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Abstract
Monkeypox virus is emerging slowly with the decline of COVID-19 virus infections around the world. People are afraid of 
it, thinking that it would appear as a pandemic like COVID-19. As such, it is crucial to detect them earlier before widespread 
community transmission. AI-based detection could help identify them at the early stage. In this paper, we aim to compare 
13 different pre-trained deep learning (DL) models for the Monkeypox virus detection. For this, we initially fine-tune them 
with the addition of universal custom layers for all of them and analyse the results using four well-established measures: 
Precision, Recall, F1-score, and Accuracy. After the identification of the best-performing DL models, we ensemble them to 
improve the overall performance using a majority voting over the probabilistic outputs obtained from them. We perform our 
experiments on a publicly available dataset, which results in average Precision, Recall, F1-score, and Accuracy of 85.44%, 
85.47%, 85.40%, and 87.13%, respectively with the help of our proposed ensemble approach. These encouraging results, 
which outperform the state-of-the-art methods, suggest that the proposed approach is applicable to health practitioners for 
mass screening.
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Introduction

Monkeypox is an infectious disease caused by the monkey-
pox virus (MPXV), a member of the orthopoxvirus genus. It 
was first identified in the monkey in 1959 at a research insti-
tute in Denmark, hence it is named as Monkeypox virus [1]. 
Later, the first case was confirmed in humans in the Republic 
of Congo in 1970 when a child with smallpox-like symp-
toms was admitted to the hospital [2]. It transmits to humans 
through close contact with infected individuals or contami-
nated objects [3]. Initially, it usually appeared in the African 

region but recently it has reached more than 50 countries 
with 3,413 confirmed cases and one death [4]. Till now, 
there are two variants of the monkeypox virus known: one, 
the Central Africa clade and another, the West Africa clade. 
There is no proper treatment for the monkeypox virus to 
date. The ultimate solution is the development of a vaccine. 
The diagnosis of Monkeypox can be performed mainly with 
the polymerase chain reaction (PCR) method or skin lesion 
test using electron microscopy. The most trusted method 
of virus confirmation is PCR, which has also been used for 
COVID-19 diagnosis in recent years. In addition, artificial 
intelligence (AI)-based techniques could help detect them 
with the help of virus image processing and analysis.

With the emerging growth of AI models in various 
domains such as chest x-ray images [5], fruit image analysis 
[6], and sentiment analysis [7, 8], the AI models for medical 
image analysis have been proposed for various virus-related 
disease detection [9, 10]. For instance, Madhavan et al. [10] 
developed a deep learning model (Res-COvNet) based on 
transfer learning approach for COVID-19 virus detection. 
They employed ResNet-50 [11] to extract the features from 
X-ray images and extended the network with a classifica-
tion layer. Their proposal achieved a promising accuracy 
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of 96.2% for identifying normal, bacterial pneumonia, viral 
pneumonia, and COVID-19 cases on X-ray images. Simi-
larly, a review study on the deep learning model for COVID-
19 detection was reported by Bhatt et al. [12]. In addition, 
facial skin disease detection using deep learning was imple-
mented by Yadav et al. [13].

Besides the COVID-19 virus detection, a few works used 
deep learning models for other disease detection such as 
chicken pox, Herpes, and so on. For instance, Sandeep et al. 
[14] investigated the detection of various skin diseases such 
as Psoriasis, Chicken Pox, Vitiligo, Melanoma, Ringworm, 
Acne, Lupus, and Herpes using deep learning (DL)-based 
methods. They developed a Convolutional Neural Network 
(CNN) to classify the skin lesion into eight disease classes 
and compared their solution with the help of the VGG-16 
pre-trained model [15]. Their method provided an accuracy 
of 78% for the detection. Low-cost image analysis for Herpes 
Zoster Virus (HZV) detection using CNN was proposed in 
[16]. The early detection of HZV produced an accuracy of 
89.6% when tested on 1,000 images.

Furthermore, Measles disease detection using a transfer 
learning approach was implemented by Glock et al. [17]. 
They achieved a sensitivity of 81.7%, specificity of 97.1%, 
and accuracy of 95.2% using the ResNet-50 model [11] 
over the diverse rash image dataset. Moreover, a big-data 
approach for Ebola virus disease detection was proposed 
in [18] using an ensemble learning approach. They uti-
lized a combination of artificial neural network (ANN) and 
genetic algorithm (GA) for knowledge extraction over the 
big data using Apache Spark and Kafka framework. More 
recently, Ahsan et al. [19] collected the images of Monk-
eypox, Chickenpox, Measles and Normal categories using 
web mining techniques and verified by the experts. Later 
on, they also evaluated a transfer learning approach with the 
VGG-16 model considering two techniques [20]. The first 
technique considered the classification of images into two 
disease classes: Monkeypox and Chickenpox, whereas the 
second technique augmented the images. They reported an 
accuracy of (97%) while classifying the monkeypox without 
data augmentation, whereas the accuracy was decreased to 
78% with augmentation.

From existing research works on virus-related disease 
detection using DL methods, we observe that the majority of 
them have employed the transfer learning approach [10, 17] 
using well-established pre-trained DL methods. Since there 
are not many works available on Monkeypox virus detection 
except the work by Ahsan et al. [20]. Their proposal has pro-
vided encouraging results in this domain. However, it has three 
main limitations. First, their models only deal with binary clas-
sification with limited performance. Second, they only con-
sider the VGG-16 DL model for transfer learning, which lacks 
identifying the best-performing pre-trained DL methods and 
their best combinations to attain optimal performance. Third, 

their models have insufficient interpretability. As a result, it is 
difficult to establish trustworthiness among health practitioners 
during mass screening.

To address the aforementioned limitations, we, first, resort 
to the 13 pre-trained DL models and fine-tune them with the 
same approach. Second, we evaluate the performance of each 
DL model using averaged Precision, Recall, F1-score and 
Accuracy over 5 folds. Third, we ensemble the best-perform-
ing models to improve the overall performance.

The main contributions in this paper are as follows:

–	 Propose to use a common fine-tuned architecture for all 
13 pre-trained DL models for MonkeyPox detection and 
compare them;

–	 Perform an ablative study to select the best-performing DL 
models for ensemble learning;

–	 Compare the proposed approach with the state-of-the-art 
methods; and

–	 Show the explainability using Grad-CAM [21] and LIME 
[22] of best-performing DL model.

Materials and methods

Dataset

Herein, we use a publicly available Monkeypox image dataset 
[19, 20]. The dataset has different sub-folders, including data-
sets with and without augmentations. Given that DL models 
prefer augmented images to learn meaningful information 
more accurately, we use them in this study. Table 1 shows the 
number of images from the augmented folder per category.

Evaluation metrics

We use four widely-used performance metrics such as Preci-
sion (Eq. (1)), Recall (Eq. (2)), F1-score (Eq. (3)), and Accu-
racy (Eq. (4)).

(1)P =
TP

TP + FP
,

(2)R =
TP

TP + FN
,

(3)F = 2 ×
P × R

P + R
,

Table 1   Dataset statistics

Category Chickenpox Measles Monkeypox Normal Total

# Number 329 286 587 552 1,754
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where TP, TN, FP, and FN represent true positive, true nega-
tive, false positive, and false negative, respectively. Simi-
larly, P, R, F, and A represent Precision, Recall, F1-score, 
and Accuracy, respectively.

Pre‑trained DL models

The availability of various DL models trained on a large 
dataset, called ImageNet [23], made significant progress in 
image classification and computer vision tasks. More pre-
cisely, when the availability of expert-labelled data is limited 
to some domains such as biomedical image analysis, a most 
common approach is to utilise these pre-trained DL models 
for transfer learning [24]. This is helpful to boost the per-
formance in a limited data setting because transfer learning 
allows the DL models trained on large datasets to transfer 
learned knowledge to a small domain-specific dataset.

We choose 13 pre-trained DL models for this study. These 
pre-trained model ranges from heavy-weight DL models 
such as VGG-16 [25], InceptionV3 and Xception [25] to 
light-weight models such as MobileNet [26], and Efficient-
Net [27]. The overall pipeline of the training process for 
those models is shown in Fig. 1. We use the same customi-
sation for all pre-trained models. A brief discussion of each 
pre-trained DL model is presented in the next subsections.

VGG

The Visual geometry group (VGG) at Oxford University 
developed a Convolutional Neural Network (CNN), popu-
larly known as VGG-16, which won the ImageNet [23] chal-
lenge in 2014. It consists of 13 Convolutions, 5 Max pooling 
and 3 Dense layers. It is named as VGG-16 because it has 

(4)A =
TP + TN

TP + TN + FP + FN
,

16 layers that have the learnable weight parameters [11]. 
An extended version of VGG-16 model, which consists 16 
Convolution layers, 5 Max-pooling layers and 3 Dense lay-
ers, is known as VGG-19.

ResNet

The very deep convolutional neural network such as VGG-
16 and VGG-19 produced promising results in a large-scale 
image classification task. However, it is very hard to train 
a very deep neural network due to a vanishing gradient 
problem, i.e., the multiplication of small gradient propa-
gated back to the previous layer start vanishing after a cer-
tain depth. The researchers aimed to address the vanishing 
gradient problem by introducing the concept of skip con-
nection, which allows skipping some layers in the network. 
The group of layers in the network that use such skip con-
nection are known as residual blocks (Res-Blocks), which 
are the core of ResNet architecture [11]. Here, we utilise 
two ResNet architectures: ResNet-50 and ResNet-101. 
The ResNet-50 consists of 48 Convolution layers, 1 Max-
pooling, and 1 Average pooling layer, whereas ResNet-101 
includes 99 Convolution layers, 1 Max-pooling and 1 Aver-
age pooling layer.

Inception‑V3

The idea of widening the network instead of deepening 
is implemented in the Inception network, by a team of 
researchers at Google [28]. Inception network architecture 
uses the four parallel convolutions layers with different ker-
nel sizes at a given depth of network to extract the image 
feature at different scales before passing them into the next 
layer. Here, we utilize a 48-layer deep Inception-v3 network.

Fig. 1   High-level workflow 
to train the pre-trained DL 
models with custom layers. 
Note that GAP refers to Global 
Average Pooling layer and the 
value inside the small bracket 
of dense layer represents the 
number of units under it
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InceptionResNet

With the development of wider and deeper architecture 
with residual connections such as Inception, [28] and 
ResNet [11] network, researchers exploited the benefit 
of combining the Inception architecture with the residual 
connections, and established a novel model called Incep-
tionResNet. We utilise the InceptionResNetV2 network, 
which consists of 449 layers including Convolutions lay-
ers, Pooling layers, Batch normalization layers and so on.

Xception

It is an extreme version of the Inception network devel-
oped by Google in 2017 [25]. The main idea implemented 
in Xception is to make the Convolutions operation more 
efficient in Inception blocks. This was achieved with 
modified depth-wise separable convolution, which is per-
formed in two steps: point-wise convolution followed by 
depth-wise convolution. Here, the point-wise convolution 
changes the dimension and depth-wise convolution repre-
sents the channel-wise spatial convolution.

MobileNet

The idea of depth-wise convolution was further exploited 
in a deep neural network architecture, known as MobileNet 
[26]. In this work, we utilise one version of MobileNet 
architecture, called MobileNetV2 [29]. The MobileNetV2 
is an extended version of MobileNetV1, which consists 
of 1 regular Convolutions layer, 13 depth-wise separable 
convolutions blocks and 1 regular Convolutions layer, 
followed by an Average pooling layer. Whereas, Mobile-
NetV2 added the Expand layer, Residual connections and 
Projection layers in addition to depth-wise Convolution 
layers known as a Bottleneck residual block.

DenseNet

In DenseNet architecture [30], the idea of skip connection was 
extended to multiple steps instead of one-step direct connec-
tions as in ResNet. And, the block designed to use in between 
such connections is known as Dense block. The main compo-
nents of DenseNet are connectivity, and Dense blocks. Each 
layer in Densenet has a direct connection to its all forward 
layer, thereby establishing (L+1)/2 connections for L layer. 
Each Dense block consists of Convolutions layers with the 
same feature map size but different kernel sizes. In this work, 
we utilise the DenseNet-121 network, which consists of 120 
Convolutions layers and 4 Average pooling layers.

EfficientNet

The expansion of CNN on each dimension into width, depth, 
and resolution was attempted arbitrarily in various deep neu-
ral network architectures such as ResNet, DenseNet, Incep-
tion, Xception and so on. However, the systematic approach 
for scaling up the CNN with a fixed set of scaling coeffi-
cients was proposed in EfficientNet architecture [27]. The 
network architecture of EfficientNet consists of three blocks: 
steam, body and final blocks. The steam and final blocks are 
common in all variants of EfficientNet while the body dif-
fers from one version to another. The stem block consists of 
input, re-scaling, normalization, padding, convolution, batch 
normalization and activation layer. The body consists of five 
modules, where each module has depth-wise convolution, 
batch normalization and activation layers. In this study, we 
use three versions of EfficientNet: EfficientNet-B0, Efficient-
Net-B1 and EfficientNet-B2. The EfficientNet-Bo has 237 
layers in total, whereas EfficientNet-B1 and EfficientNet-B2 
have 339 layers, excluding the top layer.

Implementation

We implement our proposed model using Keras [31] imple-
mented in Python [32]. During the implementation, we tune 
the parameters as follows. We first resize each image into 
150*150 as suggested by Sitaula and Hossain [33]. For aug-
mentation, we apply online data augmentation as follows: 
rescale=1/255, rotation range=50,width shift range=0.2, 
height shift range=0.2, shear range=0.25, zoom range=0.1, 
and channel shift range=20. We set the optimizer as ’Adam’, 
batch size as 16, and initial learning rate as 0.0001. To pre-
vent over-fitting, we utilise the learning rate decay over each 
epoch coupled with the Early stopping criteria.

In our study, we design random five folds (5-cross valida-
tion), where each fold contains 70/30 for train/test ratio and 
report the average performance.

Ensemble approach

To ensemble the multiple DL models, we extract the proba-
bilistic values from each fine-tuned pre-trained model and 
perform the majority voting approach (refer to Fig. 2). Each 
of our fine-tuned DL models shows the best-fit to learn the 
optimal features during the training and testing process (see 
Fig. 3).

In this study, we choose two best-performing fine-tuned 
models: Xception and DenseNet-169 based on the empirical 
study (see “Candidate model selection for ensemble”). Let 
us assume that the Xception model produces a probabilistic 
output vector as X and DenseNet-169 provides a probabil-
istic output vector as D with a size equal to the number of 
classes.
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where I is the input image to be classified and C gives us 
the index of highest majority value corresponding to the 
particular class c.

Results and discussion

Comparative study of DL models

We compare the proposed approach with the off-the-shelf 
pre-trained DL models based on the standard evaluation 
measures on this dataset. The results are presented in 
Table 2. Note that the reported results are the averaged per-
formance over 5 different folds (5-fold cross validation).

(5)X = Xception(I),

(6)D = DenseNet − 169(I),

(7)C = arg max
c

[X,D],

From Table 2, we notice that the Xception is the second-
best performing method among all contenders, whereas it is 
the best method among 13 pre-trained DL methods (Preci-
sion: 85.01%, Recall: 85.14%, F1-score: 85.02%, and Accu-
racy: 86.51%). We believe that this is because of the Xcep-
tion’s higher ability to extract the discriminating information 
from the virus images with the help of its point-wise and 
depth-wise convolution. In addition, our proposed ensemble 
method is the best-performing method among all contenders 
with an accuracy of 87.13%. In terms of other performance 
metrics such as Precision, Recall and F1-score, we observe 
that it imparts 85.44% of Precision, 85.47% of Recall and 
85.40% of F1-score. This shows that it is 0.43% higher in Pre-
cision, 0.33% higher in Recall, and 0.38% higher in F1-score 
than the second-best performing method (Xception). Further-
more, it imparts 5.26%, 6.3%, and 6.39% higher Precision, 
Recall, and F1-score, respectively than the least-performing 
DL method (VGG-16). Such improvement in the result is 
because of the decision fusion, which helps fuse the decision 
outcomes from different DL models as the final decision.

Fig. 2   Ensemble method 
between Xception and 
DenseNet-169 DL models. Note 
that the Voting block refers to 
max-voting

Fig. 3   Sample train/test plot (fold 1) for accuracy and loss obtained 
from the fine-tuned Xception DL model

Table 2   Comparison of pre-trained DL models and ensemble approach 
using averaged Precision, Recall, F1-score, and Accuracy over 5 differ-
ent folds

Bold values denotes the highest performance

Methods P (%) R (%) F(%) A (%)

VGG-16 80.18 79.17 79.01 82.22
VGG-19 81.84 81.90 81.03 82.94
ResNet-50 82.81 82.94 82.82 84.87
ResNet-101 82.69 81.88 82.02 84.98
IncepResNetv2 83.90 83.44 83.62 85.43
MobileNetV2 82.85 81.17 80.98 84.87
InceptionV3 82.51 82.30 82.16 84.53
Xception 85.01 85.14 85.02 86.51
EfficientNet-B0 81.60 81.34 81.40 83.96
EfficientNet-B1 83.69 84.03 83.61 85.09
EfficientNet-B2 82.06 82.67 82.07 83.51
DenseNet-121 83.12 83.00 82.25 84.24
DenseNet-169 84.07 83.74 83.83 86.06
Ensemble approach 85.44 85.47 85.40 87.13
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In summary, our proposed common custom layers are 
appropriate for fine-tuning all 13 pre-trained DL models 
to achieve optimal accuracy on this dataset. This is shown 
not only from the best-fit train/test graph but also from the 
overall performance (from 80.18% to 84.07% for Precision, 
from 79.17% to 83.74% for Recall, from 70.01% to 83.83% 
for F1-score and from 82.22% to 86.06% for Accuracy). 
Similarly, the majority voting approach has also been an 
interesting option in ensemble learning to exploit the highest 
decision for the optimal end classification result.

Candidate model selection for ensemble

We select only those DL models that provide optimal per-
formance in our study. For this, we select the top-5 models 
and their combinations for decision fusion. The detailed 
results are presented in Table 3. From Table 3, we observe 
that the combination of two models (Xception as M1 and 
DenseNet-169 as M2) provides us with the best performance 
compared to other combinations.

Comparative study with state‑of‑the‑art methods

Although there are no such well-established published 
state-of-the-art methods for the Monkeypox virus detec-
tion, we compare our proposed model with some of the 
closely related methods that have been used for COVID-19 
detection. For this, we utilise four popular well-established 
DL-based methods: deep bag of words (BoDVW) [35], 
multi-scale deep bag of deep visual words (MBoDVW) 
[5], attention-based VGG (AVGG) [33] and convolutional 
neural network with long short term memory (CNN-
LSTM) [34]. We try our best to select the optimal hyper-
parameters from the corresponding papers. The results 
are presented in Table 4, which show that the proposed 
method is superior to the state-of-the-art methods in terms 
of well-established evaluation measures. From this result, 
we believe our method is appropriate to the Monkeypox 
virus detection problem, whereas the contender meth-
ods are based on chest X-ray images and appropriate to 
COVID-19 detection problems.

Explainability

We show the explainability of the DL model using the 
Gradient-weighted Class Activation Mapping (Grad-CAM) 
[21] and Local Interpretable Model-Agnostic Explanations 
(LIME) [22] visualisation techniques. For this, we use the 
Xception model, which is the best-performing model, on the 
Monkeypox dataset. The outputs are presented in Fig. 5. The 
Grad-CAM measures the gradient of the output feature map 
of a selected layer of the network, whereas the LIME is a 
local model-independent approach to generate the interpreta-
tion for a specific case, which transforms the input data into 
a series of interpretable local representations.

From Fig. 5, we notice that the outputs obtained from the 
Xception model is able to detect the discriminating regions 
clearly for the classification. For instance, the Grad-CAM 
is able to show the virus-infected regions in yellow or dark 

Table 3   Performance comparison of DL different models combina-
tion using Precision, Recall, F1-score and Accuracy

Bold values denotes the highest performance
M1 Xception, M2 DenseNet-169, M3  IncepResNetv2, M4  Efficient-
Net-B1, M5 ResNet-101

Model ensemble P (%) R (%) F (%) A (%)

{M1, M2, M3, M4, M5} 84.03 83.26 83.50 85.83
{M1, M2, M3, M4} 84.63 84.03 84.24 86.23
{M1, M2, M3} 84.55 84.00 84.20 86.17
{M1, M2} 85.44 85.47 85.40 87.13

Fig. 4   Confusion matrix of results obtained for five folds from (a) to 
(e) from the best performing Xception DL model in our study
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yellow color and the LIME is able to encircle the potentially 
infected regions with its superpixel on the map. Note that for 
the Grad-CAM, we set ‘ block14_sepconv2_act ’ layer from 
the Xception DL model. And, for the LIME, we set the num-
ber of features as 5, the number of samples as 1000, and top 
labels as 4 for the Xception DL model.

Class‑wise study

We study the class-wise performance of the ensemble 
approach using the confusion matrix, which is shown in 
Fig. 4. From Fig. 4, different confusion matrices for all 
five-folds show that our ensemble approach is able to dis-
criminate the images clearly into four different classes. 
More specifically, our method is able to highly discrimi-
nate the chickenpox and normal images compared to mea-
sles and monkeypox virus. Furthermore, all instances of 
chickenpox (66) and normal images (111) in the test set 
are recognised correctly by the proposed model, whereas 
it is still not perfect to discriminate measles and monkey-
pox viruses in fold 1 (a). This might be due to the similar 
features identified by the backbone CNN for two classes: 
measles and Monkeypox viruses as seen in Grad-CAM 
visualization (Fig. 5).

Table 4   Performance comparison of the proposed with the state-of-
the-art methods using Precision, Recall, F1-score and Accuracy

Bold values denotes the highest performance

Methods P (%) R (%) F (%) A (%)

CNN-LSTM, 2020 [34] 80.40 80.60 79.60 79.60
BoDVW, 2021 [35] 63.20 64.20 61.00 73.80
AVGG, 2021 [33] 81.60 81.60 80.60 81.80
MBoDVW, 2021 [5] 64.60 68.40 65.40 76.80
Ensemble approach 85.44 85.47 85.40 87.13

Fig. 5   Visualisation based on 
Grad-CAM and LIME for the 
Xception model
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Conclusion and future works

In this paper, we compared 13 different pre-trained DL models 
with the help of transfer learning on the monkeypox data-
set. With the help of such comparison using well-established 
evaluation measures, we identified the best-performing DL 
models to ensemble them for overall performance improve-
ment. The evaluation result shows that the ensemble approach 
provides the highest performance (Precision: 85.44%; Recall: 
85.47%; F1-score: 85.40%; and Accuracy: 87.13%) during 
the detection of the Monkeypox virus. Also, the Xception 
DL model provides the second-best performance (Precision: 
85.01%; Recall: 85.14%; F1-score: 85.02%; and Accuracy: 
86.51%)).

There are two major limitations of our work. First, the 
dataset size is comparatively smaller, so addition of more 
data could improve the performance further. Second, our AI 
approach is based on pre-trained DL models, which could 
be a problem if we would like to deploy them in a memory-
constrained setting. So, the design of novel lightweight DL 
models could be an interesting work to let it work on a lim-
ited resource.
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