting for the different number of 

parameters estimated in the models, the data-driven bifactor model had a better model fit than 

the RDoC specific factor model but not the data-driven specific factor model (Tukey’s test, p < 

.001; Figure 3C). All model fit scores are shown in Table 1 and Tukey pairwise comparisons 

shown in Supplementary Table 2. 

After deriving these models, we created a product matrix to study similarities in map loadings 

across factors from the RDoC specific factor model and the data-driven bifactor model (Fig. 4A). 

The values in the product matrix represent the average product of absolute non-zero value 

factor loadings in both models. The values range from 0-1, where 1 represents a complete 1-to-
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1 similarity in map loadings, and 0 represents no overlap. This matrix provides insight into the 

consistency of the boundaries within and without the RDoC domains. Maps of domains with 

cross-loading on many specific factors reflect heterogeneity within the domain’s boundaries (low 

intra-domain consistency); maps of domains that share high loading with other domains on the 

same specific factor reflect overlap in the domains’ boundaries (high inter-domain similarity). 

 

Figure 4: Factor convergence. (A) Heatmap showing the average product of factor loadings 
for maps in both the RDoC specific factor model and data-driven bifactor model. High values18 
above |.4| are highlighted with black borders. Maps of domains cross-loading on many specific 
factors reflect low intra-domain consistency; maps of domains sharing high loading with other 
domains on the same specific factor reflect high inter-domain similarity. (B) The heatmap shows 
the Pearson correlation of factor scores for the data-driven bifactor and RDoC specific factor 
model. (*p-value < .05; **p-value ≤ .01; ***p-value ≤ .001). Rows and columns are organized to 
show the strongest correlations in the diagonal. (C) Glass brains of factors with the highest 
correlations are shown as illustrative examples of strong one-to-one convergence in factor 
scores on the brain (warmer colors = positive scores; cooler colors = negative scores). 
Specifically, the sensorimotor systems domain displayed a strong correspondence with data-
driven factor 2, the positive valence systems domain aligned with data-driven factor 1, and the 
social processes domain strongly correlated with data-driven factor 8. Scatter plots of 
correlations are shown on the right. CS: Cognitive Systems; NV: Negative Valence systems; 
PV: Positive Valence systems; SS: Sensorimotor Systems; SP: Social Processes; F1-6: specific 
factors 1-8. 

 

The cognitive systems and negative valence systems domains load across multiple specific 

factors, indicating low intra-domain consistency. This suggests a degree of heterogeneity within 

the boundaries of these domains. In contrast, the sensorimotor systems domain shows notable 

intra-domain consistency by loading heavily on only a single data-driven factor (Fig. 4A), 

indicating a relatively consistent pattern in the activation maps of this domain. The positive 
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valence systems and social processes domains demonstrate loadings across various data-

driven factors, with particularly high loadings for data-driven factors 8 and 1, respectively. This 

implies that the boundaries of these domains may benefit from some refinement, given the 

observed complexities in their activation patterns across different factors. RDoC specific factors 

that share high loadings with data-driven factors (Fig. 4A) also show high factor score 

correlations (Fig. 4B-C)  

Brain maps of factor scores and map loading for the data-driven bifactor and RDoC specific 

factor model are shown in Fig. 5. All of the RDoC domains but the sensorimotor systems 

domain show positive factor scores across both visual and motor regions, implicating the 

frequent recruitment of these regions across tasks of different domains. The sensorimotor 

systems domain predictably showed notable positive factor scores across the motor cortex. 

Similarly, the factors score brain map of the data-driven bifactor model’s general factor captured 

the predominant recruitment of visual and motor regions across most tasks. In contrast, the 

factor scores of the data-driven model’s specific factors captured more specific and varied 

functional activation patterns. 
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Figure 5:  Mapping factors of the RDoC specific factor model and the data-driven bifactor 
model using data from whole-brain activation maps. Chord diagram showing the weighted 
links between maps loading on both models. The product of loadings in both models weighs 
links. Overlaps in maps showing loadings on both models illustrate the complex relations 
between RDoC factors and those derived using a data-driven bifactors modeling approach. 
Glass brain maps reflect factor scores (warmer colors = positive scores; cooler colors = 
negative scores). Word clouds of factors reflect the paradigm descriptors of the top eight maps 
loading on each factor. The size of words reflects the magnitude of the factor’s loading. 

 

Validation with held-out whole-brain activation maps and Neurosynth coordinate 

activation maps 

To evaluate the robustness and generalizability of our model solutions, we conducted a 

validation procedure using both the held-out maps from the original dataset (internal validation) 

and the coordinate activation maps sourced from Neurosynth (external validation) (Fig. 6).  
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Figure 6: Validating RDoC and Data-driven models using held-out whole-brain and 
coordinate activation maps. Heatmaps showing factor loadings of the (i) RDoC and (ii) data-
driven models for (A) whole-brain and (B) coordinate activation maps. Whole-brain activation 
maps held-out from the curated training dataset used to create the original models formed the 
internal validation set. The external validation set consists of coordinate activation maps 
obtained using Neurosynth's LDA topic-based meta-analysis. These coordinate activation maps 
represent RDoC construct seed terms. The data-driven validation model with coordinate 
activation maps did not incorporate a general factor. This omission stemmed from the nature of 
sparse coordinate activation maps, which lacked significant overlaps that would warrant the 
representation of a general factor, as detailed in Supplementary Figure 2. Warmer colors = 
positive; Cooler colors = negative factor loadings shown. The held-out whole-brain and 
coordinate activation maps were assigned to specific factors based on factor scores from data-
driven and RDoC models. (iii) Relative fit measures for the different latent variable models. The 
data-driven model outperformed the RDoC model regarding fit scores when applied to both the 
held-out whole-brain activation maps and coordinate activation maps, capturing brain activation 
patterns for different unseen datasets. The violin plots represent the distribution of the bootstrap 
samples; the fit values from our models are highlighted with black dots. AR: Arousal and 
Regulatory Systems; CS: Cognitive Systems; NV: Negative Valence systems; PV: Positive 
Valence systems; SS: Sensorimotor Systems; SP: Social Processes; G: General factor; F1-8: 
specific factors 1-8; and DD: Data-driven. 
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For internal validation using held-out whole-brain activation maps, we first compared the model 

fit of factors derived from the RDoC-specific factor model (conforming to the current RDoC 

framework) with those from the data-driven bifactor model. Our analysis revealed that the data-

driven model exhibited a better fit for the held-out maps (robust RMSEA: t(9773.2) = 195.7, p < 

.001; robust CFI: t(9789.6) = -222.0, p < .001; robust TLI: t(9869.2) = -157.3, p < .001; AIC: 

t(9712.7) = 198.5, p < .001; BIC: t(9712.7) = 182.0, p < .001). These findings highlight the data-

driven model's superior fit and generalizability, even when tested on previously untrained data, 

compared with the RDoC model. All model fit scores are shown in Table 2.  

Table 2: Internal validation model fit using held-out whole-brain activation maps. The 
data-driven bifactor model showed better model fit across all model fit indices (robust RMSEA, 
robust CFI, robust TLI, AIC, and BIC) compared to the RDoC specific factor model representing 
the RDoC framework. Lower RMSEA, AIC, and BIC values and higher CFI and TLI values 
signify superior model fit. Each metric is accompanied by 95% confidence intervals (CIs). Bold 
values represent the best fit for each measure within each row (*the better fit score). 

Map 
Types Models RDoC  

Specific Factor 
Data-driven 

Bifactor 

Held-out 
whole-
brain 

activation 
maps 

Robust 
RMSEA 0.205 0.198* 

95% CI 0.200- 0.208 0.193-0.200 
Robust 

CFI 0.426 0.484* 

95% CI 0.400-0.456 0.464-0.513 

Robust 
TLI 0.421 0.462* 

95% CI 0.395-0.452 0.441-0.492 

AIC 34,697 33,147* 

95% CI 33,731-35,429 32,310-33,712 

BIC 34,912 33,493* 

95% CI 33,947-35,644 32,657-34,058 

 

External validation with Neurosynth coordinate activation maps was conducted to evaluate the 

model's generalizability to diverse data types. We did not include a general factor in our data-

driven model. Here, coordinate activation maps are sparse and do not show substantial 

overlaps that a general factor would represent. Indeed, the general factor of a data-driven 

bifactor model from a CFA exhibits limited loading across all the coordinate activation maps, 
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indicating a lack of substantial influence (Supplementary Figure 2). Similar to our findings with 

the held-out whole-brain activation maps, the data-driven specific factor model demonstrated a 

better fit for the Neurosynth coordinate activation maps compared to the RDoC model (robust 

RMSEA: t(4259.7) = 13.7, p < .001; robust CFI: t(4104.9) = -42.7, p < .001; robust TLI: t(4049.7) 

= -37.5, p < .001; AIC: t(4132.3) = 64.6, p < .001; BIC: t(4132.3) = 62.8, p < .001). These results 

indicate that the data-driven models demonstrated better fit and generalizability to both unseen 

whole-brain and coordinate activation maps compared to the RDoC models (Tables 2 and 3).  

Table 3: External validation model fit using Neurosynth coordinate activation maps. The 
data-driven specific factor model showed better model fit across all model fit indices (robust 
RMSEA, robust CFI, robust TLI, AIC, and BIC) compared with the RDoC specific factor 
representing the RDoC framework. Lower RMSEA, AIC, and BIC values and higher CFI and TLI 
values signify superior model fit. 95% CIs accompanies each metric. Bold values represent the 
best fit for each measure within each row (*the better fit score). A substantial proportion of 
bootstrapped models (approximately 48.5%) generated non-admissible solutions and the 
distribution of the bootstrapped fit measures for the robust RMSEA, robust CFI, and robust TLI 
were notably skewed (Figure 6). 

    

Map Types Models RDoC  
Specific Factor 

Data-driven 
Specific Factor 

Coordinate 
activation 

maps 

Robust 
RMSEA 0.289 0.263* 

95% CI 0.092-0.299 0.081-0.282 
Robust 

CFI 0.130 0.303* 

95% CI 0.112-0.657 0.237-0.863 

Robust 
TLI 0.124 0.274* 

95% CI 0.106-0.655 0.205-0.857 

AIC 32,074 28,909* 

95% CI 29,574-34,608 26,707-32,313 

BIC 32,224 29,136* 

95% CI 29,724-34,759 26,934-32,540 

 

Discussion 

The current study aimed to advance the ontology of human brain functions by using a latent 

variable approach with bifactor analysis to examine the hierarchical structure of the RDoC 

framework. Our findings suggest that a data-driven approach provides a more accurate 
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representation of the organization of the human brain's circuit-function relations than does the 

RDoC model. 

The traditional RDoC model had most maps within each domain that loaded significantly onto 

each factor representing their domains; however, compared with data-driven models, the RDoC 

model also showed a relatively poor fit for both whole-brain and coordinate activation maps, 

indicating that the RDoC framework may not fully capture the complexity of brain-behavior 

relations. Adding a general factor to the conventional RDoC also improved the fit of the RDoC 

specific factor model, suggesting that the conventional RDoC framework may benefit by adding 

a superordinate domain representing task-general functioning. Incorporating a task-general 

functional domain into the RDoC model that extends beyond the existing task-specific functional 

domains would enhance the model's ability to represent brain functioning comprehensively. 

Impairments within this domain may reflect transdiagnostic alterations that cause changes to 

domain-general/task-nonspecific processing, including attention or awareness17. 

Compared to the RDoC model, the data-driven model had a better fit to the data, indicating that 

it may provide a more accurate representation of the organization of circuit-function relations in 

the human brain. By differentiating general activation patterns common across different 

functional tasks from patterns specific to each construct, the data-driven bifactor model captured 

both shared and unique variance among different constructs, providing insight into the 

hierarchical organization of circuit-function relations. This is consistent with findings from recent 

studies that have advocated for a data-driven bifactor approach to understanding brain-behavior 

relations17. Notably, the data-driven specific factor model had better fitness scores after 

penalizing for model complexity as measured by AIC and BIC. This indicates that although the 

data-driven bifactor model had the best overall model fit, the improvement in fit from adding the 

general factor comes at a substantial cost in model complexity.  
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The product matrix (Fig. 4A) and factor score correlations (Fig. 4B) revealed divergent patterns 

in correspondence across data-driven factors for different RDoC domains. For instance, 

whereas the cognitive systems domain had low loadings and correlations spread across the 

data-driven factors, the maps labeled by the positive valence systems, social processes, and 

sensorimotor systems domains had significant loadings and correlations confined to relatively 

fewer specific factors. Finally, the negative valence systems domain did not have significant 

loadings on any data-driven factors (Fig. 3). Still, its factor scores correlated strongly with two 

data-driven factors (Fig. 4). This pattern suggests that activation patterns within some domains 

are more distinct and separable than others, supporting our hypothesis that the boundaries 

between RDoC domains need to be reconsidered. Specifically, constructs within the cognitive 

systems domain might be better defined by being divided into separate domains. For example, 

attention, working memory, semantic processing/perception, and theory of mind within the 

cognitive systems domain formed individual data-driven factors (Fig. 5), and may be better 

represented as a revised set of domains in a refined RDoC framework.  

Visualization of the factor scores on the brain showed us that the RDoC factors, excluding the 

sensorimotor system's domain, consistently reveal activation patterns spanning visual and 

motor regions. This alignment with the general factor of the data-driven bifactor model suggests 

that there is shared task-general activation across tfMRI whole-brain activation maps. The utility 

of the general factor in the data-driven model lies in its ability to capture overarching patterns 

present across the entire dataset. This, in turn, allows the specific factors to focus on 

representing activation patterns that exhibit greater sensitivity to the nuances of specific task 

paradigms. 

After constructing our factor models, we performed validation steps to assess how much our 

derived model, developed from the curated training dataset, could extend to unseen data. We 

used two distinct validation sets: whole-brain activation maps held out from the original dataset 
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(internal validation) and coordinate activation maps sourced externally from Neurosynth 

(external validation). The internal validation using held-out whole-brain activation maps, while 

sharing the same data type as the original dataset, had a skewed distribution of maps (more 

cognitive maps) across the RDoC domains. To address this imbalance, we also conducted 

validation using Neurosynth coordinate activation maps, which provide a more balanced 

representation of the RDoC domains and constructs. This dual validation approach enhances 

the reliability of our findings and strengthens our model's applicability to diverse datasets and 

contexts. Our data-driven model consistently exhibited superior fit and generalizability in both 

cases compared to the RDoC specific factor model representing the conventional RDoC 

framework. These outcomes underscored the data-driven model's capability to capture brain 

activation patterns, extending beyond the initial dataset. Moreover, external validation using 

coordinate activation maps highlighted the model's adaptability to diverse data types, 

particularly in handling sparse coordinate activation maps commonly generated from extensive 

meta-analytic tools. 

Despite these advancements, it must be acknowledged that the overall model fit, even with the 

data-driven approaches, was not optimal. This limitation underscores the need for continued 

refinement and development in this field, recognizing that the complexity of brain-behavior 

relations may pose challenges to modeling efforts. Further research verifying the validity of 

newly defined functional domains with different datasets and cohorts is also needed to 

consolidate the ontological advancements made in this study. It is also important to note that 

although task activation relative to baseline allowed us to capture general task activation in our 

models, tasks here often involve more than one functional domain. For example, even a simple 

button press-to-cue task involves perception (cognitive domain) and motor action (sensorimotor 

systems domain). Therefore, subtraction contrasts between tasks may reveal additional insights 

into the brain’s function-circuit relations. Moreover, while the bifactor model offers a valuable 
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framework for understanding the complexity of brain-behavior relations, future work is needed to 

explore other model structures.  

In conclusion, our study indicates that a data-driven approach provides a more accurate 

representation of the organization of the human brain's circuit-function relations than the 

conventional RDoC model. Our findings support the use of data-driven approaches to inform 

revisions to the RDoC framework and to develop a more comprehensive ontology to guide 

further research. Integrating a task-general domain within the RDoC framework holds promise in 

broadening the capacity of the RDoC framework to capture brain functionality holistically. 

Furthermore, our research underscores the need to reassess the demarcations or boundaries 

within RDoC domains, especially in delineating constructs within the various domains. Future 

studies should continue to explore the utility of these approaches to refine the RDoC framework 

and unravel the intricate dynamics of circuit-function relations in the human brain. 
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Methods 

Gathering and preparing activation maps: Our dataset comprises both whole-brain activation 

maps and maps reconstructed from activation coordinates (Fig. 1). These two sets of maps 

capture the primary published forms of neuroimaging data. Whole-brain activation maps 

underwent a rigorous selection process due to variations in contrast methodologies and 

acquisition parameters. The following subsections describe how we gathered and processed 

these maps.  

Whole-brain activation maps. The collection of 84 whole-brain tfMRI maps was curated by Bolt 

et al.17 and sourced from two publicly accessible datasets: Neurovault19 and UK Biobank20. 

Although maps were also sourced from the Human Connectome Project by Bolt et al.17, these 

maps did not correlate sufficiently strongly with the other 84 maps within the dataset and, 

consequently, were not included for further analysis (Supplementary Figure 3). We used only 

unthresholded group-level BOLD contrasts for task conditions versus baseline. Contrast maps 

corresponding to the subtraction between two activation maps were not included because 

contrasts between events within the task would eliminate general activation patterns 

representing the task’s domain.  

We categorized contrast maps by matching the task descriptions extracted from the associated 

task contrasts (e.g., from https://neurovault.org/ for NeuroVault) with descriptions of the RDoC 

domains and construct definitions from the RDoC matrix21 (Supplementary Table 1). For 

instance, a contrast map created from a task where participants press a button as directed by 

visual instructions is categorized under the sensorimotor domain. We restricted our analysis to 

the following RDoC domains: cognitive systems, positive valence systems, negative valence 

systems, social processes, and sensorimotor systems, as no activation maps in the dataset fit 

within the domain of arousal and regulatory systems. Recognizing that a substantial proportion 

of the activation maps in the initial dataset originated from the cognitive systems domain (70%), 
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we curated a sub-collection of maps. The curated training dataset was designed to achieve a 

more balanced representation of the constructs across all five domains and minimize study 

overlap. The curated training dataset is composed of 37 maps derived from a total of 6,119 

participants, distributed as follows: cognitive systems (40.5%), negative valence systems 

(13.5%), positive valence systems (18.9%), social processes (16.2%), and sensorimotor 

systems (10.8%). We also excluded maps representing tasks that strongly implicated multiple 

RDoC domains. Details of all 37 curated training maps and the 47 held-out maps (used for the 

internal validation set) are listed in (Supplementary Table 1). 

Our initial collection of maps was composed of both t-stat and z-stat images. The unthresholded 

t-stat images were first converted to z-stat images before further processing. All maps were then 

resampled to the 2mm MNI-152 standard-space T1-weighted template (Nonlinear 6th 

generation).  

Map post-processing. All activation maps were parcellated into 333 cortical and 14 subcortical 

brain regions using the Gordon22 and Harvard-Oxford23 atlases, respectively.  

Factor analysis. Latent variable models are designed to estimate latent constructs or classes 

that are not observed directly but are inferred from observed variables with measurement 

error24. We conducted a comparative analysis of four distinct latent variable approaches, 

combining two methods of factor derivation (theory-driven RDoC factors or data-driven empirical 

factors) with two types of factor models (specific factor models or bifactor models). Specific 

factor models exclusively incorporate specific factors, while bifactor models have an additional 

general factor25. To summarize, our study compared four models: (i) an RDoC specific factor 

model; (ii) an RDoC bifactor model; (iii) a data-driven specific factor model; and (iv) a data-

driven bifactor model (Fig. 2). Data-driven models encompassed an exploratory factor analysis 

(EFA) step to first identify potential factor structures, followed by a confirmatory factor analysis 

(CFA) step to assess how well the factor model fits the observed data. In contrast, RDoC 
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models involved only a CFA step, given that they incorporated pre-defined factors specific to 

RDoC. 

Bootstrap distributions of fit indices were computed by resampling parcels over 5,000 iterations. 

Factor scores were estimated using Bartlett’s method to create brain maps (Fig. 5) reflecting 

each region’s loading for each factor. This method is designed to yield factor scores that are 

strongly correlated with their respective factor, while maintaining minimal or no correlation with 

other factors. 

Data-driven Factor Analysis with whole-brain activation maps. The factor analysis for our data-

driven models (Fig. 2, Bi and Bii) was composed of three primary stages: (1) Horn’s parallel 

analysis to determine the optimal number of factors to extract (see below); (2) EFA to extract 

specific factors; and (3) CFA with both the specific factors and a general factor for the bifactor 

model, and only specific factors for the specific factor model.  

To determine the number of factors to extract, we conducted parallel analysis26, which identifies 

the number of factors to extract based on where the calculated eigenvalues of the actual data 

intersect with the eigenvalues of random data generated27. We then conducted an EFA using 

principal axis factoring and oblimin rotation to extract the identified number of specific factors in 

the subsequent confirmatory analysis. We also examined the scree plots to verify the suitability 

of the number of factors extracted (Supplementary Figure 1). To conduct the EFA, we used 

oblimin rotation to allow for correlated factors, but the correlation was constrained to be small. 

Based on previous work, each specific factor was defined by maps with a high absolute loading 

of 0.4 or higher18. For the CFA, we used robust maximum likelihood estimation to account for 

non-normality in the data. Orthogonal rotation was used in the bifactor models to ensure that the 

general factor is not contaminated by the specific factors, making it difficult to interpret the factor 

structure. By constraining the general factor to be orthogonal to the specific factors, bifactor 

models can identify a general factor independent of the specific factors. The general factor 
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captures the shared variance, while the specific factors capture the distinct variances that are 

unique to subsets of activation maps28. We used the specific factors from the EFA and a general 

factor with all maps loaded onto it. For comparison, we also conducted an alternate CFA without 

the general factor (specific factor model). To account for interrelationships between factors 

within the specific factor models, which are not captured by a general factor, we maintained 

non-orthogonality and allowed all of our specific factor models to exhibit covariance.  

RDoC Domain Factor Analysis with whole-brain activation maps. Our curated training set of 

whole-brain activation maps was grouped into RDoC domain-specific factors by matching the 

task description with the domain/construct definition. For our RDoC models (Fig. 2, Ai and Aii), 

we conducted a CFA utilizing robust maximum likelihood estimation and non-orthogonal factors.  

Validation using unseen data. We used a multi-prong validation strategy to assess the validity 

of the model solution derived from the curated training dataset. We compared the factor 

solutions from the RDoC specific factor model, representing the current RDoC framework, and 

the data-driven bifactor model, representing the best-performing data-driven model. For internal 

validation, we used the held-out maps from the original dataset, ensuring the model's reliability 

within the same type of dataset. Additionally, we used Neurosynth coordinate activation maps 

that were a different data type (compared to whole-brain) and had better coverage of the RDoC 

domains (than the held-out maps) for external validation. This comprehensive validation 

strategy enabled us to evaluate the performance and generalizability of the factor structure we 

derived in varied contexts. 

Internal Validation using held-out whole-brain activation maps. We systematically assigned 

individual maps to specific factors from the RDoC specific factor model (representing the RDoC 

framework) and the data-driven bifactor model. Factor assignment and loadings were 

determined using the factor scores derived from the original model using the curated training 

dataset. The factor assignment involved identifying, for each map, the factor from the original 
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factor model that exhibited the highest product sum. After the map was assigned to a factor, the 

loading for each map was determined by dividing the map's product sum for that factor by the 

highest product sum of all other maps that were assigned to the same factor, providing an 

adjusted coefficient for its association with the respective factor (Supplementary Figure 4). 

Subsequently, we conducted a CFA with these factor assignments and loadings. We then 

compared the fit scores obtained from this validation analysis. This process allowed us to 

evaluate how well the training model solution generalized to unseen data, effectively probing the 

model's capability to capture brain activation patterns beyond the curated training dataset.  

External validation using Neurosynth coordinate activation maps. In addition to using the held-

out maps from our initial dataset to test the model solution derived using the curated dataset, we 

also utilized coordinate activation maps with topics matching RDoC construct seed terms for 

external validation. Seed terms adapted from Beam et. al.7 were compiled based on the name 

and synonyms of each RDoC domain construct, e.g., “acute threat” and “fear” for the “acute 

threat” construct under the negative valence system domain. These seed terms were then used 

to search for matching terms in a topic-based meta-analysis using Neurosynth. 200 topics were 

extracted using Latent Dirichlet Allocation (LDA) from the abstracts of all articles in the latest 

version of Neurosynth9 (ver. 5). Neurosynth's LDA topic-based meta-analysis is a data-driven 

approach that uses natural language processing (NLP) techniques to uncover topics that share 

terms across a large set of studies. Each topic is associated with a probabilistic reverse 

inference map representing the likelihood that a given brain coordinate is activated during a 

study using these terms. Using this meta-analysis technique, we identified 36 coordinate 

activation maps with topics that matched RDoC construct seed terms. Seed terms with multiple 

topic maps had their activation averaged before further analysis. Spatial smoothing was applied 

using a 12-mm full-width half-maximum (FWHM) Gaussian kernel centered on each peak-

activation coordinate in the maps, creating more realistic representations of brain activation 
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patterns. Values were then thresholded (z > 0.1) to remove noise using a Gaussian kernel. A 

complete list of the seed terms and topics sourced from Neurosynth is presented in 

Supplementary Table 3. These maps were then used to validate the factor structure from the 

curated training dataset in the same way as the held-out whole-brain activation maps.  

Statistical Analysis. Model fit was assessed using robust variants of fit indices, including the 

Root Mean Square Error of Approximation (RMSEA), Comparative Fit Index (CFI), and Tucker-

Lewis Index (TLI). These fit indices were chosen to account for potential non-normality in the 

data. Additionally, information theoretical measures of model complexity, the Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC), were used for comparison. AIC and 

BIC consider the trade-off between model fit and complexity, with lower values indicating a more 

optimal balance29. 95% CIs of robust RMSEA, robust CFI, robust TLI, AIC, and BIC fit indices 

were computed using the Yuan bootstrap method30 of resampling with 5,000 iterations. With the 

Yuan bootstrapping method, the data is transformed by combining data and the model, such 

that the resampling space is closer to the population space. For the comparison of multiple 

models’ fit scores, Analysis of Variance (ANOVA) tests were employed. Subsequent post hoc 

pairwise comparisons were performed using Tukey's Honestly Significant Difference test to 

determine the model with the best fit score. To compare fit scores between only two models, t-

tests were utilized instead. 

Pearson correlations were calculated between the factor scores of the RDoC specific factor 

model and the data-driven bifactor model. This analysis aimed to explore the extent to which the 

loadings of the base RDoC model align with the factors derived from the data-driven approach. 

All statistical tests were two-tailed.  
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