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Malaria remains a vector-borne infectious disease that is still a major public health
concern worldwide, especially in tropical regions. Malaria is caused by a protozoan
parasite of the genus Plasmodium and transmitted through the bite of infected female
Anopheles mosquitoes. The control interventions targeting mosquito vectors have
achieved significant success during the last two decades and rely mainly on the use
of chemical insecticides through the insecticide-treated nets (ITNs) and indoor residual
spraying (IRS). Unfortunately, resistance to conventional insecticides currently being
used in public health is spreading in the natural mosquito populations, hampering
the long-term success of the current vector control strategies. Thus, to achieve the
goal of malaria elimination, it appears necessary to improve vector control approaches
through the development of novel environment-friendly tools. Mosquito microbiota has
by now given rise to the expansion of innovative control tools, such as the use of
endosymbionts to target insect vectors, known as “symbiotic control.” In this review, we
will present the viral, fungal and bacterial diversity of Anopheles mosquitoes, including
the bacteriophages. This review discusses the likely interactions between the vector
microbiota and its fitness and resistance to insecticides.

Keywords: Anopheles, mosquito, microbiota, malaria, insecticide resistance

INTRODUCTION

Malaria remains the most challenging tropical disease caused by parasites of the genus Plasmodium,
transmitted through the bite of infected female Anopheles mosquitoes [Müller, 2011; World Health
Organization [WHO], 2020]. This disease prompts an intense perilous illness and represents a
prominent well-being danger in the most affected regions. In sub-Saharan Africa, where the highest
number of malaria cases and mortality rates are recorded, this illness leads to a life-threatening
condition, especially among children under 5 years old and pregnant women [World Health
Organization [WHO], 2020].

Four components are involved in the human malaria transmission system: (i) the protozoan
parasite Plasmodium, (ii) the human host, (iii) the mosquito vector and (iv) a given
environment (Castro, 2017). Among the strategies developed to control this disease, targeting
the vector has significantly reduced malaria incidence across Africa [Bhatt et al., 2015;
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World Health Organization [WHO], 2020]. The current vector
control programs rely mainly on the use of chemical insecticides
through the insecticide-treated nets (ITNs) with pyrethroids and
the indoor residual spraying (IRS) with organophosphates and
carbamates. The purpose of these conventional tools is to reduce
vector density below the threshold required for transmission
or to prevent human-vector contact (Karunamoorthi, 2011).
Mosquitoes belonging to the genus Anopheles are among the
most important malaria vectors in endemic regions (Hay
et al., 2010). In African countries, the dominant Anopheles
vectors of human malaria include Anopheles gambiae, Anopheles
arabiensis, Anopheles coluzzii and Anopheles funestus (Battle
et al., 2012; Sinka et al., 2012; Coetzee et al., 2013) as
well as the recently confirmed urban environment species
Anopheles stephensi (Sinka et al., 2020). Unfortunately, the
resistance against conventional insecticides currently used in
public health is spreading in the natural mosquito populations.
Indeed, there is an increasing number of evidence of insecticide
resistance in malaria-transmitting vectors, and this phenomenon
is threatening the success of malaria vector control programs
(Mekuriaw et al., 2019).

Furthermore, African countries are taking a heavy toll on the
Covid-19 pandemic. Indeed, this pandemic emerging from China
by the end of December 2019 accounts for 6.3 million cases and
152,927 deaths in the entire African continent by August 12, 2021
[Salyer et al., 2021; World Health Organization [WHO], 2021].
Malaria and Covid-19 can have common clinical manifestations,
including fever, tiredness and acute onset headache, leading to
a misdiagnosis of malaria for Covid-19 and vice versa (Hussein
et al., 2020). In addition, the Covid-19 is hampering the mass
distribution of ITNs (Hussein et al., 2020). These situations might
hinder the long-term global technical strategy of the World
Health Organization (WHO) to reduce malaria case incidence
from 222 (in 2021) to 23 per 1,000 populations by 2030, toward
malaria elimination [World Health Organization [WHO], 2020].
To reach malaria elimination, it appears necessary to design and
implement innovative and environment-friendly approaches to
control malaria vectors (Gabrieli et al., 2021).

In such a situation, the mosquito microbiota has by now given
rise to the expansion of innovative control tools, such as the use of
endosymbionts known as “symbiotic control” (Ricci et al., 2012;
Gabrieli et al., 2021). However, before implementing this control
measure in natural Anopheles mosquito populations, it will be
helpful to understand the bacterial diversity in these vectors and
their interactions with their host. The present review is designed
to provide an overview of the Anopheles microbiota and discuss
the potential implications for the vector fitness, immune response
and resistance to insecticides.

VIRUSES OF ANOPHELES MOSQUITOES
MICROBIOTA

Mosquitoes often harbor a diverse and dynamic viral
composition. Since mosquito-pathogenic microbes can be
used for mosquito control (Huang et al., 2020), a better
understanding of the natural and acquired viral communities

infecting directly Anopheles mosquitoes cells, is expected to
provide a background for developing novel biological tools for
malaria control in endemic areas.

The Virome Diversity
Studies have analyzed the virome of different Anopheles
mosquitoes and have shown variations in viruses diversity
and abundance between the mosquito species (Nanfack
Minkeu and Vernick, 2018). Previous studies reported that
Anopheles gambiae and Anopheles funestus mosquitoes
ensure the biological transmission of the o’nyong-nyong
arbovirus (ONNV) (Fauver et al., 2016; Nanfack Minkeu
and Vernick, 2018; Belda et al., 2019). ONNV is the only
known human pathogenic alphavirus with Anopheles vectors
and is responsible for an epidemic febrile polyarthralgia. The
symptoms are headaches, pruritic rash, lymphadenopathy, and
conjunctivitis (Barrett and Weaver, 2012). Another virus, the
densonucleosis virus (AgDNV) belonging to the Parvoviridae
family (subfamily Densovirinae) was found to infect and
disseminate in An. gambiae mosquitoes (Ren et al., 2008).
The newly characterized AgDNV was demonstrated to be
favorably transmissible to An. gambiae larvae; to spread to
adult tissues and vertically transmitted to the offspring (Ren
et al., 2008). Therefore, AgDNV represents a valuable tool for
viral paratransgenesis (the genetic manipulation of mosquito
symbiotic microorganisms) for malaria vector control. However,
within Anopheles hosts, virus infection and replication could
have significant side effects on several physiological traits
of their bearers.

Overall, more than fifty different virus species belonging
to at least thirteen main genera (Almendravirus, Alphavirus,
Cripavirus, Cypovirus, Densovirus, Flavivirus, Iridovirus,
Mononegavirus, Orbivirus, Orthobunyavirus, Phlebovirus,
Poxvirus, and Totivirus) were found infecting diverse Anopheles
mosquito species in the tropical countries of the world (virus
species and Anopheles species infected were reviewed in
Nanfack Minkeu and Vernick, 2018). Different other viruses
are capable of infection, dissemination and transmission in
Anopheles mosquitoes (see details in Table 1). Recently two
novel viruses corresponding to emergent clades of insect-
specific negative-strand single RNA viruses, Orthophasmavirus
(Bunyavirales) and Anphevirus (Mononegavirales) were found
in Anopheles mosquitoes. Orthophasmavirus was discovered
in An. triannulatus (Scarpassa et al., 2019) and in Anopheles
lutzi (da Silva Neves et al., 2021), while Anphevirus was found
in An. marajoara, and An. darlingi (Scarpassa et al., 2019). In
addition, another metagenomic sequencing work revealed ten
other viruses infecting An. sinensis namely Culex Bunyavirus
1 (Phenuiviridae), Wutai mosquito phasivirus (Phenuiviridae),
Wuhan Mosquito Virus 6 (Orthomyxoviridae), Hubei virga-like
virus 1 (Tymoviridae), Yongsan picorna-like virus 4 (Iflaviridae),
Wuhan Mosquito Virus 9 (Rhabdoviridae), Culex Y virus
(Birnaviridae), Hubei virga-like virus 21 (Tymoviridae) Hubei
picorna-like virus 58 (Tymoviridae), and Culex mononega-like
virus 1 (Virgaviridae) (He et al., 2021). Furthermore, the porcine
parvovirus (PPV) belonging to the genus Parvovirus (sub-
family Parvovirinae, family Parvoviridae), was also identified in
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TABLE 1 | Viruses capable of infection, dissemination and transmission in Anopheles mosquitoes.

Species name Genus Subfamily Family Major host Anopheles carrier Mosquito infectivity References

O’nyong nyong
virus

Alphavirus Togavirinae Togaviridae Insect Anopheles rufipes,
Anopheles funestus,
Anopheles gambiae
and Anopheles
coustani

Infection, dissimilation and
transmission to subsequent
generations

Belda et al., 2019

Densonucleosis
virus (AgDNV)

Brevidensovirus Densovirinae Parvoviridae Insect Anopheles gambiae Infection, dissimilation and
transmission to subsequent
generations

Ren et al., 2008

Culex theileri
flavivirus (CTFV)

Flavivirus Flavivirinae Flaviviridae Insect Anopheles vagus Infection and dissimilation Sadeghi et al., 2017

Torque tenosus
virus1 (TTSuV1)

Iotatorquevirus Anellovirinae Anelloviridae Vertebrate Anopheles sinensis Infection and dissimilation Shi et al., 2015

Yunnan orbivirus
(YOUV)

Orbivirus Sedoreovirinae Reoviridae Vertebrate Anopheles vagus Infection and dissimilation Sadeghi et al., 2017

Batai virus (BATV) Orthobunyavirus - Bunyaviridae Vertebrate Anopheles
maculipennis

Infection and dissimilation Jöst et al., 2011; Huhtamo
et al., 2013

Anopheles mosquitoes including An. sinensis (Shi et al., 2015; Xia
et al., 2018; Hameed et al., 2020).

These data show a high diversity of viral communities carried
by Anopheles mosquitoes, which may have the potential to infect
a wide range of hosts. Further studies are required to characterize
these viruses species in terms of prevalence, pathogenicity, and
transmission to the vertebrate host during blood-feeding.

Functions of the Virome
To date, to our knowledge, no study has provided the specific
function of viruses in Anopheles vectors. Since Anopheles
mosquitoes are the primary vectors of malaria parasites in
endemic countries, coinfection of viruses and Plasmodium could
occur in the same mosquito vector. It is then possible that a
virus infection could suppress other viruses’ replication or block
the Plasmodium transmission. Thus, a better understanding
of the virus-mosquito interactions requires detailed and
specific investigations.

FUNGI OF ANOPHELES MOSQUITOES
MICROBIOTA

Among the wide range of pathogens capable of infecting
Anopheles mosquitoes, there are poor reports on fungi species
in the natural core microbiota of mosquito populations.
Unlike bacteria, viruses, and Plasmodium parasites that need
to be ingested by the mosquitoes before being transmitted
to the vertebrate hosts, fungi infect mosquito hosts through
the cuticle and afterward proliferate in the hemolymph
(Mannino et al., 2019).

Diversity of the Fungal Community
The interactions between entomopathogenic or non-
entomopathogenic fungi and mosquitoes remain not well
understood. Previous studies have found an Ascomycete
fungus, Penicillium chrysogenum, a non-entomopathogenic
species in the midgut of field-caught An. gambiae mosquitoes

(Angleró-Rodríguez et al., 2016). In An. gambiae maintained
in semi-field conditions, several other taxa were found at
different developmental stages (larvae, pupae and adult)
and in different tissues (ovary, midgut, body carcass). These
fungi isolates included Hyphopichia burtonii, Hyphopichia
sp., Penicillium georgiense, Periconia sp. Leptosphaerulina
chartarum, Cladosporium cladosporioid, Hasegawazyma lactos,
Epicoccum sp., Alternaria alternate, and Lichtheimia hyalospora
(Nattoh et al., 2021). Some yeast isolates, including Meyerozyma
guilliermondii, Rhodotorula glutinis, were also identified in the
guts of laboratory strains of An. gambiae with M. guilliermondii
also found in An. stephensi gut (Bozic et al., 2017). Most
importantly, the opportunistic pathogen Candida parapsilosis,
was also found in the gut of both An. gambiae and An. stephensi
strains. In addition, C. parapsilosis was found at all developmental
stages and in adult male and female guts and reproductive tissues
(Bozic et al., 2017). Another yeast species Wickerhamomyces
anomalus, was found to colonize immature stages (larvae and
pupae) and adults of An. stephensi at different ages (Ricci
et al., 2011). Like the yeasts reported by Bozic et al. (2017),
W. anomalus was also shown to be localized in the midgut of
both male and female An. stephensi reproductive systems (Ricci
et al., 2011). However, fungi of the genus Aspergillus have been
observed in the midgut of field-collected An. stephensi larvae but
not in the adult mosquitoes (Tajedin et al., 2009), suggesting that
Aspergillus might play a specific role at the larval stage in this
mosquito species.

Some fungi species infecting mosquito vectors and their
transmission to the subsequent developmental stages suggest a
transstadial transmission, which could shape adult mosquito’s
physiology and likely female insects’ susceptibility to the malaria
parasite infection. Therefore, further works are needed to
thoroughly understand the mosquito-mycobiota interactions.

Functions of the Fungal Community
Anopheles mosquitoes are colonized by a huge range of fungal
microorganisms that may affect mosquito biology and vectorial
capacity. According to the mosquito-mycobiota relationships,
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most fungi species are considered non-pathogenic (in commensal
or symbiotic relationships) (Steyn et al., 2016) while some are
pathogenic (developing parasitic interaction with mosquitoes)
(Tawidian et al., 2019). Broad knowledge of the functions of fungi
with the fitness of their mosquito host, as well as interactions
with transmitted pathogens (especially Plasmodium parasites),
is henceforth an important factor in the development and
implementation of novel malaria vector control tools.

Although there are fewer reports on fungal species isolated
from the natural microbiome community of mosquito
populations, entomopathogenic fungi capable of experimentally
infecting Anopheles vectors have been extensively studied
(Bukhari et al., 2010; Howard et al., 2011; Valero-Jiménez
et al., 2014). Indeed, it has been demonstrated that after
topical infection, the entomopathogenic fungus Beauveria
bassiana can interact with the gut bacteria in An. stephensi
to accelerate the death of the mosquitoes (Wei et al., 2017).
Both laboratory and wild-caught An. arabiensis were found
susceptible to Beauveria bassiana infection regardless of their
insecticide susceptibility (Kikankie et al., 2010). Using fungal
suspensors, the authors found that exposure to B. bassiana
spores reduced significantly the longevity of all mosquito
colonies (Kikankie et al., 2010). Wild An. arabiensis, An. gambiae
and An. funestus treated with mineral oil formulations of
B. bassiana also resulted in a reduced lifespan of mosquitoes
(Mnyone et al., 2012). Significant reduction in An. gambiae
survival was also observed when mosquitoes were exposed to
co-formulations of both M. anisopliae and B. bassiana fungus
(Mnyone et al., 2009). The same trend was reported in An.
gambiae exposed to dried conidia of M. anisopliae (Scholte
et al., 2003) and in both An. gambiae and An. funestus exposed
to low doses of conidia by direct contact (Farenhorst et al.,
2008; Rhodes et al., 2018). M. anisopliae were able to infect
wild An. gambiae s.l. and reduce mosquito longevity upon
contact on M. anisopliae-impregnated black cotton sheets
(Scholte et al., 2005). In laboratory conditions, it was shown
that following mosquitoes infection, these fungi species can
autodisseminate between the vectors through mating (Scholte
et al., 2004). In addition, it was shown that age and blood-
feeding status did not affect mosquito susceptibility to fungal
infection (Mnyone et al., 2011). These findings are interesting
as they could enhance the propagation of the fungal infection in
mosquito populations when the biological malaria vector control
based on these pathogens is implemented. However, further
investigations are required to evaluate the autodissemination
potential of the fungal community in the field populations of
Anopheles vectors. The presence and the dissemination of some
fungi into the reproductive organs of both male and female
mosquitoes may suggest their potential involvement in mosquito
reproduction and their likely vertical transmission (Ricci et al.,
2011). Other mosquito life-history traits such as blood-feeding,
flight ability, fecundity (Scholte et al., 2006; Blanford et al., 2011;
Ondiaka et al., 2015); and host-seeking behavior (George et al.,
2011) were also reported to be negatively affected following
B. bassiana and M. anisopliae exposure. All these findings
highlight the potential of fungi as biological control agents for
malaria vector control.

Other fungi have been shown to contribute to the pathogen’s
development in mosquitoes. However, it was reported that the
presence of Pe. chrysogenum in the An. gambiae midgut does
not affect mosquito survival, and it increases the mosquito
susceptibility to Plasmodium infection by suppressing the host
immune system (Angleró-Rodríguez et al., 2016). Conversely,
Leptosphaerulina sp. was shown to activate the host immune
system to induce melanization (production of melanin deposits)
on the fat body in An. gambiae (Nattoh et al., 2021).
Further knowledge regarding the interactions between host and
pathogens is required to better understand how these fungi affect
longevity and other mosquito life-history traits.

THE BACTERIAL COMMUNITY AND ITS
ASSOCIATED BACTERIOPHAGES IN
ANOPHELES MOSQUITOES

During the aquatic developmental period, bacteria constitute
one of the major sources of nutrition for mosquito larvae
(Walker et al., 1988). Numerous studies have demonstrated that
mosquitoes host huge bacterial communities that vary according
to the mosquito sex, developmental stage, and living environment
(Minard et al., 2013). Endosymbionts have been proposed as
a promising candidate to develop paratransgenesis approaches
(Coutinho-Abreu et al., 2010). This prompts the urgent need to
deeply understand the bacterial spectrum in malaria vectors.

Diversity of the Bacterial Community
As Anopheles mosquitoes are the definitive hosts responsible
for malaria parasite transmission, the composition and diversity
of the bacterial communities they host apart from Plasmodium
species need to be taken into account. Several studies revealed
the hugeness of bacterial diversity in Anopheles vectors
(Table 2). It was reported the large presence of the uncultured
Paenibacillaceae in male An. stephensis and Serratia marcescens
in females and larvae individuals. The authors also reported
that, unlike field-collected mosquitoes, Serratia marcescens and
Cryseobacterium meninqosepticum bacteria were abundant in the
laboratory-reared An. stephensis strain (Rani et al., 2009).

Studies have characterized the bacterial communities in
larvae, pupae and adults of An. gambiae reared in semi-natural
habitats. It was shown that photosynthetic Cyanobacteria were
predominant in the larval and pupal guts while Proteobacteria
and Bacteroidetes were abundant in adults guts with core
taxa of Enterobacteriaceae and Flavobacteriaceae (Wang
et al., 2011). Enterobacter cloacae and Serratia marcescens
were two predominant species among the bacteria isolated
from An. gambiae s.l. (Ezemuoka et al., 2020). Fourteen
bacteria species from eight different genera (Staphylococcus,
Burkholderia, Cedecea, Enterobacter, Klebsiella, Pantoea, Serratia,
and Acinetobacter) were identified in the feces of wild An.
darlingi (Arruda et al., 2021). The most frequent species were
members of the Serratia genus with Serratia liquefaciens and
Serratia marcescens the major representative bacterial species
(Arruda et al., 2021). It was reported in the malaria vectors
An. funestus and An. arabiensis, the presence of a number of
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TABLE 2 | Common bacteria microbiota infecting Anopheles species mosquitoes.

Bacterial family Bacterial species Mosquito species References

- Bacteroidetes An. gambiae Wang et al., 2011
- Proteobacteria An. gambiae; An. funestus Wang et al., 2011; E Silva et al., 2021
Acetobacteraceae Asaia sp.; Asaia bogorensis An. stephensi; An. gambiae Favia et al., 2007; Damiani et al., 2010; Wang

et al., 2021
Aeromonadaceae Aeromonas hydrophila An. arabiensis E Silva et al., 2021
Bacillaceae Bacillus sp. An. darlingi Rocha et al., 2021
Bifidobacteriaceae Bifidobacterium An. lesteri Feng et al., 2021
Brevibacteriaceae Brevibacterium sp. An. darlingi Rocha et al., 2021
Burkholderiaceae Burkholderia An. darlingi Arruda et al., 2021
Comamonadaceae Comamonas sp. An. arabiensis Cirimotich et al., 2011; Bahia et al., 2014
Cyanophyceae Cyanobacteria An. gambiae Wang et al., 2011
Enterobacteriaceae Cedecea sp. An. darlingi Arruda et al., 2021

Enterobacter sp.; Enterobacter cloacae An. darling; An. gambiae; An. funestus; An.
arabiensis

Arruda et al., 2021; Rocha et al., 2021;
Ezemuoka et al., 2020; E Silva et al., 2021

Escherichia coli An. lesteri Feng et al., 2021
Klebsiella sp. An. darlingi Arruda et al., 2021; Rocha et al., 2021
Pantoea sp. An. darlingi; An. arabiensis Arruda et al., 2021; Rocha et al., 2021;

Cirimotich et al., 2011; Bahia et al., 2014
Serratia sp.; Serratia liquefaciens; Serratia
oryzae

An. darling; An. arabiensis; An. stephensis; An.
gambiae; An. arabiensis

Arruda et al., 2021; E Silva et al., 2021; Rocha
et al., 2021; Rani et al., 2009; Ezemuoka et al.,
2020; Cirimotich et al., 2011; Bahia et al., 2014

Shigella sp. An. lesteri Feng et al., 2021
Flavobacteriaceae - An. gambiae Wang et al., 2011
Lachnospiraceae Blautia sp. An. lesteri Feng et al., 2021
Microbacteriaceae Leucobacter sp. An. darlingi Rocha et al., 2021

Microbacterium sp. An. darlingi Rocha et al., 2021
Micrococcaceae Arthrobacter sp. An. darlingi Rocha et al., 2021
Moraxellaceae Acinetobacter sp. An. darling; An. arabiensis Arruda et al., 2021; Rocha et al., 2021;

Cirimotich et al., 2011; Bahia et al., 2014
Paenibacillaceae Paenibacillus An. stephensis Rani et al., 2009
Pseudomonadaceae Pseudomonas putida; Pseudomonas rhodesiae An. dirus; An. arabiensis Feng et al., 2021; Cirimotich et al., 2011; Bahia

et al., 2014
Rickettsiaceae Wolbachia sp. An. maculatus; An. sinensis;

An. funestus
Wong et al., 2020; Baldini et al., 2014; Gomes
et al., 2017;
Ayala et al., 2019; Niang et al., 2018

Ruminococcaceae Faecalibacterium sp. An. lesteri; An. dirus Feng et al., 2021
Staphylococcaceae Staphylococcus sp.; Staphylococcus

epidermidis; Staphylococcus hominis;
Staphylococcus ureilytica

An. darling; An. arabiensis; An. funestus; An.
sinensis

Arruda et al., 2021; E Silva et al., 2021; Gao
et al., 2021

Weeksellaceae Cryseobacterium meninqosepticum An. stephensis Rani et al., 2009

Elizabethkingia anophelis An. arabiensis;
An. darlingi

Cirimotich et al., 2011; Bahia et al., 2014; E
Silva et al., 2021; Rocha et al., 2021

Xanthomonadaceae Stenotrophomonas sp. An. darlingi Rocha et al., 2021

bacteria even weeks after mosquitoes’ preservation on silica
or in RNAlater R© solution (E Silva et al., 2021). The authors
found that the midgut of An. arabiensis was mainly colonized
by Bacteroidetes and Proteobacteria, with the latter being the
predominant one colonizing An. funestus midgut (E Silva et al.,
2021). Elizabethkingia and Serratia were found in both An.
arabiensis males and females, while Serratia, Elizabethkingia and
Aeromonas were the dominant genera in males An. arabiensis
(E Silva et al., 2021). The same authors discovered that at
the species level, Elizabethkingia anophelis, Serratia oryzae
and Aeromonas hydrophila were common bacteria between
female and male An. arabiensis. In the preserved field-collected
An. arabiensis, Staphylococcus was the dominant genus, with
Staphylococcus epidermidis and Staphylococcus hominis present

after 8 and 12 weeks of preservation (E Silva et al., 2021). In
both An. funestus and An. arabiensis, Enterobacter cloacae
was specific to females and S. epidermidis was specific to male
mosquitoes (E Silva et al., 2021). It appears that the bacterial
communities can be well preserved in Anopheles mosquitoes.
However, it was reported that the bacterial composition and
diversity in An. gambiae s.l. rely upon several factors such as
season, geography and environmental variations (Akorli et al.,
2016; Krajacich et al., 2018). In field-caught An. arabiensis
from Zambia, seven bacterial species including Comamonas
sp., Acinetobacter sp., Pseudomonas putida, Pantoea sp.,
Pseudomonas rhodesiae, Serratia marcescens and Elizabethkingia
anophelis were isolated from their midgut (Cirimotich et al.,
2011; Bahia et al., 2014).
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In Anopheles mosquitoes from china, Bifidobacterium,
Faecalibacterium, Escherichia-Shigella, and Blautia were
significantly enriched in An. lesteri, wheras Pseudomonas and
Ruminococcaceae were predominant in An. dirus and Asaia in
An. sinensis (Feng et al., 2021). The genus Asaia, previously
reported as the dominant bacterium in An. stephensi microbiota
(Favia et al., 2007), was also found in all aquatic stages (eggs,
L1–L4 larvae, pupae) as well as in the midgut, salivary glands and
reproductive tissues of both laboratory-reared and filed-collected
adult An. gambiae mosquitoes (Damiani et al., 2010).

Actinobacteria including Arthrobacter sp., Brevibacterium sp.,
Leucobacter sp., and Microbacterium sp., were found in adults,
larvae, pupae and eggs of An. darlingi (Rocha et al., 2021).
The common genera including Acinetobacter, Enterobacter,
Klebsiella, Serratia, Bacillus, Elizabethkingia, Stenotrophomonas
and Pantoea were predominantly identified in this mosquito
species (Rocha et al., 2021). The natural endosymbiont bacterium
Wolbachia was found in diverse field-caught Anopheles species
including An. maculatus, An. sinensis and other Anopheles species
collected in Malaysia (Wong et al., 2020). The presence of
Wolbachia in field populations of An. gambiae has also been
reported in Burkina-Faso (Baldini et al., 2014); in Mali (Gomes
et al., 2017); in a large number of Anopheles species from Gabon
(Ayala et al., 2019); and in An. funestus populations in Senegal
(Niang et al., 2018).

Anopheles species harbor huge microbial communities.
However, the existence of a main bacterial community is still
not clear (Romoli and Gendrin, 2018). The Gram-negative
aerobic or facultative aerobic bacteria, mostly belonging to the
families Enterobacteriaceae (Serratia, Ewingella, Enterobacter
and Klebsiella), Acetobacteraceae (Acetobacter and Asaia) and
Flavobacteriaceae (Elizabethkingia and Chryseobacterium)
represent the bacterial genera commonly found in Anopheles
mosquitoes (Gendrin and Christophides, 2013). An individual
mosquito host variable and dynamic microbiota (Table 2).
Such diversity in the bacterial composition could depend on
environmental factors and individual history. Indeed, the
implication of the environment in shaping mosquitoes was
reported in previous studies (Boissière et al., 2012; Osei-Poku
et al., 2012). Furthermore, it was shown that larval breeding
water and adult mosquito sugar food contribute to midgut
microbiota composition in mosquitoes (Saab et al., 2020).
However, some authors suggest that genetic factors might be
more important than environmental factors in influencing the
divergence of mosquito microbiota across the different species
(Feng et al., 2021). Some bacteria genera were suggested to be
transmitted from females to offspring by likely vertical symbiont
transmission mechanism via eggs (Damiani et al., 2010). Indeed,
effective horizontal and vertical transmission routes of bacteria
were already described in An. stephensi (Favia et al., 2007;
Damiani et al., 2008).

Functions of the Bacteria in Anopheles
Mosquitoes
Although further studies are needed to investigate the role that
bacteria play in Anopheles mosquitoes, previous works have

attempted to provide more insights. Bacterial communities have
been shown to impede Plasmodium development in An. gambiae
(Beier et al., 1994). An association of distinct bacteria with
the pyrethroid resistance in An. gambiae has been reported
(Omoke et al., 2021). Bacteria of Anopheles vectors interfere with
both the physiology and vector competence of their bearers.
Several studies have revealed an overall inhibitory effect of the
bacterial communities on Plasmodium parasites in Anopheles
species. It was found that the intestinal bacterial communities
can regulate the expression of the thioester-containing protein
(TEP1) via an RNA interference (RNAi) mechanism to inhibit
P. yoelii development in An. dirus (Wang et al., 2013).
Other bacterial species, including Escherichia coli (strains H243,
HS5); Pseudomonas aeruginosa; Pseudomonas sutzeria; Ewingella
americana, Serratia marcescens; Xanthomonas malthophila;
Cedecea lapageia; Enterobacter cloacae; Enterobacter amnigenus,
S. aureus; Comamonas spp.; Bacillus pumilus; Chromobacterium
sp. Csp_P, and Methylobacterium were reported to affect the
development of P. falciparum, P. vivax, and P. berghei in An.
gambiae (Dong et al., 2009; Meister et al., 2009; Cirimotich et al.,
2011; Bahia et al., 2014; Ramirez et al., 2014; Tchioffo et al.,
2016), An. stephensi (Pumpuni et al., 1993, 1996; Cirimotich et al.,
2011; Bando et al., 2013), An. albimanus (Gonzalez-Ceron et al.,
2003) and An. coluzzii (Meister et al., 2009; Tchioffo et al., 2013).
Another bacterial species of the genus Serratia, S. ureilytica,
isolated from the midguts of wild An. sinensis mosquitoes have
been shown to inhibit the development of P. falciparum or the
rodent parasite P. berghei by producing a lipase that is lethal
to the parasites at different developmental stages (Gao et al.,
2021). Contrary, in An. stephensi, the bacterium Asaia bogorensis,
was demonstrated to increase the midgut pH and subsequently
promote the Plasmodium berghei gametogenesis by alkalizing
the mosquito midgut (Wang et al., 2021). The genome of the
Asaia strain isolated from An. stephensi was analyzed and it was
found that this bacterial strain had the most predicted regulatory
proteins, suggesting its ability to adapt to frequent environmental
changes in the mosquito gut (Chen et al., 2021).

Furthermore, Wolbachia infection was shown to significantly
reduce the prevalence and intensity of sporozoite infection in An.
gambiae s.l. (Gomes et al., 2017). Besides the negative correlation
with Plasmodium development, Wolbachia infections in natural
Anopheles populations also affect egg-laying (Shaw et al., 2016).
Reintroduction of Pseudomonas putida, Pantoea sp., and Serratia
marcescens into An. arabiensis through sugar feeding, resulted
also in significant inhibition of P. falciparum infection, with
S. marcescens and P. putida exhibiting the strongest parasite-
blocking activity (Bahia et al., 2014). Experimental infection
of Chromobacterium violaceum in insecticide-resistant An.
coluzzii females was shown to significantly reduce mosquito
survival, blood-feeding and to affect fecundity and hatching rate
(Gnambani et al., 2020).

The biology of bacterial communities is an essential
determinant for Anopheles mosquitoes’ fitness and resistance to
insecticide molecules. During mosquito development, Anopheles
mosquito larvae feed on microorganisms, organic matter and
biofilm in aquatic habitats. Biofilm on the breeding site water
surface is enriched with bacteria and provides nutrients to the

Frontiers in Microbiology | www.frontiersin.org 6 May 2022 | Volume 13 | Article 891573

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-891573 May 16, 2022 Time: 16:18 # 7

Djihinto et al. Microbiota Diversity of Anopheline Vectors

larvae (Cansado-Utrilla et al., 2021). Some ingested bacteria in
aquatic habitats colonize the mosquito’s gut and are transmitted
to the adult stage (Wotton et al., 1997). The colonization
of the host organism by the bacteria is mutually beneficial
to both. Indeed, the host provides a stable, nutrient-rich
environment, and the bacteria assist in digestion, protection
from opportunistic pathogens, and immune system maturation
(Kamada et al., 2013).

Modulating mosquito’s bacterial composition could shape
the vector lifespan or the susceptibility to the existing classes
of insecticides. Indeed, it was reported that bacteria depletion
by using bactericidal antibiotics increased the longevity of
susceptible An. arabiensis while bacterial supplementation
increased insecticide tolerance in the resistant individuals
(Barnard et al., 2019). On the contrary, other authors have
shown that antibiotic mediated disorder of gut homeostasis
leads to a decreased longevity in An. arabiensis (Debalke et al.,
2019). Furthermore, dysbiosis in An. gambiae s.l. through
antibiotics treatment resulted in reduced lifespan while the
reintroduction of Enterobacter cloacae and Serratia marcescens
in female mosquitoes did not affect the average fecundity but
they positively affected hatching rates (Ezemuoka et al., 2020).
However, microbiome dysbiosis using oxytetracycline has been
shown to reduce the fecundity of An. gambiae bearing kdrR

(L1014F) allele (Medjigbodo et al., 2021).
Overall, the molecular mechanisms involved in the

interactions between bacteria and mosquito hosts, as well
as between bacterial species of the mosquito microbiome
remain not well understood. Further investigations are needed
to investigate the mechanisms by which the vector longevity
and fecundity are influenced by the gut bacterial community.
Adult male mosquitoes obtain their nutrients from sugar, while
both sugar and blood constitute the food sources for females.
Consequently, the microbiome is involved in food digestion.
Even though it was found in other mosquito species that
Enterobacteriaceae is the main family of the gut microbiota
at assimilating monosaccharides (Guégan et al., 2020), this
is not yet characterized in Anopheles species. Therefore, the
influence of the gut-associated microbiota on Anopheles vectors
nutrition remains a field of interest not well explored and open
for subsequent studies.

Bacteriophages in Mosquito Bacterial
Communities
Bacteriophages were discovered in 1915 and are viruses infecting
bacteria and archaebacteria (Clokie et al., 2011). They are
found in all biomes (Herridge et al., 2020), including mosquito
vectors. Although some of these viruses are latent (the infection
does not immediately result in cell death), there are virulent
bacteriophages that only replicate through a lytic cycle to release
new virions and kill their bacterial host (Chevallereau et al.,
2022). There are also obligate lytic bacteriophages that are
lethal to a specific bacteria genus of a particular species (de
Jonge et al., 2019). Besides, lytic bacteriophages were already
isolated from bacterial species, which can degrade insecticides.
Indeed, three bacteriophages were isolated from bacteria

belonging to the Klebsiella genus, bacteria associated with
organophosphate insecticide resistance in Anopheles albimanus
(Dada et al., 2018). These isolated bacteriophages belong to the
Podoviridae family and have demonstrated strong lytic potential
in vitro against Klebsiella pneumoniae strain ZS15 (Kupritz
et al., 2021). Moreover, it was demonstrated that phage G,
initially considered a bacteriophage of Bacillus megaterium, is a
Lysinibacillus bacteriophage (González et al., 2020). Lysinibacillus
is a pyrethroid-degrading taxon and bacteria genus associated
with permethrin resistance in western Kenyan An. gambiae
(Omoke et al., 2021).

The presence of bacteriophages in insecticide degrading
bacteria of malaria vectors suggests that bacteriophages infection
could be involved in mosquito bacterial composition regulation
as they attack and kill bacteria. As a result, the isolation and
the characterization of mosquito bacteriophages communities
may lead to the identification of virulent bacteriophages
that could be used to design biological alternative vector
control strategies. However, investigations on the diversity
and the composition of Anopheles mosquito’s bacteriophages
communities are still lacking.

THE INTERPLAY BETWEEN THE
MICROBIOTA AND ANOPHELES
MOSQUITO IMMUNE RESPONSE

Mosquitoes develop robust innate immune responses against
invading pathogens such as viruses, bacteria (Levashina et al.,
2001) and malaria parasites (Richman et al., 1997). The mosquito
immune system is divided into two responses: humoral and
cellular defense mechanisms.

In the humoral defense, the recognition of pathogens is
done through the activation of effector molecules such as
specific proteases that trigger processes such as melanization.
Among these effectors, antimicrobial peptides of An. gambiae
are known to be produced against different types of pathogens.
These include defensin (active against Gram-positive bacteria),
cecropin-1 (against Gram-positive and Gram-negative bacteria
and fungi) and gambicin (against Gram-positive and Gram-
negative bacteria) (Vizioli et al., 2000, 2001; Bartholomay and
Michel, 2018).

The cellular immune responses are mediated by mosquito
blood cells (hemocytes) and include phagocytosis of pathogens.
Previous studies have shown that humoral and cellular immune
responses involved three signaling pathways: the toll pathway
(Luo and Zheng, 2000; Goto et al., 2003), the immunodeficiency
pathway (IMD) (Meister et al., 2005) and janus kinase/signal
transducer and activator of transcription (JAK/STAT) (Gupta
et al., 2009). The An. gambiae JAK/STAT pathway contributes
to anti-Plasmodium immune responses against the development
of early Plasmodium spp. oocysts through the activation of nitric
oxide synthase (NOS) (Gupta et al., 2009).

In general, the ability of mosquitoes to inhibit the growth of
pathogens occurs through three mechanisms. Firstly, bacterial
growth after a blood meal triggers an immune response via the
immunodeficiency pathway (IMD), which causes the synthesis
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of antimicrobial peptides and other immune effectors (Meister
et al., 2009). These effectors target bacterial populations in
the mosquito midgut and exert antiparasitic effects (Meister
et al., 2009). Secondly, symbiont bacteria of the Anopheles
mosquito have been shown naturally to have the ability to
inhibit Plasmodium spp. development. Specifically, the genus
Enterobacter (Esp_Z) has been shown to inhibit P. falciparum
ookinete, oocyst, and sporozoite formation in An. gambiae
by up to 99% via elevated reactive oxygen species (ROS)
synthesis (Cirimotich et al., 2011). Some mosquito gut bacteria,
including Serratia marcescens and Acinetobacter spp. inhibit
malaria parasite infection in mosquitoes (Wang et al., 2017).
Thirdly, a microbiota-dependent immune priming system is
reported during Plasmodium spp. infection. This effect protects
mosquitoes from subsequent Plasmodium spp. infections and is
likely mediated by hemocytes differentiation (Smith et al., 2015).
Thus, insects’ gut microbiota appears as one of the important
factors in host resistance to pathogen development. In particular,
it has been shown that mosquito bacteria negatively impact
oocysts density through colonization mechanisms involving
either direct interactions between Plasmodium spp. and the
microbiota or through induction of the mosquito’s immune
response by the bacteria (Dong et al., 2009; Meister et al., 2009).

The presence of bacteria that naturally prevent Plasmodium
infection in Anopheles mosquitoes provides a solid background
for further genetic modification of predominant bacteria species
found in these vectors to prevent parasite transmission. Indeed,
it was already demonstrated that modified bacteria of the genus
Asaia could express anti-malaria effectors, and the engineered
strains obtained inhibit the development of malaria parasites
(Shane et al., 2018).

MICROBIOTA-MEDIATED INSECTICIDE
RESISTANCE IN ANOPHELES
MOSQUITOES

Recently, several research reports showed associations between
the mosquito microbiota and resistance to the current
insecticides used for vector control. Recent work has identified 21
bacterial genera specific to the resistant An. gambiae harboring
the kdr-East allele (L1014S, conferring resistance to permethrin)
and 16 genera unique to the susceptible individuals (Omoke
et al., 2021). Indeed, the well-known pyrethroid-degrading taxa
bacteria of Sphingobacterium, Lysinibacillus and Streptococcus
genera, in addition to the radiotolerant Rubrobacter were
reported in resistant An. gambiae mosquitoes which were
resistant at fivefold the diagnostic dose of permethrin (Omoke
et al., 2021). Interestingly, the genus Myxococcus, was abundant
in the susceptible An. gambiae and was not detected in their
resistant counterparts (Omoke et al., 2021). Ochrobactrum,
Lysinibacillus, and Stenotrophomonas genera (each of which
comprised insecticide-degrading species) were significantly
enriched in deltamethrin-resistant An. coluzzii, while susceptible
mosquitoes had a significant reduction in bacterial diversity, with
Asaia and Serratia as dominating microbial genera (Pelloquin
et al., 2021). In the Lysinibacillus genus, Lysinibacillus sphaericus

was demonstrated to be able to degrade up to 83% of cyfluthrin
(a pyrethroid insecticide) by using the insecticide as a source of
carbon or nitrogen (Hu et al., 2014).

An indirect effect of gut-associated microbiota on mosquito
longevity by mediating insecticides resistance was also reported.
Klebsiella, Enterobacter, Staphylococcus and Aeromonas were
primarily found in the guts of the fourth instar larvae and non-
blood fed adult females of the multiple-resistant An. arabiensis
(Barnard et al., 2019). The organophosphate insecticides
degrading bacterial species were found in fenitrothion resistant
An. albimanus, including the predominant genera Klebsiella,
Enterobacter, Acinetobacter, Escherichia, and Salmonella (Dada
et al., 2018). Furthermore, pyrethroid insecticides exposure
was found to induce changes in the cuticle, and the internal
microbiota of both larvae and adults exposed An. albimanus
(Dada et al., 2019). Indeed, Pseudomonas fragi and Pseudomonas
agglomerans were more abundant in the internal microbiota
of both alphacypermethrin- and permethrin-exposed An.
albimanus adults, while unique taxa annotated as Acinetobacter
and Asaia were more abundant in the internal and cuticle surface
microbiota of non-exposed mosquitoes (Dada et al., 2019). In
another vector species An. stephensi, four dominant genera,
including Pseudomonas, Aeromonas, Exiguobacterium, and
Microbacterium, were found in the midguts of temephos-resistant
individuals (Soltani et al., 2017).

All these observations suggest that there is an additional
microbe-mediated insecticide resistance mechanism in addition
to the known target site modification mechanisms in these
malaria vectors. The insecticide degrading properties could be
due to the high expression of xenobiotic degrading genes and
enzymes in bacteria when they are in contact with insecticidal
molecules. Apart from larvicides that inter larvae through
breeding water, insecticide molecules enter the adult mosquito
body through the respiratory system (by inhalation) or the
cuticle. Once the insecticides go through the cuticle, they enter
the hemolymph where they could migrate to any organ of
the insect. Thus, once in the gut, for example, they will be
in contact with gut bacteria degrading insecticide. Then, the
insecticide metabolism will lead to a decrease in the quantity of
insecticidal molecules available to reach their target site. As a
result, mosquitoes will be insensitive to that insecticide. However,
further investigations are needed to understand the causality and
pathways underlying such interactions. Yet, since microbes are
likely to produce effector molecules that degrade insecticides, it
is thought that the microbe-mediated mechanism of insecticide
resistance would be likely of a metabolic nature (Dada et al.,
2018; Omoke et al., 2021). This hypothesis is supported by
other research findings. Indeed, high relative abundances of
hydrolases, isomerases, and lyases were reported in xenobiotic-
degrading bacteria colonizing fenitrothion resistant An.
albimanus with two significantly enriched carboxylesterases
(carboxymethylenebutenolidase and gluconolactonase), and
two significantly enriched phosphomonoesterases (alkaline
phosphatase, and acid phosphatase) (Dada et al., 2018).

A more thorough comprehension of the role of the
microbiome in insecticide resistance will empower the
improvement of techniques toward curbing the widespread
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resistance and sustaining the effectiveness of the current vector
control interventions (Cansado-Utrilla et al., 2021). Several
studies have reported significant differences in microbiota
composition between susceptible and resistant mosquitoes, with
the highest bacterial diversity found in susceptible mosquitoes
(Dada et al., 2018; Barnard et al., 2019; Omoke et al., 2021).
Thus, modulating mosquito bacterial diversity could lead to
a change in insecticide resistance phenotype that would be
beneficial for resistant vector populations’ management. In the
actual context of the search for eco-friendly alternative vector
control strategies, the success of malaria vector control requires
a combined action of all existing control strategies. As a result,
strategies targeting the microbiota can be considered to prevent
insecticide degradation by mosquitoes’ bacteria.

CONCLUSION

Mosquitoes have exceptionally diverse microbial taxa, which
implies the significant effect of the microenvironment in
modeling microbial organization. Several studies were carried

out to characterize the wild mosquito microbiota. However,
further research works are needed to better understand the
full microbiome spectrum and its potential implications for
malaria-transmitting vectors. More information on these vectors’
microbiota is fundamental for implementing paratransgenic
strategies and symbiotic control approaches. In the current
context of widespread insensitivity of malaria mosquitoes to the
existing chemical insecticides, the role of bacteria in the mosquito
immune system and resistance to insecticides open perspectives
on the research of alternative biological control strategies based
on endosymbiosis.
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