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Abstract: Carbon nanotube-based conductive polymer composites (CPC) showed great potentials for
self-sensing and in situ structural health monitoring systems. Prediction of the long-term performance
for such materials would be a meaningful topic for engineering design. In this work, the changing
behavior of the long-term resistance of a multi-walled carbon nanotubes/epoxy resin composite
gasket was studied under different temperature and loading conditions. Glass transition strongly
influenced the resistance behavior of the composite during the thermal creep process. Similar to
classical Kelvin–Voigt creep model, a model considering both the destruction and recovery processes
of the conductive network inside the CPC was established. The long-term resistance variation can be
predicted based on the model, and the results provided here may serve as a useful guide for further
design of smart engineering structural health monitoring systems.
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1. Introduction

In recent years, tremendous progress has been made in the demand for intelligent manufacturing,
which brings new opportunities and challenges to the field of signal detection and fault diagnosis.
However, applications of many diagnostic techniques are still very complicated, because it is necessary to
disassemble and divide the tested parts or adjust the design of the device in order to install additional
data-collecting sensors [1,2]. To solve this issue, a smart materials-based in situ sensing and diagnostic
method may provide a convenient solution. In mechanical systems, numerous polymer-based parts such
as rubber gaskets, hydraulic seals, and aircraft structural composites may simultaneously possess the
load-bearing ability and in situ sensing functionality through the modification of carbon nanotubes [3,4].

Since the carbon nanotube was first discovered by Iijima et al. [5], great attention has been drawn
due to its excellent mechanical and physical performances. It has been reported that a small volume
fraction of carbon nanotubes dispersed in the polymer could form conductive networks, which would
enable the composite to have sensing ability to certain thermal and mechanical stimuli [6–8]. Based on
this characteristic, strain sensor [9] and related damage monitoring systems [10–12] have always been
a research interest. Fiedler et al. [13] proposed that changes in the conductivity of the composite could
be used for damage monitoring. Alexopoulos et al. [14] studied in detail the variation behavior of
electrical resistance for carbon nanotube-modified polymer composites in cyclic loading–unloading
experiments. Dehghani et al. [15] explored the temperature-resistance characteristics of single-walled
and multi-walled carbon nanotube polymer composites. Yin et al. [16] have studied the linear and
antisymmetric characteristics of the piezoresistivity for multi-walled carbon nanotubes/epoxy composite.
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Manufacturing technology such as polydimethylsiloxane (PDMS) molding transfer was reported
to fabricate a carbon nanotubes-based polymer composite film [17]. The work by Wang et al. [18]
showed that the force sensitivity of the carbon nanotube-based conductive polymer composite could
be tuned through alignment of the carbon nanotube and crosslinking degree of polymer chains
in the matrix. The capacitive flexible strain sensor fabricated by a single-walled carbon nanotube
composite film was reported for human motion detection with high reliability and transparency [19].
Besides, a flexible multi-sensor array was achieved for distributed pressure sensing based on carbon
nanotubes/polydimethylsiloxane [20].

It can be concluded that because of the unique strain-resistance and temperature-resistance
characteristics, the carbon nanotube-modified polymer composite shows fascinating potential in
sensing and engineering structure health monitoring. However, limited research has focused on the
long-term sensing behavior for carbon nanotube-based conductive composite under both temperature
and load-bearing conditions. It has been reported that the carbon nanotube-based polymer composites
have a clear resistance creep behavior [21,22], which would directly affect the detection accuracy if no
compensation model was applied to the monitoring system. Thus, in the present work, the long-term
resistance behavior under different temperature and loading conditions was studied for the carbon
nanotube-based polymer composite. Similar to the mechanical creep model of the polymer, a model
for the prediction of the variation of its electrical resistance was also established, which may provide
a helpful guide for furthering the engineering design of an in-situ sensing or damage monitoring system.

2. Experimental

2.1. Composite Preparation

The multi-walled carbon nanotubes (–COOH functionalized MWNTs) between 10–30 µm in length
and 10–20 nm in diameter were produced by TIME NANO Co., Ltd (Chengdu, China). The epoxy
resin (formulated bisphenol A/F epoxy) and the hardener (formulated liquid aromatic amine) were
provided by Tianjin Fusai Science & Technology Co., Ltd (Tianjin, China).

Considering the conductive property and the material-forming ability of the MWNTs/epoxy
composite, the content of MWNTs was selected as 5 wt. %. The composite was prepared as follows:
initially, MWNTs were weighted and mixed into acetone with a dispersant (TX-100, Canbo Chemical
Co., Ltd, Guangzhou, China) by sonication for 30 min at 600 W. Then, epoxy resin was added and
ultrasound dispersed for 30 min. The solution was placed into a heating system (Nobody Material
and Technology Co., Ltd, Zhengzhou, China) at 90 ◦C under vacuum for 2 h in order to remove the
acetone solvent. When the mixture cooled to room temperature, hardener with a weight ratio of 100:35
(resin/hardener) and defoamer (X3-6823, Xushi Chemical Technology Co., Ltd, Changzhou, China)
with a weight ratio of 0.3:100 (defoamer/resin) were added in order to prevent air bubbles. Followed by
mechanically stirring for 5 min, the solution was placed under vacuum for 30 min and then poured
into a gasket mold. After solidification at 80 ◦C for 2 h, the generated gasket sample with a thickness of
2 mm was annealed at 200 ◦C for 48 h in a vacuum drying oven.

2.2. Scanning Electron Microscope Observation

Field emission scanning electron microscope (FESEM; LEO, Zeiss Co. Ltd., Heidenheim, Germany)
was used to observe the cross-section of the MWNTs/epoxy resin composite. The sample was first
notched and immersed into nitrogen for over 15 min. Then, it was forced into fracture. Before imaging,
the surface for observation was precoated with platinum to enhance conductivity. a high voltage
of 5 kV was applied to accelerate the electron beam, and working distance was set around 5 mm
with a magnification of 10,000×. Secondary electron emission mode was selected in the observation.
The chamber pressure was stabilized around 4 × 10−4 Pa after a certain pressure cyclic process.
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2.3. Electrical Resistance Measurement during Creep

A material testing machine coupled with a temperature-controlled cabinet (Figure 1) was used
for measuring the variation of the electrical resistance of the composite during the creep process.
The surface of the compressive heads contacting with test sample was coated with an insulative ceramic
film to ensure the accuracy of measurement for the samples’ body electrical resistance. Two copper
plates contacting the prepared gasket sample were used as electrodes. The temperature of the
testing environment was calibrated using a commercial thermocouple (Pt100, Hangzhou SinoMeasure
Automation technology Co. Ltd, Hangzhou, China). Four levels of the holding load (1 MPa, 2 MPa,
3 MPa, and 4 MPa) were applied on the gasket sample for 3 h to generate the creep deformation.
Under each load, six temperatures at 25 ◦C, 35 ◦C, 50 ◦C, 100 ◦C, 150 ◦C, and 200 ◦C were tested,
respectively. The electrical resistance data of the composite was collected by a data acquisition card
(PXIe-6366, National Instrument Co., Ltd., Austin, TX, USA) with a sampling rate of 1 kHz.
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Figure 1. Photo of the mechanical creep test machine equipped with a temperature control cabinet and
resistivity measurement. Insulation coating treatment was performed on the contact surfaces of the
compressive indenters.

2.4. Dynamic Thermomechanical Analysis

Dynamic thermomechanical analysis (Q800, TA Instruments Co. Ltd, Newcastle, DE, USA)
was used to characterize the glass transition temperature and linear thermal expansivity of the
MWNTs/epoxy resin composite. Temperature ranged from 30 to 150 ◦C with a heating rate of 3 ◦C/min.
Tensile mode was performed at a frequency rate of 1 Hz.

3. Results and Discussion

The cross-section of the MWNTs/epoxy resin composite was shown in Figure 2, in which the
MWNTs were clearly observed and well dispersed in the epoxy resin matrix at this scale. The preparation
process (cryofracturing) for the cross-section of the sample leads to a flat surface without obvious
plastic deformation slip and elongation dimple, which indicated the brittle fracture caused by the
sample preparation. The voids inside the sample may represent very few unexpunged air bubbles.
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Figure 2. Field emission scanning electron microscope (FESEM) image for the cross-section of the
multi-walled nanotubes (MWNT)/epoxy resin composite.

As plotted in Figure 3, during the creep process with stable holding force (1000 N), the ratio of the
electrical resistance variation (∆R/R) of the composite gasket was strongly influenced by temperature.
With the increment of the temperature (below 100 ◦C), the ratio of the electrical resistance variation
in the stable stage of the creep process increased to a magnitude of around −0.4. As the temperature
increased to 100 ◦C, the resistance changing ratio (∆R/R) decreased dramatically, to a value of −0.14,
which was slightly larger compared with the response of the resistance variation at room temperature.
When the temperature continued to increase, the ratio of the resistance variation increased again.
Moreover, the magnitude of the ratio (∆R/R) reached –0.6. Due to the exponential feature of the
creep deformation, the conductive network in the composite gasket was changed, which lead to
a similar decreasing trend with time for measuring the electrical resistance-changing ratio at each
temperature step. At high temperature (i.e., 200 ◦C), the fluctuating electrical resistance changing ratio
may indicate the damage to the sample caused by the high-temperature creep deformation. Besides,
the electrical resistance influenced by temperature for various conductive carbon nanotube–polymer
composites [23,24] (namely as positive temperature coefficient (PTC) or negative temperature coefficient
(NTC) phenomenon) may be explained by the synergistic effect of the conductive network and electron
tunneling effect at different temperatures [25]. During the thermal creep process, the high temperature
would increase the slippage of the polymer chain and decrease the electron tunneling potential
barrier [26]. In the meantime, the holding load would further enhance the reformation of the
conductive network of interconnected agglomerates [27]. Thus, the temperature increment in the creep
process could increase the effect of the electrical resistance change.

Interestingly, as the temperature raised to 100 ◦C, the resistance changing ratio in the thermal creep
process decreased dramatically to a value of approximately 0.15, which was quite similar compared
with the value at room temperature. The opposite trend may be caused by a structural change of the
conductive network due to thermal creep deformation. As shown in Figure 4, the glass transition
behavior of the composite was characterized by dynamical mechanical analysis. The peak of the loss
factor (tan(δ) = Eloss

Estorage
) indicated that the glass transition temperature of the composite was 77 ◦C.

At the glass transition, the mobility of polymer molecules increased greatly, which would further lead
to a large change in the elastic storage modulus [28]. On passing from the glassy to the rubbery state,
the storage modulus decreased by three decades from ~1800 MPa to ~5 MPa. The lower viscosity of
the polymer matrix at 100 ◦C may accelerate nanotube secondary agglomeration [29], which resulted
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in a denser packing of nanotubes inside the agglomerates and correspondingly a low contact resistance
and efficient electron transport (i.e., tunneling of electrons) [30]. However, the applied holding
compress stress in creep may destroy the conductive filler network. Thus, the different variation trend
of the resistance changing ratio (∆R/R) at 100 ◦C may be caused by the synergistic effect of higher
temperature-induced secondary agglomeration and the destruction of the conductive network caused
by creep deformation.
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Figure 4. Dynamic thermal mechanical analysis for MWNTs/epoxy resin composite.

As shown in Figure 5, during the creep process, the electrical resistance changing ratio was
influenced by the applied holding compressive force at 100 ◦C. As the compressive force increased
from 1000 N to 3000 N, the resistance transformed though a peak, from increasing (force: 1000 N)
with time to decreasing with time (force: 2000 N and 3000 N). The variation of the electrical resistance
of the composite was affected by the conductive network formed by carbon nanotube agglomerates,
which could be influenced by shear deformation in the creep process [27,31]. The dynamic equilibrium
process between the destruction and reformation of the conductive agglomerates may determine the
electrical resistance for the composite. Above the glass transition temperature, the enhanced mobility
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of the polymer chains may intensify the reformation of the agglomerates, which may further lead
to the increment of the conductivity [32]. On the contrary, the externally applied force may destroy
the carbon nanotube agglomerates and the conductive network. More specifically, a larger external
force may lead to the destruction of the agglomerates as the dominating factor, so that the resistivity
of the composite would generally increase with time. The syngenetic effect of the destruction and
reformation for the conductive agglomerates may play a decisive role in the creep behavior of the
resistivity at high temperature.
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For polymer-based composites, creep deformation can be described by the Kevin–Voigt model [33].
Considering the dynamic equilibrium process between the destruction and reformation of the
conductive agglomerates, a similar equation was proposed to model the variation behavior of
the composite resistivity in the creep process at a given temperature, which can be written as:

∆R
R

= R0

[
1−

(
1 +

t
η1

)−τ1
]
−R1

[
1−

(
1 +

t
η2

)−τ2
]

(1)

where t is the time, and R0, R1, η0, and η1 are the fitting parameters. The terms on the right-hand side
of Equation (1) represent the destructive and recovery processes of the conductive network in the
composite at high temperature, respectively. As an example, the resistivity of the composite under
2000 N at 100 ◦C can be modeled by Equation (1), as shown in Figure 6A. Furthermore, based on the
proposed model, the destruction and reformation process could be extracted, respectively, which were
plot in Figure 6B. The recovery model indicated that the resistivity decreased gradually with time
because of the reformation of the secondary conductive agglomerates at high temperature. In contrast,
the degree of the destruction for the conductive network increased along with the applied pressure and
eventually reached stability. The competition mechanism between the destruction and the reformation
of the conductive paths inside the composite contributed to the global behavior of the composite
resistivity. Similar results can also be found in the work of Ingo et al. [34]. What’s more, the residual
error can be obtained through the raw experimental data subtracted by the predicted model. The peaks
appeared in the residual error curve may indicate that structural defaults were generated in the
composite during the creep process.
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Figure 6. Resistivity variation with time under the compressive force of 2000 N at 100 ◦C. (A) The
proposed model matches well with the experimental data. (B) The synergistic effect of the destruction
and reformation of the conductive network contributed the global resistivity for the composite. Both
processes can be extracted based on the proposed model, and little residual error can be found.

Long-term stabilities of the performances of the polymer-based composite form the major limitation
for engineering applications. Based on the proposed model, resistance in long-time service condition
could be predicted. All the parameters in the model were obtained by the MATLAB curve fitting
toolbox with the experimental data, which were carried out under specific force and temperature
conditions during the short time (3 h) resistance creep test process. Here, a life span of 10 years was
selected for the gaskets made of multi-walled carbon nanotubes/epoxy composite. The predicted
variation ratio of the resistivity was plotted in Figure 7. The changing ratio of the resistance was directly
related to the loading conditions and the external temperatures in the service life. Depending on the
predicted values, the long-term behavior of the resistance for the composite may be divided into three
zones, as marked in Figure 7B. When the temperature was less than 80 ◦C, the long-term resistance
changing ratio was within the range of −0.2 to −0.5, which may be used as the safe area for engineering
design. The resistance was generally decreased due to the secondary reformation of the conductive
agglomerates. The second area in the middle of the chart may be named the structural transition zone.
When the external temperature neared the glass transition temperature of the composite, the long-term
resistance increased compared with the initial state. This increment of the long-term resistance may be
caused by the strong structural variation of the conductive path, which would be more intense under
the simultaneous action of load and high temperature. The third area on the right part of the chart
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was denoted as the high-temperature softening zone. The long-term predicted value reached nearly
−0.9, which indicated that the composite gasket was almost in failure mode after a 10-year life span
service. The value was reasonable when the composite was submitted in extremely serious loading
conditions for a long period. The chart provided here would be helpful for engineering design with
the MCNTs/epoxy resin conductive polymer composite, particularly in the applications, such as the
stress/strain sensors and other in situ structural health monitoring systems.
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4. Conclusions

The electrical resistance of the studied multi-walled carbon nanotubes/epoxy resin composite
was changing all the time during the thermal creep process, which may be explained by the dynamic
equilibrium between the destruction and recovery processes of the conductive network inside the
composite. a model was established and could be used to well describe the resistance variations
during the thermal creep process. Based on the proposed model, the long-term resistance changing
ratio under different external temperatures and loading conditions (different amounts of applied
compressive forces) can be predicted, and it may serve as a helpful design guide for further sensing
and self-detection applications with multi-walled carbon nanotubes/epoxy resin composite.
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