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1  |  INTRODUC TION

The ability to sense the environment is a vital feature which allows 
us to detect and react to external ques. Somatosensation relies on 
primary sensory afferents being able to respond to a variety of both 
noxious and non- noxious triggers that signal discriminatory and/or 
painful events. These sensory afferents whose cell bodies reside 
within the dorsal root ganglia (DRG) or trigeminal ganglia are a het-
erogeneous population of cells able to convey information relating to 
distinct sensations such as touch, temperature, itch and pain. As well 
as understanding their basic physiology, these neurons are the focus 
of pre- clinical and clinical research due to their key role in driving 
chronic pain, in particular pain resulting from damage or disease of 
the nervous system (neuropathic pain). Compared to other targets 
along the sensory neural axis, primary sensory afferents are consid-
ered more easily accessible for therapeutics and interventions. This 
is largely due to their peripheral location, the blood– nerve barrier 
(less limiting than the blood– brain barrier) and long- extending axons 

with unique targetable compartments. Sensory afferents are highly 
compartmentalised and the structure of these compartments is key 
to normal somatosensation. In this review, we will focus on distinct 
neuronal compartments, including cutaneous afferents, axonal struc-
tures such as the node of Ranvier, the cell soma and central terminals, 
and discuss them in that order moving from the periphery to the spi-
nal cord (Figure 1, sections 1– 4). Concentrating on pre- clinical litera-
ture, we will describe the structure of these compartments, how this 
relates to normal sensory function and highlight anatomical changes 
that occur in each of these compartments following nerve injury and 
their relationship to neuropathic pain.

2  |  CUTANEOUS SENSORY AFFERENT 
TERMINAL S

The skin is a highly specialised organ able to detect and signal exter-
nal stimuli. It is innervated by multiple sensory afferents which are 
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function, describe how these structures are compromised following nerve damage 
and how this relates to neuropathic pain.
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heterogeneous in their molecular identity and expression profiles. As 
such, different cutaneous sensory endings express specific molecular 
transducers that initiate signalling in response to mechanical, thermal, 
chemical or purinergic stimuli. However, sensory afferents are also 
heterogeneous and unique in their structure, which can relate and in-
form on their function and role in somatosensation. Here we will high-
light the structural organisation of sensory afferent terminals of the 
skin in health and disease. We will also discuss how sensory terminals 
interact with other unique cell types found in the skin.

2.1  |  Structure and function

2.1.1  |  Longitudinal lanceolate endings

Longitudinal lanceolate endings are sensory afferent endings that 
surround hair follicles, giving rise to ‘finger- like’ structures that 
are associated with all three types of hair follicles, (zigzag, awl/
Auchene and guard). In mice, longitudinal lanceolate endings are 
the terminals of Aβ-  rapidly adapting (RA) low threshold mecha-
noreceptors (LTMRs), Aδ- LTMRs and C- LTMRs (Figure 2a) (Bernal 
Sierra et al., 2017; François et al., 2015; Li & Ginty, 2014; Li et al., 
2011; Luo et al., 2009). All three types of mouse hair follicles 
are innervated by one or more lanceolate endings. Zigzag hairs 
are innervated by C- LTMRs and Aδ- LTMRs. Awl/Auchene hairs 
are innervated by C- LTMRs, Aδ- LTMRs and Aβ- rapidly adapting 
(RA) LTMRs and guard hairs are innervated by Aβ RA- LTMRs (Li 
& Ginty, 2014; Li et al., 2011). Longitudinal lanceolate endings 
from different fibre types innervating the same follicle show an 
interdigitated organisation (Li et al., 2011). Each fibre type can be 
distinguished by histochemical markers or genetic labelling (for 
some molecular markers, see Figure 2) and there is evidence that 
transcription factors, such as Runx1 in the case of C- LMTRs, can 
control lanceolate ending morphology (Lou et al., 2013). Hair fol-
licles innervated by Aδ- LTMRs can be directionally sensitive (Rutlin 

et al., 2014; Walcher et al., 2018). This attribute is thought to arise 
from polarised Aδ- LTMRs surrounding the hair follicle, driven by 
epidermal brain- derived neurotrophic factor (BDNF) expression 
patterns (Rutlin et al., 2014). This may extend to other lanceolate 
endings but that has not yet been fully resolved for all fibre types. 
Longitudinal lanceolate endings are also associated with accessory 
terminal Schwann cells (TSC) which encapsulate the longitudinal 
endings (Figure 2a(i)). The development and maintenance of this 
mechanoreceptor/glia structural complex are dependent on sen-
sory neuron- derived glutamate (Woo et al., 2012), and lanceolate 
endings can continuously release glutamate from synaptic- like 
vesicles which are thought to modulate vesicle recycling and affer-
ent activity (Banks et al., 2013). In addition, the presence of TSCs is 
required to maintain lanceolate ending structure and morphology. 
Genetic ablation of TSCs resulted in de- innervation of lanceolate 
endings (Li & Ginty, 2014). However, other than the obvious de- 
innervation, the impact on afferent function in behaving animals 
was not explored. Ultra- structural analysis revealed that a single 
terminal Schwann cell encapsulates multiple hair follicle endings 
(Figure 2a(ii)) and identified the presence of intercellular processes 
that resemble tether- like proteins, physically linking epithelial cells 
of hair follicles to lanceolate endings and TSCs (Li & Ginty, 2014). It 
has been proposed that tether proteins may facilitate the mecha-
notransduction of mechanoreceptors in the skin (Hu et al., 2010). 
Using ultrastructural imaging, extracellular tether- like proteins ap-
pear to link sensory neurons and fibroblasts when in co- culture, 
as well as sensory neuron neurites to laminin substrates. Selective 
protease treatments (subtilisin) abolished both the presence of 
tether- like structures and the rapidly adapting mechanosensitive 
currents (elicited from neurite stimulation). The mechanosensi-
tivity of these receptors in the skin was also shown to require a 
subtilisin- sensitive protein (Hu et al., 2010). It is unclear how tether 
proteins may modulate mechanotransduction, and if they directly 
gate mechanosensitive ion channels or if they play a part in other 
ways such as contributing to membrane stiffness.

F I G U R E  1  The structure of specialised primary sensory afferent compartments in health and disease
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2.1.2  |  Circumferential endings

Circumferential endings are terminal endings that circumferen-
tially wrap around hair follicles (Figure 2b). Notably, these endings 
are neurofilament- heavy chain positive. One population of these 

endings is thought to be the endings of Aβ- Field LTMRs. Aβ- Field 
LTMRs are slowly adapting mechanoreceptors that have large ex-
pansive receptive fields (Bai et al., 2015). They are thought to be 
responsible for the detection of skin stroking, but not hair deflection 
(Bai et al., 2015). A second population of afferents that terminate 
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as circumferential endings is a sub- population of Aδ- high threshold 
mechanoreceptors (HTMRs) that have been termed Circ- HTMRs 
(Ghitani et al., 2017). Circ- HTMRs have spatially organised receptive 
fields that lend them to respond to a single hair pull and optoge-
netic activation of this population evokes avoidance behaviour and 
guarding. Collectively, this suggests this population of afferents are 
nociceptive and mediate the fast response associated with hair- pull 
(Ghitani et al., 2017).

2.1.3  |  Merkel cell– neurite complex

Merkel cells are oval- shaped cells located at the basal layer of 
the epidermis (Figure 2c). Merkel cells are predominantly found 
in touch domes of glabrous skin, however, they are also associ-
ated with guard hair follicles on hairy skin. Merkel cells form 
protrusions that anchor them to surrounding structures and 
are associated with the dense endings of Aβ- slowly adapting 
type 1 (SAI) LTMRs (Iggo & Muir, 1969; Woodbury & Koerber, 
2007). A single Aβ- SAI- LTMR terminates with multiple dense 
endings, each associating with a Merkel cell and forming a 
Merkel cell– neurite complex. The close association of Aβ- SAI- 
LTMR endings and Merkel cells are reminiscent of synaptic or 
synaptic- like structures (Hartschuh & Weihe, 1980; Mihara 
et al., 1979). Indeed, Merkel cells express synaptic machinery 
(Haeberle et al., 2004). This has led to evidence that Merkel 
cells form glutamatergic or serotonergic synaptic contacts with 
Aβ- SAI- LTMRs (Chang et al., 2016; Fagan & Cahusac, 2001; He 
et al., 2003; Hitchcock et al., 2004; Press et al., 2010). However, 
this was challenged by Hoffman et al. (2018) who systematically 
investigated functional transmission at the Merkel cell– neurite 
complex. This work identified SNARE- dependent adrener-
gic synapses that directly activate Aβ- SAI- LTMRs (Figure 2c) 
(Hoffman et al., 2018). Merkel cells are themselves mechano-
sensitive, require the mechanosensitive ion channel Piezo 2 
and fine- tune light touch sensation (Maricich et al., 2009; 2012; 
Maksimovic et al., 2014; Woo et al., 2014). Recently, Merkel 

cells have also been implicated in transmitting the conversion 
of touch stimuli to itch, particularly in the context of alloknesis 
(Feng et al., 2018).

While Merkel cells make up approximately 3%– 6% of skin cells, 
keratinocytes are by far more abundant. Their abundance and phys-
ical proximity to sensory afferents have led to their investigation in 
sensory function and pain (for review, see Moehring, Halder et al., 
2018). In particular, keratinocytes have been shown to modulate 
both innocuous and noxious mechanosensation via an ATP- P2X4 
signalling mechanism (Moehring, Cowie et al., 2018).

2.1.4  |  Meissner corpuscles

Meissner corpuscles consist of an axon (or axons) and specialised 
Schwann cells (also termed laminar cells), contained within a cap-
sule structure. Meissner corpuscles are primarily associated with 
Aβ- RA- LTMRs (Figure 2d). Meissner corpuscle laminar cells sur-
round and encompass the innervating sensory afferent. In rodents, 
Aβ- RA- LTMR innervating Meissner corpuscles are predominantly 
located on the glabrous skin (Luo et al., 2009) and are exquisitely 
more sensitive on rodent forepaws (Walcher et al., 2018). They 
are located at the dermal papillae and are held in place by collagen 
fibres. Meissner corpuscles can be identified by their S100 expres-
sion and the unique zig- zag organisation of the innervating Aβ- RA- 
LTMRs. A single Meissner corpuscle can be innervated by up to 
three myelinated fibres and Aβ- RA- LTMRs can branch extensively 
and innervate multiple Meissner corpuscles (Cauna & Ross, 1960; 
Jänig, 1971; Neubarth et al., 2020). In particular, a recent study 
used elegant genetic labelling of two non- overlapping primary af-
ferent populations and showed that Meissner corpuscles are dually 
innervated by multiple mechanoreceptive fibres that have distinct 
physiological properties (Figure 2d) (Neubarth et al., 2020). In ad-
dition, there is some evidence that some Meissner corpuscles may 
also be closely associated with afferents that have nociceptive 
characteristics (Ishida- Yamamoto et al., 1988; Johansson et al., 
1999; Paré et al., 2001). However, the role of these innervating 

F I G U R E  2  Specialised cutaneous primary afferent terminals. (a) Longitudinal lanceolate endings from molecularly distinct primary 
afferent populations innervate all three types of hair follicles. Guard hairs are innervated by Aβ- RA- LTMRs, Awl/Auchene hairs are 
innervated by Aβ- RA- LTMRs, Aδ- LTMRs and C- LTMRs. Zigzag hairs are innervated by Aδ- LTMRs and C- LTMRs. (i) Hair follicle innervation 
showing overleaving innervation of different terminal endings. Terminal Schwann cells (TSCs) also associated with hair follicles and 
longitudinal lanceolate endings. (ii) Ultrastructural depiction of a cross- section of the hair- TSC- ending complex. TSCs are shown to be 
in close proximity and encase longitudinal lanceolate endings. (b) Two molecularly and electrophysiologically distinct populations of 
circumferential endings termed Aβ- field- LTMRs and Aδ- Circ- HTMRs. (c) Merkel cell– neurite complex. Merkel cells located at the dermal/
epidermal border either surrounding guard hairs of hairy skin or glabrous skin. Merkel cells are mechanosensitive and form a synaptic- like 
complex with Aβ- SAI- LTMR terminals. (d) Meissner corpuscles are located close to the epidermal/dermal border and are dually innervated by 
two molecular and electrophysiologically distinct populations of Aβ- RA- LTMRs. Ultrastructural analysis of Meissner corpuscle innervation 
suggests that the two distinct innervating Aβ- RA- LTMRs have different laminar cell wrapping patterns from Meissner corpuscle laminar 
cells. Meissner corpuscle laminar cells are mechanosensitive and may form extracellular tethers/tether- like complexes with Aβ- RA- LTMR 
endings. USH2A has been identified as a candidate Meissner corpuscle protein involved in the tether- like- complex. (e) Free nerve endings 
which originate from nociceptors terminate in the epidermis. Distinct termination patterns have been observed for different nociceptor 
populations. Most notably non- peptidergic nociceptors terminate most distally in the stratum granulosum (SG). Nociceptors have been 
shown to associate closely with specialised cutaneous Schwann cells (SCSCs). Ultrastructural cross- section of free- nerve endings and SCSCs 
illustrate that SCSCs sheath free nerve endings
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nociceptive afferents has yet to be fully characterised on a func-
tional level.

Usually, the sensory afferent is the key focus when studying 
Aβ- RA- LTMR mechanoreception (Hao et al., 2013; Heidenreich 
et al., 2012). However, recent studies have begun to focus on 
Meissner corpuscles more directly. Meissner corpuscle protein 
USH2A has been implicated as necessary for tuning the vibration 
sensitivity of Aβ RA- LTMRs in mice and humans (Schwaller et al., 
2021). Structurally, USH2A has a large extracellular domain making 
it a possible candidate for the tether- like protein/protein complex 
thought to facilitate the detection of fine- grained tactile objects 
(Figure 2d) (Hu et al., 2010; Schwaller et al., 2021). It is still un-
clear if Meissner corpuscle Aβ RA- LTMRs communicate through 
physical linkers or if they also have synaptic- like contacts. It has 
been shown that Meissner corpuscle laminar cells are themselves 
mechanosensitive, excitable and can generate current injection 
evoked action potentials which are dependent on R- type voltage- 
gated calcium channel Cav2.3 (Nikolaev et al., 2020). This is in-
dicative that synaptic- like contacts may exist to relay laminar cell 
mechanosensitive signalling to Aβ RA- LTMRs. Indeed, there is 
some evidence that Meissner corpuscle laminar cells contain dense 
synaptic- like vesicles in close proximity to Aβ RA- LTMR endings 
(Nikolaev et al., 2020).

2.1.5  |  Pacinian corpuscles and Ruffini endings

In humans, Pacinian corpuscles are extremely sensitive and clas-
sically encode high- frequency vibration stimuli (Johansson et al., 
1982). Pacinian corpuscles are densely located in the hand and fin-
gers and structurally they are oval- shaped with interdigitating lami-
nar cells (Halata, 1977). Each Pacinian corpuscle is thought to be 
innervated by a single Aβ RA- II LTMR. While they have been identi-
fied in human skin, they have not been identified in mouse skin. In 
mice, Pacinian corpuscles are primarily associated with joints and the 
periosteum of bones. Due to their relative inaccessibility, the study 
of Pacinian corpuscles in rodents is often overlooked. However, it 
has been demonstrated that the development of Pacinian corpuscles 
is critically dependent on Ret signalling (Fleming et al., 2016; Luo 
et al., 2009) and the transcription factor c- Maf (Wende et al., 2012). 
It has been recently shown that Pacinian corpuscle laminar cells are 
mechanosensitive (Nikolaev et al., 2020). Additionally, a recent study 
used a novel ex vivo periosteum/bone- nerve preparation to demon-
strate that mouse Pacinian corpuscles encode high- frequency vibra-
tions (Schwaller et al., 2021).

Similarly, evidence for the existence of Ruffini endings in 
mouse skin is lacking and debated. Ruffini endings resemble Golgi 
end organs and are thought to encode stretch. It is hypothesised 
that stretch responsive SA- II- LTMRs identified in humans inner-
vate Ruffini endings, however, direct evidence of this is lacking 
(Chambers et al., 1972). SA- II LTMR responses have only relatively 
recently been identified in rodent skin (Wellnitz et al., 2010) and 
the structure they terminate is unclear. However, there is evidence 

that in mice, Ruffini- like endings innervate periodontal ligaments 
(Matsuo et al., 2002; Rahman et al., 2011).

2.1.6  |  Free nerve endings

Free nerve endings are the common terminal endings of most 
nociceptive afferents. These endings are considered to be the 
most distally located of all cutaneous sensory endings. Free nerve 
endings reach the sub- epidermal border, where they branch first 
horizontally followed by extensive vertical branching into the epi-
dermis (Figure 2e). C- fibre nociceptors that terminate as free nerve 
endings can be dived into two major subpopulations, peptidergic 
(CGRP, SP positive) and non- peptidergic (IB4 binding or MrgprD, 
P2X3R positive) afferents. Interestingly, free nerve endings from 
these two C- fibre populations are spatially segregated, with non- 
peptidergic afferents terminating in the stratum granulosum of 
the epidermis (Figure 2e) (Zylka et al., 2005). Differential termi-
nal organisation of different C- fibre populations supports the idea 
that different subpopulations play unique roles in pain process-
ing. Many studies have used inactivation or ablation techniques to 
interrogate this question. It is thought that peptidergic afferents 
encode heat pain and non- peptidergic afferents encode mechani-
cal pain (Cavanaugh et al., 2009; McCoy et al., 2013). However, 
depending on the strategy used, this has been both confirmed and 
challenged (Cowie et al., 2018; Ferrini et al., 2020; Fitzgerald & 
Woolf, 1982; Karai et al., 2004; Mishra & Hoon, 2010; Neubert 
et al., 2003; Nocchi et al., 2019; Pinto et al., 2019; Tarpley et al., 
2004; Vulchanova et al., 2001; Yaksh et al., 1979). In humans, con-
genital insensitivity to pain can arise from rare Mendelian genetic 
disorders. A number of these genetic disorders lead to the failure 
of nociceptors to develop and a subsequent lack of epidermal free 
nerve endings (Drissi et al., 2020). This exemplifies the critical role 
of epidermal C- fibres in human nociception.

Most thinly myelinated Aδ- nociceptors also terminate in the 
epidermis as free nerve endings (Figure 2e), however, this is sub-
population dependent (Arcourt et al., 2017; Ghitani et al., 2017). 
While there is physiological evidence for cutaneous Aβ- nociceptors 
(Djouhri & Lawson, 2004; Nagi et al., 2019), their cutaneous terminal 
morphology has yet to be resolved.

It is widely accepted that free nerve endings originate from noci-
ceptors and signal aversive and painful stimuli (Basbaum et al., 2009). 
However, free nerve endings may not act alone. Other cutaneous 
structures have been shown to associate closely with free nerve end-
ings and contribute to their role in pain processing. Recently, a study 
identified the molecular and functional identity of specialised cuta-
neous Schwann cells (Abdo et al., 2019). These specialised cutaneous 
Schwann cells were found to form a network at the sub- epidermal 
border, where they extend radial processes into the epidermis. It 
was discovered that free nerve terminals of nociceptive afferents 
were ensheathed by the cutaneous Schwann cell and their processes 
(Figure 2e) (Abdo et al., 2019). The term glio– axonal complex was 
coined to describe this relationship between the two cell types. These 
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specialised Schwann cells were also shown to be directly mechano-
sensitive and their optogenetic activation initiated pain- related be-
haviours and determined mechanical thresholds of mice (Abdo et al., 
2019). Further analysis has demonstrated that in the mouse, there is 
an interdependence of the nerve and the nociceptive Schwann cell, 
and loss of intraepidermal Schwann cells can result in neuropathic- 
like pain behaviours (Rinwa et al., 2021). These specialised Schwann 
cells have now also been identified in human skin (Rinwa et al., 2021). 
The identity and structure of this novel cell type will undoubtedly 
lead to new and important discoveries for pain biology.

2.2  |  Changes in cutaneous innervation following 
nerve injury or disease

Sensory fibre degeneration and regeneration often accompany neu-
ral injury and have been well studied in rodents (Dubový et al., 2018; 
Navarro, 2016). In humans, studying degeneration and regeneration 
is more difficult, but advances are being made (Scheib & Höke, 2013). 
In humans and rodents, injury or disease can lead to degeneration or 
retraction of sensory afferents in the skin. In particular, it has been 
reported that people living with neuropathic pain have a reduced 
intraepidermal nerve fibre density (IENFD). Small fibre involvement 
has been shown for many different painful peripheral neuropathies 
such a painful diabetic polyneuropathy, entrapment neuropathy, 
Guillain- Barré syndrome, complex regional pain syndrome, and more 
(Martinez et al., 2010; Pittenger et al., 2004; Rasmussen et al., 2018; 
Schmid et al., 2014; Themistocleous et al., 2016). IENFD is also re-
duced in rodent models of neuropathic pain, such as nerve injury/
lesion, high- fat diet diabetic neuropathy, pancreatic β- cell ablation 
model (STZ) of diabetic neuropathy and chemotherapy- induced 
neuropathy (Duraku et al., 2013; Hedstrom et al., 2014; Jayaraj et al., 
2018; Lindenlaub & Sommer, 2002; Ma & Bisby, 2000; Wozniak 
et al., 2018). These findings suggest that free nerve endings in par-
ticular are vulnerable afferents and are susceptible to retraction or 
degeneration following injury or disease and consequently quantifi-
cation of IENFD has arisen as a useful and relevant measure of neu-
ropathy in patients. Patients with polyneuropathies or demyelinating 
neuropathies can also show a loss of dermal myelinated fibres and 
changes in nodal architecture (Doppler et al., 2012; Doppler et al., 
2013). Studies focused on entrapment neuropathies, such as carpel 
tunnel syndrome, have debated the loss/involvement of myelinated 
fibres, which may reflect the difference in skin biopsy sites used for 
analysis (Provitera et al., 2020; Schmid et al., 2014). In addition, de-
generation of sensory afferents and reductions in IENFDs may also 
reflect the heterogeneity of many neuropathies that often display a 
mix of loss and gain of function sensory characteristics.

It remains challenging to identify the molecular mechanisms that 
underpin these innervation changes and how this directly links to 
the pain experienced by patients. However, pre- clinical neuropathic 
pain models have demonstrated that IENFD is reduced and sensitiv-
ity to noxious stimuli increases. Over time recovery of pain- related 
behaviours is accompanied by IENFD reinnervation (Lindenlaub & 

Sommer, 2002). However, it has been observed that different sen-
sory afferents may have unique reinnervation patterns/time courses 
(Duraku et al., 2013; Peleshok & Ribeiro- Da- Silva, 2011). In humans, 
longitudinal skin biopsy sampling in patient cohorts can aide this in-
vestigation (Hahn et al., 2006; Petersen et al., 2010; Polydefkis et al., 
2004; Rajan et al., 2003). In particular, there has been recent histo-
logical evidence that surgical interventions in humans can promote 
IENF regeneration. Free nerve endings were measured in a cohort of 
carpel tunnel syndrome (CTS) patients pre-  and post- decompression 
surgery (Baskozos et al., 2020). Interestingly, patient's IENFD improved 
following surgery, and the level of nerve fibre regeneration positively 
correlated with symptom improvement, including pain (Baskozos et al., 
2020). This study also identified a molecular signature for nerve re-
generation in the skin using RNA sequencing. The authors focus on 
the most differentially regulated gene ADCYAP1 that encodes PACAP 
which facilitated neurite outgrowth when given to human- induced plu-
ripotent stem cell- derived sensory neurons (Baskozos et al., 2020). This 
work contributed to the breadth of literature that growth factors may 
have therapeutic promise for improving the regeneration of peripheral 
nerves following injury (McGregor & English, 2019; Mickle et al., 2019).

There are also clinical and preclinical data suggesting that re-
generation can be improved in an activity- dependent manner 
(McGregor & English, 2019; Udina et al., 2011). In particular, the ad-
vances in chemo/optogenetic tools have enabled researchers to pre-
cisely control neuronal activity and study regeneration (Park et al., 
2015; Ward et al., 2018; Ward et al., 2016). Jayaraj et al. (2018) used 
the high- fat diet model of diabetic neuropathy in mice and demon-
strated that IENFD was reduced and mice displayed neuropathic 
pain- like behaviours. They showed that long- term chemogenetic in-
hibition of nociceptors prevented both small fibre degeneration and 
neuropathic hypersensitivity (Jayaraj et al., 2018).

Taken together, loss of IENFD is associated with neuropathic pain 
and reinnervation is correlated with symptom improvement. This is an 
interesting, but perhaps counter- intuitive, observation when considering 
evoked neuropathic pain in humans and rodents. However, the largest 
clinical complaint is ongoing pain, which may arise from damaged sensory 
afferents that then develop a spontaneous activity. This would support 
the idea that loss of IENFD correlates with neuropathic pain symptoms. 
More work is required to understand and pinpoint why a structural loss 
of epidermal innervation is associated with neuropathic pain develop-
ment. Indeed, structural changes following injury are dependent on many 
mechanisms which likely include growth factors and ongoing activity of 
primary afferents which may offer new avenues for pain treatment.

3  |  THE NODE OF R ANVIER

Following detection, propagation of sensory information to the CNS 
occurs along the axon. This will include the unmyelinated axons of 
C- fibres that are grouped together in Remak bundles formed by 
non- myelinating Schwann cells. These axons constitute the major-
ity of nociceptors; here, however, we will focus on one well- defined 
neuronal compartment, the node of Ranvier (Figure 3a), present in 
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myelinated sensory neurons, which will include Aβ/δ nociceptors as 
well as LTMRs. This structure is highly organised; it is key to saltatory 
conduction allowing for fast and efficient signal propagation and its 
organisation has been well documented (Rasband & Peles, 2016; 
Salzer et al., 2008). Here we will give an overview of the structure of 
the node and highlight changes that occur following nerve injury and 
their possible role in regulating neuropathic pain.

3.1  |  Structure and function

The node of Ranvier is organised into sub- domains which include 
the node, paranode, juxtaparanode and internode. The node, 

which occurs between gaps of the myelinated Schwann cells, is 
~1 μm in length and exposes the axon to the extracellular environ-
ment. It is characterised by a high density of voltage- gated sodium 
channels (VGSCs) which are essential for the regeneration of ac-
tion potentials. The structure of the node is maintained through 
complex molecular interactions (Figure 3a- d). Schwann cell mi-
crovilli contact the node (Ichimura & Ellisman, 1991) and signal to 
nodal cell adhesion molecules, such as Neurofascin (NF)- 186 and 
NrCAM (neuronal cell adhesion molecule) which recruit the cy-
toskeletal proteins ankyrin- G and βIV spectrin for clustering and 
maintenance of VGSCs within this domain (Figure 3b) (Amor et al., 
2014; Dzhashiashvili et al., 2007; Feinberg et al., 2010; Koticha 
et al., 2006). In sensory neurons, the predominant sodium channel 

F I G U R E  3  The node of Ranvier. (a) The node of Ranvier is organised into specific sub- domains through axoglial interactions. (b) The node 
occurs at gaps between myelinated Schwann cells, exposing the axon to the extracellular environment, and is crucial for action potential 
regeneration. Schwann cell microvilli contact the node. The node is characterised by a high density of VGSCs which are maintained by cell 
adhesion molecules such as NF- 186, MrCAM, Amkyrin- G and βIV spectrin. (c) The paranode flanks the node and is defined by the formation 
of axoglial junctions. At the paranode, the cell adhesion molecules Contactin, Caspr and NF- 155 facilitate the interaction between the axon 
and Schwann cell. (d) The juxtaparanode is located underneath compact myelin and is characterised by the presence of Kv1 channels which 
require the cell adhesion molecules Caspr2 and Tag1/Contactin- 2 and the cytoskeletal protein 4.1B for their localisation
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sub- unit found at the node is Nav1.6 (Caldwell et al., 2000). Other 
VGSCs are also expressed in the node, including Nav1.7 and 
Nav1.9, found predominantly in myelinated nociceptors (Black 
et al., 2012; Fjell et al., 2000) as well as some evidence to sug-
gest Nav1.8 expression (Pryce et al., 2019) and of course, these 
channels are required for normal sensory transmission and pain 
sensation (Bennett et al., 2019). The node also contains potassium 
channels. For example, the voltage- gated potassium channels 
(VGKCs) Kv7.2 and 7.3 sub- units which are thought to prevent re-
petitive firing (Pan et al., 2006), and two- pore potassium channels 
such as TREK- 1 and TRAAK, where direct patching of the node 
suggests a role for these channels in action potential regenera-
tion, high- speed conduction and normal sensory behaviour in mice 
(Kanda et al., 2019). The paranode flanks the node and is structur-
ally defined by the formation of junctions between the axon and 
the glia cell which appear as a series of transverse bands (Figure 3c). 
This axoglial junction acts as a barrier to avoid lateral movement 
of ion channels, maintaining nodal domains and protecting nodal 
currents for reliable saltatory conduction (Rosenbluth, 2009). The 
interaction of the axon and Schwann cell is facilitated by cell ad-
hesion molecules such as Contactin, Caspr and NF- 155. Genetic 
knockout models of these proteins disrupt paranodal structure; 
there is a loss of axoglial junctions, a widening of the space be-
tween the axon and Schwann cell and mislocalisation of ion 
channels which impact axonal function as evidenced by reduced 
conduction velocities (Pillai et al., 2009; Bhat et al., 2001; Boyle 
et al., 2001). Interestingly, genetic mutations of NF- 155 in humans 
disrupt the structural integrity of the paranodal junctions and 
result in loss of reaction to pain and touch (Smigiel et al., 2018). 
The juxtaparanode is characterised by the expression of VGKCs, 
in particular Kv1.1 and 1.2 which require the cell adhesion mol-
ecules Caspr2 and Contactin- 2 and the cytoskeletal protein 4.1B 
for their correct localisation (Poliak et al., 2003) (Figure 3d). In 
the naïve state, it is generally considered that the Juxtaparanode 
Kv1 channels have limited impact on the propagation of sensory 
information presumably because of their isolation from the node 
due to the paranodal junctions. For example, preventing their lo-
calisation at the juxtaparanode or using pharmacological block 
does not alter conduction velocities in myelinated fibres (Bostock 
et al., 1981; Poliak et al., 2003). The internode, located under the 
compact myelin, represents the largest of these domains roughly 
1 mm in length (Abe et al., 2004). Interactions between the axon 
and Schwann cell are mediated by a different set of different cell 
adhesion molecules at the internode (e.g., Nectin- like (Necl) pro-
teins, Necl- 1, Necl- 2 and Necl- 4) (Maurel et al., 2007) and there is 
a functional relationship between internode length and conduc-
tion velocity (Wu et al., 2012). The node is therefore an important 
axonal structure needed for proper transmission of sensory infor-
mation including pain. However, its complex organisation makes 
this compartment vulnerable to dysfunction if this structural or-
ganisation is compromised (e.g., following nerve damage) and due 
to its clear role in regulating action potential generation, suggests 
that this dysfunction could contribute to neuropathic pain.

3.2  |  Changes to nodal structure following nerve 
injury or disease

As well as C- fibre nociceptors, there is good evidence to show that 
A- fibres are also important in neuropathic pain (Campbell et al., 
1988; Dhandapani et al., 2018; Xu et al., 2015) and dysfunction 
of the node may be an important contributor. Peripheral nerve in-
jury results in the formation of atypical nodal structures such as 
heminodes, split nodes and nodes lacking paranodal or juxtaparan-
odal structures. In an infraorbital nerve lesion model, around 50% 
of nodes were atypical and in these or in typical nodal structures, 
there is a significant decrease in the paranodal protein Caspr and 
an increase in Nav1.6 accumulation (Henry et al., 2006; 2007). This 
accumulation might result from overexpression of Ankyrin- G at the 
site of injury (Kretschmer et al., 2002) and is correlated with neu-
ropathic pain behaviour (Henry et al., 2006). One consequence of 
an axonal injury is the potential formation of neuromas, which are 
enlargements of the nerve that develop due to unorganised nerve 
fibre growth as the nerve attempts to heal as well as the growth 
of non- neural tissue. They can be nerve- end neuromas that occur 
due to complete nerve transection such as following limb amputa-
tion (Buch et al., 2020) or occur along the axon such as in Morton's 
neuroma (Mak, Chowdhury & Johnson, 2021). These pathologi-
cal axonal structures are considered a key site of ectopic activity 
and neuropathic pain, and surgical removal can provide pain relief 
(Poppler et al., 2018). The contribution of neuromas to neuropathic 
pain most likely occurs due to the uncontrolled and undirected fibre 
growth as well as underlying molecular changes. These include the 
sprouting of unmyelinated C- fibres (Devor & Wall, 1976) and the 
accumulation of sodium channels (Black et al., 2008) but also the 
formation of disorganised nodes. For example, similar to partial 
nerve injury models, nodal disorganisation is also seen in models 
of neuroma, where Caspr and Caspr2 are redistributed to the jux-
taparanode and paranode, respectively, although ultrastructure 
analysis suggests a minimal impact on paranodal junction integrity 
(Calvo et al., 2016). In this same model, Kv1.1 and 1.2 channels are 
lost from the juxtaparanode as increased pain sensitivity and spon-
taneous primary afferent activity develops. However, other Kv1 
channels (Kv1.4, 1.6) are upregulated and their increased expres-
sion in the node is correlated with reduced spontaneous activity 
and pain sensitivity (Calvo et al., 2016). Similar findings have also 
been reported for Kv7.2 (Roza, Castillejo & Lopez- García, 2011). 
This injury- induced nodal accumulation is intriguing particularly 
since a number of studies have shown that certain VGKCs, includ-
ing Kv7.2 and some Kv1 channels, are consistently down- regulated 
in nerve injury models (Du & Gamper, 2013). This may be explained 
somewhat by the disconnect between mRNA levels in the DRG and 
protein expression in the distal nerve. However, these studies do 
suggest there is a fine balance of VGKC expression in sensory neu-
rons, one which strongly regulates excitability and that in some cir-
cumstances, natural overexpression of potassium channels may act 
as a compensatory mechanism to combat hyperexcitability caused 
by nodal disorganisation following nerve injury. Furthermore, 
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nodes of Ranvier can form de novo in neuromas due to the accu-
mulation of Nav1.6 (Chen et al., 2018). Genetic removal of Nav1.6 
in mice prevents the formation of these nodes, reduces neuronal 
excitability and attenuates neuropathic pain in the spared nerve 
injury (SNI) model (Chen et al., 2018), implicating the node as a key 
structure in driving neuropathic pain.

Interestingly, immune- mediated neuropathies such as Guillain- 
Barré syndrome (GBS) and chronic inflammatory demyelinating neu-
ropathy (CIPD), where neuropathic pain is common, are associated 
with antibodies which target nodal proteins and pain in these pa-
tients can be reversed with immunotherapy suggesting that these 
antibodies are pathogenic (Dawes & Bennett, 2020). Analysis of 
nerve or skin biopsies from patients with anti- Contactin or Capsr 
antibodies, lack evidence of demyelination, but instead demonstrate 
changes in nodal structure, which are associated with deficits in 
nerve conduction studies (Doppler et al., 2015, 2016). Depending on 
the IgG subtype, these antibodies may directly disrupt the function 
of these structural proteins or activate complement, both of which 
can lead to disruption of node integrity. Treatments that reduce these 
antibodies can normalise nerve function and relieve pain (Doppler 
et al., 2016). Ultrastructure analysis of nodes in patients with NF- 
155 antibodies shows clear structural changes including loss of ax-
oglial junctions and widening of the space between the Schwann cell 
and axon (Koike et al., 2017; Vallat et al., 2017). Antibodies against 
juxtaparanode proteins such as Caspr2 are found in patients with 
a range of neurological conditions including Neuromyotonia and 
neuropathic pain. However, nerve conduction studies are gener-
ally normal in these patients and passive transfer models suggest 
that these antibodies do not target the node in vivo (Dawes et al., 
2018). In addition to these immune- mediated neuropathies, analysis 
of nodes in peripheral nerve or skin from patients with other types 
of neuropathies (e.g. hereditary, entrapment or poly- neuropathies), 
also show disruption of nodal structure. Charcot- Marie- Tooth (CMT) 
disorder is a hereditary peripheral neuropathy associated with 
deficits in motor and sensory function. Loss of sensation is a com-
mon feature of neuropathy, but can also be coupled with ‘positive’ 
symptoms such as ongoing pain, a key feature of neuropathic pain. 
Interestingly, in some types of CMT, for example CMT1A, patients 
have ongoing pain as well as disorganisation of nodal domains includ-
ing mislocalisation of Capsr and Kv1 channels (Laurà et al., 2014; Li 
et al., 2005). Aberrant redistribution of paranodal or juxtaparanodal 
proteins such as Caspr or Kv1 channels is also seen in nerve biopsies 
from Morton's neuroma patients and from skin analysis in patients 
with diabetic neuropathy (Calvo et al., 2016; Doppler et al., 2017). 
Furthermore, node elongation (node >6.1 μm) is a feature common 
across different types of neuropathies associated with neuropathic 
pain (Doppler et al., 2012; Doppler et al., 2013). In patients with di-
abetic neuropathy or carpal tunnel syndrome (CTS), there is an in-
crease in the number of elongated nodes in skin samples compared 
with healthy controls (Doppler et al., 2017; Schmid et al., 2014). It 
is not completely clear as to exactly what this structural change in 
the node means in terms of sensory function and neuropathic pain. 
Elongated nodes are also found in diabetic patients without overt 

signs of neuropathy, and in CTS patients, elongated nodes nega-
tively correlate with disease severity (including pain), suggesting 
that elongation may serve as a mechanism to maintain normal nerve 
function in the face of nerve damage (Doppler et al., 2017; Schmid 
et al., 2014). This idea was supported in a follow- up study showing 
that following surgery, which is commonly associated with reduced 
neuropathic pain, CTS patients had more elongated nodes compared 
with pre- surgery levels or healthy controls (Baskozos et al., 2020). 
Overall, these findings show that changes in nodal structure occur as 
a result of nerve damage, are associated with neuropathic pain both 
in pre- clinical models and patients, and these changes are not only 
pathogenic but can also be compensatory suggesting the node as a 
key compartment contributing to sensory dysfunction in situations 
of nerve damage.

4  |  THE CELL BODIES OF DRG NEURONS

The cell bodies of primary sensory neurons reside within the DRG 
and express a variety of molecules that have been used to define 
neuronal sub- populations. These neuronal somas are grouped in 
close proximity to each other, separated by connective tissue and 
there may be some crude somatotopical organisation (Puigdellívol- 
Sánchez et al., 1998) although this is not well defined (Kim et al., 
2016). Due to the pseudounipolar structure of DRG neurons, the 
cell soma is taken off the line of action potential propagation, and 
therefore, it is generally considered this compartment does not di-
rectly influence the transmission of sensory information. However, 
certain anatomical features of the cell soma may have an impact on 
conduction and structural changes in the DRG following nerve injury 
suggest this compartment might be an important contributor to neu-
ropathic pain development.

4.1  |  Structure and function

DRG neurons are a heterogeneous population of cells and can be 
characterised based on a number of different parameters including 
soma size (Figure 4). DRG neuron somas range in diameter from ~20 
to 100 μm and are generally categorised as either small (<25 μm), 
medium (25– 35 μm) or large (>35 μm). This is directly related to 
axon myelination and hence conduction velocity. Neurons with a 
small diameter soma relate to unmyelinated C- fibres (predominantly 
nociceptors, but also CLTMRs), medium- sized neurons are thinly 
myelinated A- δ nociceptors and Aδ- LTMRs, whereas neurons with 
large cell bodies are thickly myelinated Aβ fibres or proprioceptors. 
The DRG also contains satellite glia cells (SGCs) which surround the 
cell bodies of primary sensory neurons. SGCs express receptors 
necessary to communicate with neurons and express certain ion 
channels which allow them to regulate the microenvironment sur-
rounding neuronal soma (Vit et al., 2008). Although the exact physi-
ological role of SGCs in the DRG is still unclear, the close contact of 
these two cell types indicates an important functional relationship, 
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potentially performing a similar role to that of astrocytes in the CNS 
(Hanani & Spray, 2020).

As mentioned, DRG neurons have a unique structure; they 
are pseudounipolar meaning that they have a single axon (the 
stem axon) which leaves the cell body and bifurcates at the T 
junction, with one branch going towards its peripheral target and 
the other along the dorsal root into the CNS, and this set- up is 
generally considered to allow for sensory information to travel 
uninterrupted along this route (Figure 4a). In some neurons, the 
proximal section of the stem axon can form a twisting glomeru-
lar structure which can substantially increase the distance be-
tween the soma and T junction (Matsuda et al., 2005). Both the 
cell soma and the stem axon are electrically excitable. This is 
postulated to prevent conduction block at the T junction since 
the soma and the stem axon will increase membrane capacitance 
and decrease membrane resistance, comprising spike propaga-
tion (Devor, 1999). Modelling systems propose that this is not 
the case for DRG neurons with large cell somas, as elimination 
of soma and stem axon excitability, had no impact on conduc-
tion (Amir & Devor, 2003). However, modulation of structural 
parameters, for example, by shortening the stem axon, impacts 
through conduction, suggesting that a greater stem length elec-
trically isolates the soma preventing it from impacting on sen-
sory transmission. Although to date no thorough analysis of 
stem axon length has been conducted, it is generally considered 
that the length is greater in DRG neurons with large cell soma 
versus smaller neurons (Matsuda & Uehara, 1981). Aligned with 
this, studies have suggested that the structural make- up of this 
compartment in C- fibres, that is a smaller soma and shorter stem 
axon, may allow some influence on through conduction and may 
serve as a low pass filter regulating high- frequency input to the 
CNS (Du et al., 2014; Gemes et al., 2013; Sundt, Gamper & Jaffe, 

2015). The excitability of the soma and stem axon does allow 
action potentials to invade the cell body (Amir & Devor, 2003) 
which has been demonstrated in vivo through recent calcium im-
aging experiments (Chisholm et al., 2018). The exact need for 
spike invasion into the soma is still not clear. It may simply be a 
way to regulate cell metabolism in line with sensory transmis-
sion, although other suggestions include a role in soma- to- soma 
communication at the level of the DRG (Devor, 1999). Although 
there are no synapses in the DRG, this neuron- to- neuron com-
munication may be facilitated by the electrical coupling of somas 
through the formation of gap junctions (Spray & Hanani, 2019) 
(Figure 4b). This was first realised by Devor and Wall (Devor & 
Wall, 1990) and has also been shown in recent in vivo calcium 
imaging experiments (Kim et al., 2016), although this phenom-
enon seems more obvious under pathophysiological rather than 
physiological conditions. As well as this direct cross- talk, the 
soma of DRG neurons can release neurotransmitters (Du et al., 
2017; Kung et al., 2013; Zhang et al., 2007) and express the re-
ceptors to respond to such factors (Hanack et al., 2015; Kung 
et al., 2013), which may regulate how the soma and stem axon 
influence the transmission of sensory signals. For example, re-
cent data show that GABA signalling in the DRG can lead to an 
increase in membrane conductance and depolarisation of the 
T junction (due to high intracellular Cl-  in DRG neurons), pre-
venting through conduction in nociceptive neurons, which is 
supported by the fact that local GABA application in the DRG 
reduces pain behaviour induced by chemical algogens applied to 
the paw (Du et al., 2017). While the pseudounipolar structure 
of DRG neurons means that the cell soma and stem axon are 
removed from the line of action potential propagation, rather 
than being passive, these structures may well impact on sensory 
transmission and hence regulate pain sensitivity.

F I G U R E  4  DRG neuron soma. (a) The soma of DRG neurons in mice can be defined as large (>35 μm in diameter, blue), medium (25– 
35 μm, pink) or small (<25 μm, black) and soma size is related to the myelination state of the neuron. Due to their psuedounipolar structure, 
DRG neurons have a stem axon which leaves the soma and bifurcates at the T junction. It is thought that the length of this stem axon is 
greater in neurons with a larger cell body, limiting its impact on conduction. DRG neurons with a smaller cell body have shorter stem axons 
and may regulate the transmission of sensory signals as they pass the T junction. (b) DRG neuron soma are surrounded by satellite glia cells 
(SGCs). Neuronal soma in the DRG may communicate with each other through the formation of gap junctions between neurons or SCGs
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4.2  |  Structural changes in the DRG following 
nerve injury or disease

In the context of nerve injury, there is evidence of fundamental 
anatomical changes in the DRG and for this structure being an im-
portant site in the generation of ectopic activity and contributing 
to neuropathic pain. One of the most profound changes suggested 
to occur in the DRG following nerve injury is that of soma loss 
due to neuronal cell death. In rodent models following damage 
to either the sciatic nerve or related spinal branches, a 20– 40% 
loss of neuronal cell bodies has been documented, occurring over 
a 1– 8 week period depending on the nature and degree of injury 
(Groves et al., 1997; Himes & Tessler, 1989; McKay Hart et al., 
2002). This is coupled with a significant reduction in DRG volume 
likely due to the reduced cellular composition which also includes 
death of SGCs (McKay Hart et al., 2002; West et al., 2007). These 
remarkable changes have been somewhat debated, but a recent 
approach using an automated stereological platform and tissue 
clearing of whole mouse DRG support these findings, reporting 
a loss of ~37% of neurons in the L4 DRG 6 weeks post- SNI (West 
et al., 2019). These findings are relevant to the clinical setting, with 
evidence suggesting that loss of DRG neuron soma also happens 
in patients following peripheral nerve injury (West et al., 2013). 
Mechanistically, loss of trophic support is an important factor. For 
example, nerve repair immediately following transection or the use 
of exogenous neurotrophic factors can prevent injury- induced loss 
of DRG neurons (Groves et al., 1999; Ljungberg et al., 1999), and 
cell death seems to occur via apoptosis, due to the observation of 
DNA fragmentation and expression of proteins, such as caspase- 3 
(McKay Hart et al., 2002; Wiberg et al., 2018). It seems reasonable 
that this loss could contribute to loss of sensation which accom-
panies nerve damage, however, it might also contribute to neuro-
pathic pain. Injuries which result in a greater loss of neurons also 
result in more persistent pain following nerve damage (Sekiguchi 
et al., 2009) and treatment with neurotrophic factors, for exam-
ple, Glial derived neurotrophic factor (Gdnf), which may prevent 
neuronal loss can attenuate neuropathic pain in animal models 
(Boucher et al., 2000). Furthermore, if this loss occurred in specific 
DRG neuron populations, for example those which may reduce 
nociceptive transmission through soma to soma communication 
(Du et al., 2017), this may also provide an explanation as to why 
soma loss leads to increased pain sensitivity. Interestingly, non- 
peptidergic neurons (which are the target of Gdnf), have greater 
activation of apoptotic pathways following nerve damage (Wiberg, 
Novikova & Kingham, 2018), suggesting that certain DRG neuron 
sub- populations may well be more susceptible to injury- induced 
cell death.

Although there may be a loss of some neuronal cell bodies from 
the DRG following injury, the majority remain and there is evidence 
of increased communication between cell somas. When studying 
soma activity following nerve injury, Devor and Wall noticed cross- 
excitation of neighbouring neurons (Devor & Wall, 1990). This was 
initially proposed to be mediated chemically (Amir & Devor, 1996), 

however, another possibility is one of more direct communication 
through the coupling of neuron- glia units within the DRG. This 
coupling is thought to be enhanced following nerve injury as ev-
idenced by the transfer of membrane impermeable dyes and the 
increase in linked activation of adjacent neurons visualised using 
in vivo calcium imaging (Hanani et al., 2002; Kim et al., 2016). This 
coupling occurs through the formation of gap junctions which 
are made up of connexin sub- units that allow the transfer of ions 
and other molecules between cells and accordingly connexins are 
upregulated in sensory ganglia following nerve injury (Kim et al., 
2016; Ohara et al., 2008). This data indicate that significant struc-
tural connectivity changes occur in the DRG following nerve injury 
that may contribute to neuropathic pain. These coupling events 
can occur between the same or different neuronal subtypes and 
may represent mechanisms contributing to hyperalgesia (nocicep-
tors recruiting more nociceptors) or allodynia (LTMRS recruiting 
nociceptors). Moreover, there is evidence that these changes con-
tribute to neuropathic pain. For example, blocking the action of 
gap junctions using either pharmacological or genetic approaches 
reduces coupled activation of neurons in the DRG and attenuates 
neuropathic pain in animal models of nerve injury (Kim et al., 2016; 
Ohara et al., 2008). Another anatomical change impacting neuron 
soma connectivity following nerve injury is that of aberrant sympa-
thetic nerve sprouting in the DRG. These fibres which are normally 
only associated with blood vessels in the DRG, form basket- like 
structures around the cell bodies of DRG neurons (particularly 
those with large diameters) following nerve injury (McLachlan 
et al., 1993). These structures are also seen in the DRG of patients 
with neuropathic pain (Shinder et al., 1999) and have been shown 
to impact the function of sensory neurons, with increased DRG 
soma excitability following signalling from the sympathetic fibres 
(Xie et al., 2010). Surgical, chemical or genetic interventions, which 
reduce sympathetic activity or the formation of these structures 
around DRG neuron soma, reduce neuropathic pain in animal mod-
els (Sun Ho Kim et al., 1993; Minett et al., 2014), although others 
have suggested a lack of sympathetic involvement in neuropathic 
pain (Ringkamp et al., 1999). Neuropathic pain is characterised by 
spontaneous or ongoing pain which is thought to result from ecto-
pic activity of DRG neurons. It is of note that animal studies have 
indicated DRG soma as a key neuronal compartment for ectopic ac-
tivity (Kajander & Bennett, 1992; Ma & LaMotte, 2007) and when 
activity is blocked here it can relieve neuropathic pain (Koplovitch 
& Devor, 2018; Weir et al., 2017). This is true in humans (Vaso 
et al 2014) and disrupting electrical activity at the level of the DRG 
soma and stem axon can selectively block activity in nociceptive 
afferents and can be used as a treatment for neuropathic pain in 
patients (Chao et al., 2020; Esposito et al., 2019).

Therefore, data suggest that the soma and stem axon of DRG 
neurons are important structures for sensory function. There is a 
fine balance as to how this compartment influences sensory propa-
gation (Al- Basha & Prescott, 2019) and therefore structural and con-
nectivity alterations to the soma or stem axon following nerve injury 
may play an important role in neuropathic pain.
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5  |  CENTR AL PROJEC TIONS OF PRIMARY 
AFFERENTS

To transmit information from the periphery to the CNS, primary 
sensory neurons extend a central branch towards the spinal cord to 
synapse with second- order neurons in the dorsal horn. Contrary to 
the organisation of peripheral axons, these central terminals convey 
input in a highly organised manner, with axons arranged according to 
their modality and sensory information converging onto a rich neu-
ronal population in the spinal cord (Das Gupta et al., 2021; Gatto 
et al., 2021; Kuehn et al., 2019; Peirs et al., 2021). In this section, 
we will discuss the organisation of central projections in the spinal 
cord and highlight some of the structural changes which occur in the 
context of nerve injury and neuropathic pain.

5.1  |  Structure and function

Past the DRG, axons of primary sensory neurons bundle together 
forming the dorsal roots (DRs) and enter the spinal cord at the dor-
sal root entry zone (DREZ). The crossing of the DREZ occurs during 
early embryonic stages while sensory neurons carry the intrinsic ca-
pacity to project accurately to their distinctive targets in the spinal 
cord (Marmigère & Ernfors, 2007). Primary sensory axons exhibit 
unique branching patterns. Typically, axons from Aβ fibres bifurcate 
into ascending and descending arms, with collaterals arising at regu-
lar intervals along with several segments before diving deep into the 
grey matter of the spinal cord (Abraira & Ginty, 2013; Lucas- Osma 
et al., 2018) (Figure 5a). On the other hand, axons associated with Aδ 
and C- fibres do not bifurcate at the DREZ, but turn in one direction 
before immediately projecting towards the grey matter of the spinal 
cord (Li et al., 2011; Olson et al., 2017; Zylka, Rice & Anderson, 2005). 
Axon branching often determines how neurons relay information to 
their postsynaptic targets, not only as a means to reach several tar-
gets but also since branch points influence the conduction of actions 
potentials along with the fibre (Debanne et al., 2011; Kaczmarek & 
Jankowska, 2018; Li et al., 2020; Sundt, Gamper & Jaffe, 2015). In 
particular, bifurcation of myelinated primary sensory axons deter-
mines the extension of their termination fields in the spinal cord, 
and absence of bifurcation, due to altered cGMP signalling, leads to 
impaired processing of somatosensory information (Schmidt et al., 
2016; Troster et al., 2018). Interestingly, axon branching also deter-
mines how axons regenerate after a lesion, according to the position 
of the lesion with respect to a branch point (Lorenzana et al., 2015).

At the spinal cord, sensory afferents converge onto a rich and 
heterogeneous population of neurons, and sensory input is deter-
mined by the specific distribution of axon terminals and their syn-
aptic connections throughout the grey matter (Figure 5b). Central 
terminals of skin- innervating sensory neurons are mostly confined 
to the dorsal horn, which is formed by the ensemble of laminae I– 
VI, as defined by Bror Rexed (Rexed, 1952). The organisation of pri-
mary afferents in the dorsal horn has been studied extensively, and 
they have been found to terminate in distinct laminae, according to 

their specific functions or peripheral targets (Abraira & Ginty, 2013; 
Abraira et al., 2017; Emery & Ernfors, 2020; Lallemend & Ernfors, 
2012; Li et al., 2011; Todd, 2010). For example, Aδ and C- fibre no-
ciceptors terminate in laminae I and II; specifically, Aδ nociceptors 
and C peptidergic fibres terminate in lamina I and outer lamina II 
(IIo), while non- peptidergic C- fibres terminate predominantly in 
inner lamina II (IIi) (Choi et al., 2020; Ferrini et al., 2020; Pinto et al., 
2008; Todd, 2010). Lamina I is one of the main hubs for projection 
neurons in the spinal cord, which suggests that nociceptive input to 
these superficial laminae could be immediately relayed to supraspi-
nal pain centres (Choi et al., 2020; Cordero- Erausquin et al., 2009; 
Ferrini et al., 2020). Indeed, nociceptive circuits in lamina I seem to 
be more sensitive to incoming input and readily undergo plasticity, 
which may help the system detect high- threshold input to minimise 
damage (Ferrini et al., 2020). On the other hand, LTMRs, responsible 
for innocuous mechanical sensation terminate in deeper laminae: C- 
LTMRs terminate in inner LII, close to the border with LIII (Larsson & 
Broman, 2019; Salio et al., 2020; Seal et al., 2009), while Aδ mech-
anoreceptors and Aβ fibres terminate in III– V in a largely overlap-
ping manner (Abraira et al., 2017; Kuehn et al., 2019; Li et al., 2011). 
Another subset of projection neurons is found in lamina V, where 
input from innocuous Aβ-  and nociceptive Aδ/C- fibres converge 
into wide dynamic range (WDR) neurons, which are important for 
somatosensory processing in the spinal cord (Basbaum et al., 2009; 
Craig, 2003). The apparent segregation in the organisation of dorsal 
horn circuits, particularly regarding nociceptive input, which targets 
the most superficial laminae, suggests a linear coding of specific sen-
sations. However, the segregation of labelled lines is maintained by 
a rather heterogeneous neuronal population in the dorsal horn, and 
processing of specific sensations must also account for their spe-
cific interconnections and interactions (Prescott, Ma & De Koninck, 
2014). Processing by the CNS will decode sensory information into 
corresponding sensations, but this ultimately depends on how in-
formation is represented by primary afferents themselves (Chisholm 
et al., 2018; Wang et al., 2018).

To convey information to the spinal cord, central projections 
of sensory neurons are enriched with voltage- gated ion channels, 
which enable the transmission of action potentials to the presynap-
tic terminal (Figure 5c). While the expression of ion channels may be 
similar in all axon regions, little is known about the specific subtypes 
of Nav channels expressed at central terminals (Bennett et al., 2019; 
Goodwin & McMahon, 2021). Yet, the expression of Nav1.7 in noci-
ceptive terminals seems to be critical for neurotransmitter release, 
and loss of Nav1.7 in central terminals leads to severe reductions in 
synaptic transmission (MacDonald et al., 2021). Clusters of sodium 
channels are mostly located at major branch points, and are often ab-
sent from terminal branches and boutons, which helps propagation 
of action to small branches (Lucas- Osma et al., 2018). Importantly, 
when axons cross into the CNS, central branches of A- fibres are 
no longer myelinated by Schwann cells but by oligodendrocytes. 
Myelinating oligodendrocytes are necessary for the clustering of so-
dium channels as well as for regulating clustering of Caspr along the 
axon (Eisenbach et al., 2009; Kaplan et al., 1997). The presence of 
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F I G U R E  5  Unique features of central terminals of primary sensory neurons. (a) Sensory neurons exhibit distinctive branching patterns 
upon entering the CNS. Axons from Aβ afferents (blue) show a clear bifurcation, with branches extending rostrally and caudally over 
several segments and collaterals arising at regular intervals before growing deep into the spinal cord. In contrast, axons from Aδ and C- 
fibres turn in one direction and reach the most superficial regions of the spinal cord. (b) Input from primary sensory neurons is organised 
in a distinct laminar manner. It is generally considered that nociceptive Aδ and C terminals are located in lamina I and II of the dorsal horn, 
while Aβ terminals from innocuous fibres are located deeper in laminae III– V. (c) Central terminals constitute the first synaptic relay of 
information from the activation of peripheral receptors to neurons in the dorsal horn. Sensory neurons release glutamate upon invasion 
of action potentials at central terminals through a VGCC- dependent mechanism and vesicle fusion to the plasma membrane. This synapse 
is highly regulated by pre-  and post- synaptic mechanisms, including PAD from GABAergic interneurons. (d) Glomerular complexes enable 
central axons to engage with a large number of neurons and glial cells. While most central terminals form simple synaptic arrangements 
(axo- somatic/axo- dendritic), glomeruli allow interaction of central axons with several pre-  and post- synaptic structures. This enables the 
transmission of sensory information to many post- synaptic targets but also the pre- synaptic modulation of afferent input
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multiple branch points as well as myelination by different glial cells 
may also account for the slower conduction velocities in the central 
branch compared to the peripheral branch (Luscher & Shiner, 1990; 
Waddell et al., 1989). Once action potentials invade central termi-
nals, they activate presynaptic calcium channels that determine ves-
icle fusion and neurotransmitter release.

As is the case with other primary afferents, cutaneous sen-
sory neurons are glutamatergic and thus form excitatory synapses 
with neurons in the dorsal horn. Most of these synapses are simple 
axo- dendritic or axo- somatic, but others occur in complex synaptic 
arrangements termed glomeruli (Figure 5d). A single glomerular ter-
minal may engage with multiple neurons and glial cells, which enables 
the transmission of sensory information to several postsynaptic tar-
gets (Ribeiro- da- Silva & De Koninck, 2008). Within the glomerular 
synaptic structure, central terminals of primary afferents receive 
axo- axonic contacts from local interneurons to modulate transmis-
sion of sensory information (Boyle et al., 2019; Hughes et al., 2012). 
In fact, axo- axonic contacts, typically from GABAergic neurons, are 
a powerful means to modulate synaptic transmission and are con-
sidered the structural basis for presynaptic inhibition (Rudomin & 
Schmidt, 1999). Activation of GABAA receptors at presynaptic ter-
minals has a depolarising effect due to the high intracellular con-
centration of chloride in sensory neurons, mainly due to the activity 
of a chloride cotransporter, NKCC1 (Mao et al., 2012; Plotkin et al., 
1997; Sung et al., 2000). Despite being depolarising, primary affer-
ent depolarisation (PAD) decreases the strength of action potentials 
invading presynaptic terminals, due to shunting or by inactivation of 
Na+ and Ca2+ channels (Graham & Redman, 1994). AMPA and NMDA 
glutamate receptors are also expressed in central terminals and may 
produce PAD of A-  and C- fibres, thereby also contributing to pre-
synaptic inhibition (Bardoni et al., 2004; Lee et al., 2002; Marvizon 
et al., 2002). Interestingly, presynaptic inhibition produced by GABA 
or by glutamate seems to be distinct, where activation of LTMRs 
produce presynaptic inhibition by GABAA receptors onto similar 
afferent subtypes, whereas C- fibres produce presynaptic inhibition 
in an NMDA- receptor- dependent manner that inhibits large fibres, 
such as Aβ fibres (Zimmerman et al., 2019). Moreover, C- fibres often 
found forming glomerular complexes may optimise the modulation 
of these fibres by different presynaptic mechanisms (Ribeiro- Da- 
Silva, 2004). Indeed, monosynaptic input from nociceptive C- fibres 
is modulated by presynaptic inhibition through the activation of 
both low-  and high- threshold afferents, an important mechanism for 
the processing of nociceptive input to the spinal cord (Fernandes 
et al., 2020; Witschi et al., 2011).

The synapse formed between central terminals of primary af-
ferents and second- order neurons in the dorsal horn constitutes an 
important relay point for the transmission of sensory information to 
the CNS. While modulation of this information or transfer between 
neurons may occur prior to this point (see section 3), regulation of 
the central terminal is of critical importance as information is inte-
grated and conveyed along the somatosensory pathway. Thus, alter-
ations at this site, which may occur in pathological conditions, will 
ultimately affect how painful information reaches the brain.

5.2  |  Structural changes in central afferents 
following injury or disease

After nerve injury, anatomical changes include degeneration or 
retraction of central terminals away from the spinal cord, thereby 
interrupting synaptic transmission to the CNS. Loss of peptidergic 
and non- peptidergic innervation in the superficial dorsal horn has 
been suggested in an animal model of HIV drug- induced neuropathy, 
where a loss of IB4 and CGRP staining in the dorsal horn of the spinal 
cord has been associated with mechanical and thermal hyperalgesia 
(Huang et al., 2013). A similar loss of central terminals occurs after 
transection of the peripheral nerve, but not after crush nerve injury, 
where only a transient degeneration of non- peptidergic afferents 
and mechanical hyperalgesia is observed (Bailey & Ribeiro- da- Silva, 
2006; Casals- Diaz et al, 2009). These findings highlight differences in 
the contribution of peptidergic and non- peptidergic sub- populations 
and changes to their central terminals in the development and main-
tenance of neuropathic pain. Contrary to peripheral axons, which 
maintain some regeneration potential after injury, central axons lack 
the substrates for proper axonal regrowth and guidance. Moreover, 
the DREZ acts as a barrier, preventing the access of regenerating 
axons into the spinal cord. This is due in part because, throughout 
development, the CNS acquires a rich extracellular matrix (ECM), 
with high levels of chondroitin surface proteoglycans (CSPG), which 
inhibit spontaneous recovery, limiting axon regeneration across the 
DREZ (Steinmetz et al., 2005). After nerve injury, there is some re-
generation of axons, which are then unable to cross into the CNS 
(Mar et al., 2016). Indeed, changes in ECM proteins are factors that 
contribute to inflammatory and chronic pain aetiologies (Tansley 
et al., 2018; Parisien et al., 2019). Similar to peripheral axons, ongo-
ing neuronal activity greatly improves the regenerative capacity of 
central afferents, especially in concert with the dissolution of ECM 
proteins (Steinmetz et al., 2005; Wu et al., 2020). However, even 
when axons are finally lured into the spinal cord, their distribution 
does not replicate the exact pattern prior to injury and some ectopic 
axon projections can be formed, meaning these structural changes 
no longer reflect the modular pattern of afferent terminations found 
in the naive spinal cord (Lekan et al., 1996; Okamoto et al., 2001). In 
particular, it has been suggested that nerve injury may produce reor-
ganisation of Aβ fibres, which sprout from deeper laminae into more 
superficial layers and make functional synaptic contacts, a phenom-
enon that may underlie allodynia (Woolf et al., 1992). However, no-
ciceptors with terminal arborisations that resemble Aβ fibres seem 
to account for the fibres innervating superficial laminae after injury, 
especially since the termination pattern of myelinated fibres is not 
changed (Shehab et al., 2003; Woodbury et al., 2008). Furthermore, 
Aβ fibres do not recover normal physiological properties even after 
they are able to regenerate into the spinal cord, probably due to ab-
errant myelination after injury (Tan et al., 2007). C- fibres also un-
dergo significant structural rearrangements. After peripheral nerve 
injury, there is an increase in synaptic markers mostly associated 
with C- fibres, which may regulate stimulus- evoked synaptic trans-
mission in pain states (Sun et al., 2006). These fibres also form large 
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varicosities enriched with calcium channel containing α2δ sub- units, 
which may increase convergence of nociceptive signals in the spinal 
cord (Li et al., 2004, 2014; Yamanaka et al., 2021).

Increased spontaneous activity in primary afferents is another 
important hallmark of neuropathic pain in rodents (Haroutounian 
et al., 2014; Khan et al., 2002; Xiao & Bennett, 2008a, 2008b) and 
humans (Bostock et al., 2005; Ochoa et al., 2005; Orstavik & Jorum, 
2010). Excessive input from primary sensory neurons helps initiate 
and maintain central sensitisation, which is the result of synapse 
strengthening by pre-  and post- synaptic mechanisms (Ikeda et al., 
2006, 2007; Woolf & Salter, 2000). Following inflammation or nerve 
injury, increased activity at sensory neurons may lead to synaptic 
facilitation (Sandkühler & Gruber- Schoffnegger, 2012). At central 
terminals, there is an increase in α2δ sub- units of voltage- gated cal-
cium channels, which increase their density at the membrane, re-
sulting in more neurotransmitter release (Ohnami et al., 2011). This 
enhanced synaptic transmission enables activation of normally si-
lent NMDA glutamate receptors (NMDAR) at post- synaptic neurons, 
thereby increasing post- synaptic calcium (Ca2+) levels, along with 
Ca2+- dependent signalling pathways. This cascade of events will 
also increase the excitability of the output neuron and facilitate the 
transmission of nociceptive information to the CNS (von Hehn et al., 
2012; Latremoliere & Woolf, 2009).

Changes in PAD may underlie increased sensory neuron excit-
ability after nerve injury. For example, an increase in expression 
and activity of NKCC1, which leads to further intracellular chloride 
accumulation in sensory neurons and a more depolarised chloride 
reversal potential (Pieraut et al., 2007), means that activation of 
GABAA receptors may produce larger depolarisation leading to 
the generation of antidromic spikes, known as dorsal root reflexes, 
and further excitation of sensory neurons (Cervero et al., 2003; 
Laird et al., 2004; Willis Jr., 1999). In inflammatory pain conditions, 
such an increase in NKCC1 has been observed (Funk et al., 2008; 
Morales- Aza et al., 2004), as well as following trigeminal nerve in-
jury, with associated mechanical hyperalgesia (Wei et al., 2013). 
Yet, changes in chloride homoeostasis must be accompanied by 
intrinsic hyperexcitability of primary sensory neurons for the ac-
tivation of GABAA receptors to become excitatory, since a strong 
GABAergic conductance in sensory neurons is still capable of pro-
ducing presynaptic inhibition at more depolarised chloride reversal 
potentials (Takkala, et al, 2016). Interestingly, after nerve injury, 
there is also a decrease in inhibitory terminals in the spinal cord as 
well as a decreased expression of GABAA receptors in nociceptive 
fibres, which lead to mechanical and thermal hyperalgesia (Chen 
et al., 2014; Lorenzo et al., 2014; Meisner et al., 2010; Moore et al., 
2002). Indeed, restoring inhibitory circuitry in the dorsal horn, 
using GABAergic cell transplantation, can reverse the hypersen-
sitivity observed in models of both traumatic-  and chemotherapy- 
induced nerve injury (Bráz et al., 2012, 2015). Taken together, 
these results suggest that enhancing GABAergic tone may be a 
potential strategy to enhance presynaptic inhibition, especially at 
central terminals, which are ideally placed to relay information to 
the CNS (Weir et al., 2017).

6  |  SUMMARY

Primary sensory neurons are a diverse set of cells, able to convey 
information relating to a variety of specific sensations including 
touch and pain. Their heterogeneity can be defined based on an in-
creasing number of molecular markers, but also by their anatomical 
distribution, structure and the organisation of specialised neuronal 
compartments. In terms of sensory endings in the skin, the node 
of Ranvier or central terminals in the spinal cord, we know that 
these compartments are important for detecting, conveying and 
transmitting sensory information and studies continue to increase 
our knowledge and appreciation of how these structures relate to 
sensory function, which is important in order to generate a more 
complete understanding of sensory neuron physiology. For other 
compartments, however, such as the cell soma, their influence on 
sensory transmission is less clear, but increasing evidence suggests 
that sensory neuron soma can directly communicate at the level of 
the DRG and, despite the pseudounipolar structure of sensory neu-
rons, potentially modulate through conduction. The physical integ-
rity of these compartments is key to their proper function. Nerve 
damage leads to structural changes which are commonly associated 
with neuropathic pain. This includes loss of fibres in the skin, nodal 
disorganisation, soma loss in the DRG and retraction of central ter-
minals. Some of these changes are useful for diagnostic purposes, 
for example skin is easily accessible in patients for the analysis of 
nerve fibre density and nodal changes. Structural changes to these 
compartments lead to dysfunction and therefore may more directly 
contribute to neuropathic pain. Importantly, treatments which at-
tenuate neuropathic pain in both patients and animal models are 
associated with normalising these changes. As we continue to im-
prove our knowledge of the overall physiology of sensory neurons, 
it will remain important to consider their discrete compartments and 
whether experimental or therapeutic manipulation can be targeted 
to these specific regions, to gain a better understanding of their role 
in sensory physiology, offering more targeted interventions for pain-
ful conditions such as neuropathic pain.
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