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Most sports nutrition guidelines are based on group average responses and professional

opinion. Precision nutrition for athletes aims to improve the individualization of nutrition

practices to optimize long-term performance and health. This is a 2-step process that first

involves the acquisition of individual-specific, science-based information using a variety

of sources including lifestyle and medical histories, dietary assessment, physiological

assessments from the performance lab and wearable sensors, and multiomics data

from blood, urine, saliva, and stool samples. The second step consists of the delivery

of science-based nutrition advice, behavior change support, and the monitoring of

health and performance efficacy and benefits relative to cost. Individuals vary widely

in the way they respond to exercise and nutritional interventions, and understanding

why this metabolic heterogeneity exists is critical for further advances in precision

nutrition. Another major challenge is the development of evidence-based individualized

nutrition recommendations that are embraced and efficacious for athletes seeking the

most effective enhancement of performance, metabolic recovery, and health. At this

time precision sports nutrition is an emerging discipline that will require continued

technological and scientific advances before this approach becomes accurate and

practical for athletes and fitness enthusiasts at the small group or individual level.

The costs and scientific challenges appear formidable, but what is already being

achieved today in precision nutrition through multiomics and sensor technology seemed

impossible just two decades ago.
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PERSONALIZED AND PRECISION NUTRITION

A core tenet of the 2020–2025 Dietary Guidelines for Americans (DGAs) is that a healthy
dietary pattern is a customizable framework that supports tailored individual choices to meet
personal preferences (1). The DGAs have also been characterized, however, as population-level
recommendations that do not provide ideal nutrition guidance for each individual (2). Individuals
vary widely in their metabolic responses to specific components of the DGAs, and most of this
variance is unexplained (3, 4). The National Institutes of Health (NIH) and other agencies are
focused on investigations to improve scientific understanding of these individual differences,
adding momentum to the paradigm shift toward personalized nutrition (5, 6). This narrative-style
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mini-review outlines the limits, challenges, and possibilities of
personalized nutrition, with a focus on multiomics approaches
and how these can be applied to sport and exercise nutrition.

Personalized nutrition is expected to grow from $8.2 billion
in 2020 to $16.4 billion by 2025 (7). This growth is being
driven by increasing health and fitness awareness by consumers,
dramatic drops in genotyping costs, access to free public archives
of genetic variation data, digital healthcare, direct-to-consumer
(DTC) kits, widespread availability and use of smartphone apps,
consumer demand for supplements, and an aging population
(7, 8). Advocates also urge that personalized nutrition compared
to traditional approaches will be more effective in motivating
individuals to improve their dietary intake and thereby mitigate
disease risk factors (9, 10).

Several definitions for personalized nutrition have been
proposed (10, 11). The International Life Sciences Institute
emphasized that personalized nutrition for the generally healthy
population should use “individual-specific information, founded
in evidence-based science, to promote dietary behavior change
that may result in measurable health benefits” (2). Others
prefer the term precision nutrition that is focused on a
systems biology and multiomics approach (i.e., using the
tools of genomics, transcriptomics, proteomics, metabolomics,
microbiomics, epigenetics) with integration bioinformatics and
machine learning to sharpen the scientific certainty needed for
specific nutrition recommendations (3, 11).

Personalized and precision nutrition are emerging disciplines
that aim to stratify individuals into ever-smaller groups as
the science develops and specific nutrition guidance can be
conveyed accurately (7, 11). There are many challenges to
overcome before personalized and precision nutrition becomes
an accepted component of nutrition science and professional
practice. Metabolic heterogeneity with high individual-to-
individual variance is largely unexplained (4). Precision nutrition
aims to improve scientific understanding of responders and non-
responders to dietary interventions. This process will require
a tremendous investment by multiomics-focused investigators
and funding agencies, with strong bioinformatics support (11,
13). Once metabolic heterogeneity is better understood, the
findings must next be translated to accurate dietary advice that is
efficacious and health-promoting (6, 11). The entire process will
have to be linked to health behavior change support and research
to determine if people aremotivated enough to change and accept
this costly and complex approach over the long term.

We are currently in a transition period with the rapid
expansion of nutrition-based multiomics data but a lack
of well-designed studies to demonstrate efficacious dietary
recommendations at the small group or individual level (12).
Humans have more than 21,000 genes, and each person has more
than 50,000 single nucleotide polymorphisms (SNPs) (3, 13).
Observed phenotypes are impacted by many genes, SNPs and
other types of genetic variants, and epigenetic changes from
environmental and lifestyle factors that influence the way genes
work (13). People vary widely in how they respond to plant
food bioactives and phytochemicals, in part due to differences
in absorption, distribution, metabolism, and excretion (ADME)
(6). As a result, inter-individual variation is considerable and
far exceeds intra-individual variation in most multiomics studies

(4, 12). For example, even among twins, gut microbiome
alpha diversity (richness) varies more over time between the
twins than within a twin (14). All of this complicates the
translation of genomics and other multiomics data into dietary
recommendations for small groups and individuals (13).

A new generation of studies is needed with in depth
phenotyping and integration of multiomics data with machine
learning (a subbranch of Artificial Intelligence) to aid in the
development of predictive precision nutrition models (6, 11, 15).
Supervised and unsupervised machine learning algorithms focus
on patterns within large and complex precision nutrition datasets
to develop maximum likelihood predictions about the outcomes
of interest (15). The use of machine learning in precision
nutrition is an emerging discipline, and one of the fundamental
challenges is the development of high-quality datasets from large
cohorts from which pertinent measurements have been obtained.
Another challenge is the use of evaluation metrics to verify the
actual effectiveness of the prediction models (15).

Decades of research on the genetic risk for obesity can serve
as a lesson for the challenges that lie ahead in precision nutrition.
The genetic component of BMI in the population accounts for
about 40 to 50% of its variance after adjustment for age and sex,
providing room for modifying effects of genetic variation to be
assessed (16). It is now apparent from genome-wide association
studies (GWAS) combined with large SNPs panels that obesity
genetic risk is shaped by hundreds, perhaps thousands of DNA
variants (16). As a result, no genetically based clinical screening
algorithm has attained the predictive power needed to calculate
obesity risk for individuals (16). The most important message
from obesity genetics research is that people do not all have the
same proneness to becoming obese and despite decades of effort
this still remains difficult to predict.

What does this mean for precision nutrition? Both obesity and
the way people respond to dietary interventions are impacted
by many intrinsic and extrinsic factors. Genomics is just one of
many components to measure and consider. Novel precision
nutrition programs to manage obesity have been designed with
personalized macronutrient compositions that vary based on
the individual’s genotype, enterotype, and other related factors
(17). To refine this approach, comprehensive data sets from large
groups are needed that include demographics, anthropometry,
diet intake, physical activity, genomics, transcriptomics,
epigenetics, proteomics, metabolomics, and environmental
exposure (3, 11, 12). With machine learning, these types of
data sets can be modeled to improve understanding of inter-
individual variation and the development of more accurate
precision nutrition recommendations. Although remarkable
progress has been made, multiomics-based solutions and
elucidations remain a work in progress, with high expectations
that this will be a successful, albeit costly initiative (6, 13).

PRECISION NUTRITION FOR ATHLETES
AND PHYSICALLY ACTIVE INDIVIDUALS

So what insights can be applied from precision nutrition to
athletes and physically active individuals? Athletes vary widely in
their lifestyle habits and metabolic and physiological responses
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to sports foods and supplements (18, 19). Most sports nutrition
guideline statements and periodized nutrition plans are based
on group average responses and professional opinion (20–22).
Several organizations have recommended a biology systems-
based approach to adapt sports nutrition guidelines for a more
personalized approach (19–23).

Figure 1 summarizes a precision nutrition approach for
athletes. This is a 2-step process that focuses on collecting
as much individual-specific, science-based information as
possible on the individual, and then developing and delivering
individualized nutrition guidance while monitoring and
measuring health and performance outcomes. The first step
emphasizes the acquisition of information using a variety
of sources including lifestyle and medical histories, dietary
assessment, physiological assessments from the performance
lab and wearable sensors, and multiomics data from blood,
urine, saliva, and stool samples. Depending on resources and
during this transition period of continued investigation by
scientists, this step may involve just a few targeted biomarker
data with high effect sizes. The second step involves the delivery
of science-based nutrition advice, behavior change support,
and the monitoring of health and performance efficacy and
benefits relative to cost. The sports nutrition precision approach
is an emerging science with years of additional studies of large
groups needed to ensure accurate, practical, and individualized
nutrition guidance.

Despite scientific reservations at this point in time, the
precision sports performance and nutrition DTC companies
have already moved forward into the marketplace. A growing
number of DTC companies gather pertinent demographics and
lifestyle data, extract DNA from consumer’s saliva samples using
home kits, assess the presence or absence of genetic variants,
predict inherent athletic ability, and/or provide individualized
recommendations on exercise training and diet intake to
improve performance (8, 24). Bloodwork and DNA data are
also used to individualize guidelines for building muscle,
reducing inflammation, boosting energy, optimizing mood,
raising metabolism, improving cognition, and maintaining
bone health.

The current consensus among genetics researchers is that
DTC genetic tests are unable to provide accurate information
regarding early athletic talent, training recommendations to
maximize performance, or how to lose fat and build muscle (25,
26). Often the DTC genetic tests focus on polymorphisms for just
a few genes (e.g., alpha-actinin-3 or ACTN3, and angiotensin-
converting enzyme or ACE) despite the fact that there is no
consistent scientific evidence that they have a sizeable influence
on complex attributes such as athletic performance (8, 24–26).
Hereditability estimates for cardiorespiratory fitness or VO2max
are relatively high (about 50%) (27, 28). Nonetheless, studies
linking genotype and SNPs to cardiorespiratory fitness and
other related attributes such as exercise training responses and
exercise-induced changes in cardiometabolic risk factors have
failed to produce definitive panels that could be used by DTC
companies (27, 29–31). The use of global metabolomics and
proteomics profiling as correlates of cardiorespiratory fitness

has only recently been explored and these are best described as
preliminary studies (32, 33).

Common nutrition-related traits that are assessed by DTC
companies include food intolerance (e.g., lactose intolerance),
food sensitivities (i.e., caffeine sensitivity), macronutrients (e.g.,
lipid metabolism), micronutrient metabolism (e.g., vitamins D
and C metabolism), eating behavior (e.g., weight management),
and oxidative stress (antioxidant and detoxifying capacity) (8).
DTC companies seldom provide information on the specific
genetic variants that are being assessed, and when listed, are often
unrelated to the trait (8). A growing number of gene-nutrient
interactions that may influence sport performance have been
proposed, but in general, there is a dearth of strong research
data at this time to make recommendations for athletes based on
nutrigenomics (31).

Caffeine is one of just five evidence-based dietary supplements
linked to performance optimization (18, 21), and serves as a
prime example of the challenges in sport nutrigenomics. Studies
generally support caffeine ingestion (3–13 mg/kg) for improved
performance in a broad range of exercise modes, but individual
responses vary widely (34). The cytochrome P450 1A2 (CYP1A2)
gene produces an enzyme that metabolizes caffeine, but more
than 13 SNPs can modify this gene’s metabolic activity (35). One
of the CYP1A2 SNPs is rs762551, and A/C and C/C carriers
(54% of population) experience decreased caffeine metabolism
activity in comparison to more rapid metabolism in A/A carriers
(46% of population). Although CYP1A2 polymorphism has been
hypothesized to alter caffeine’s ergogenic effect, studies thus far
are mixed, and CYP1A2 genotyping as a service to athletes is not
recommended until more is known (35, 36).

Another interesting nutrient that serves as an example of
the challenges that lie ahead in sport nutrigenomics is choline.
Choline is an essential nutrient involved in multiple biochemical
pathways related to performance including acetylcholine
production for neurotransmission and phosphatidylcholine
formation in muscle membranes (37, 38). Low dietary intake of
choline can diminish concentrations of phosphatidylcholine in
muscle cell membranes, making them more fragile and prone
to exercise-induced muscle damage and leakage of creatine
phosphokinase (CPK) (39). Common polymorphisms of genes
involved with choline metabolism (about 10% of the population)
include SNPs (rs2771040, rs1557502) associated with the
solute carrier 44 choline transporter member 1 (SLC44A1) and
choline kinase (CHKB) genes (38, 39). People who carry these
SNPs develop extremely high serum creatine phosphokinase
(CPK) levels after stressful exercise bouts that include eccentric
contractions (e.g., downhill running). These individuals may
also develop rhabdomyolysis when dietary patterns low in
choline are combined with stressful levels of exercise training.
Some advocate widespread SNP screening to identify these
individuals combined with recommendations to increase choline
(e.g., more eggs and liver) and methyl-folate intake to mitigate
exercise-induced muscle damage (39–41). However, definitive
research to support this strategy is lacking, and long-term health
and performance effects of carrying these gene polymorphisms
are unknown. Studies have consistently failed to demonstrate
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FIGURE 1 | Precision nutrition for athletes aims to improve tailoring of nutrition practices to optimize both health and performance. This is a 2-step process that

emphasizes 1) the acquisition of individual-specific, science-based information using a variety of sources and 2) delivery of science-based nutrition advice with

behavior change support and monitoring of efficacy and benefits relative to cost.

that supplemental choline has a positive influence on physical or
cognitive performance (42, 43).

Precision nutrition relies on what can be accurately assessed
at the individual level, and this process often begins and is
ultimately limited with assessment of dietary intake and physical
activity. The IOC recommends that a complete nutritional
assessment of the athlete’s diet should be undertaken before
decisions regarding supplement use are made (18). Data
obtained from dietary intake assessments (e.g., 24-h recall,
food frequency questionnaires, dietary records) have limited
utility because they are burdensome and based on self-
report, memory, social desirability reporting bias, and behavior
change reactivity to monitoring (44, 45). Currently, physical
activity compared to dietary intake monitoring tools are more
advanced (44). Technological advances in wearable sensors
have improved physiological and performance monitoring of
mental and physical stress, sleep quality, blood glucose levels,
body temperature, hydration status, oxygen consumption, heart
rate, blood pressure, and exercise workloads (46). The use of
wearable sensors facilitates continuous and real-time tracking
of targeted outcomes that should strengthen the usefulness of
nutrition guidance down to the individual level. The use of
multimodal wearable sensors and miniature cameras in the
area of nutritional assessment is expanding rapidly (44, 45, 47).
The ultimate goal is to make physical activity, dietary intake,
and physiological monitoring seamless, passive, accessible, and
accurate, and this will transform the effectiveness of precision
nutrition (46–48).

SYSTEMS BIOLOGY APPROACH TO
PRECISION SPORTS NUTRITION

Vigorous acute exercise bouts increase body metabolic demands
6 to 20 times above resting levels, and have profound,
transitory effects on gene expression and blood/tissue levels
of numerous metabolites, lipid mediators, and proteins (49–
59). These exercise-induced molecular changes are complex and
incompletely understood. Human systems biology approaches
with integrated multiomics profiling have been initiated to
improve scientific understanding of themolecular underpinnings
of related health and disease prevention benefits (50).

Multiomics profiling in exercise science has expanded
rapidly due to the development of new technologies that
provide simultaneous measurement of hundreds and thousands
of molecules from small amounts of body fluids, cells, and
tissues. Recent studies have linked acute vigorous exercise to
changes in about 6,000 transcripts (from RNA sequencing),
more than 300 proteins, and 300 to 700 metabolites (49–
56). Integrated molecular profiling during recovery from
vigorous exercise indicates that multiple biological processes
are affected including energy metabolism, oxidative stress,
immune function and inflammation, tissue repair and
remodeling, signaling pathways, cell growth and mobility,
cardiovascular signaling and angiogenesis, and apoptosis (49–
52). Exercise proteomics has shown that hundreds of proteins
are secreted by the muscle and other tissues discretely or
within extracellular vesicles to regulate physiological processes
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throughout the body (54, 55, 60). Exercise metabolomics
has established that following intensive bouts lasting more
than two hours, large-fold changes in numerous and diverse
lipid-related metabolites occur reaching their nadir within a
few hours with abatement after one day of recovery (53, 58).
Other exercise-induced plasma metabolite shifts include a
variety of amino acids and tricarboxylic acid (TCA) cycle
intermediates including malate, aconitate, citrate, fumarate,
succinate, and alpha-ketoglutarate. Postexercise changes in
amino acids support metabolic requirements, and increases
in TCA metabolites facilitate regulation of inflammation and
immune function (50, 51, 53, 56). Intensive and prolonged
exercise also increases plasma and muscle levels of 50 to 100
bioactive oxidation products from polyunsaturated fatty acids
called oxylipins (57). Oxylipins have vital regulatory roles in
many physiological processes including immune function,
inflammation, cardiac and vascular function, and blood
coagulation (57).

Thus, thousands of molecules are transiently affected by acute
exercise, but the complex interplay between these molecules,
the wide range of responses measured between individuals,
and the use of relatively small sample sizes have limited
scientific consensus (49–52). Fewer molecules differentiate
exercise trained and untrained states compared to the much
larger but transient shifts in proteins and metabolites following
acute exercise bouts, and there is little overlap (49–52). Thus,
a summation effect from regular acute exercise-induced shifts
in gene expression and thousands of proteins and metabolites
may play a larger role in mediating health effects than with
chronic adaptations. The Molecular Transducers of Physical
Activity Consortium (MoTrPAC) was established through an
NIH Common Fund program to expand the science in this area
and generate a molecular map of acute and chronic exercise
training (61).

The application of multiomics approaches to sports
nutrition is still an emerging area of scientific endeavor.
Global and targeted metabolomics (with lipidomics) and
proteomics improves the capacity to capture the complex
biochemical effects resulting from a nutritional intervention
with athletes during an exercise bout (62). Seminal studies
in this area indicate that postexercise increases in lipid-
related metabolites, oxylipins, and inflammatory cytokines
after hours of intensive cycling are strongly mitigated when
overnight-fasted athletes ingest carbohydrate compared to
water only (62–65). Exercising under “low-carbohydrate”
availability is physiologically stressful with widespread gene
expression, cell signaling, inflammation, immune system
activation, and elevated oxylipin production. This approach
has been posited as advantageous for training adaptations, but
there is little scientific support linking “training carbohydrate
low” with improved exercise performance over the long
term (62).

Polyphenol ingestion as a countermeasure to exercise-induced
inflammation is receiving increasing attention by investigators
(62, 63, 66). Earlier studies reported few discernable benefits
of increased polyphenol intake for athletes, but research
design deficiencies portrayed a misunderstanding of polyphenol

bioavailability and metabolism, effective dosing protocols, and
appropriate outcome measures to capture bioactive effects (62).
A recent study showed that adding 1 cup of blueberries per
day for two weeks prior to a 75-km cycling time trial strongly
attenuated post-exercise plasma levels of 10 proinflammatory
oxylipins (63). The cyclists ingesting blueberries experienced
a 14-fold variation, however, in plasma levels of 24 blueberry
gut-derived metabolites following supplementation. The highest
gut phenolic responders to blueberry intake experienced the
lowest post-exercise plasma oxylipin levels. Little is known
regarding the reasons for the high inter-individual variation
in gut-derived metabolites after polyphenol ingestion. This
may be related in part to differences in gut microbiota α-
diversity (richness) and differences in phase I and II metabolic
enzymes and phase III transporters (14, 67). Whether or not
the cyclists with a low gut-phenolic response to 1 cup/day
blueberry ingestion would benefit from doubling their intake
is unknown.

The gut microbiota includes a large collection of bacteria,
viruses, fungi, and archaea, and the richness or α-diversity
varies widely between individuals (14, 68). Plant-based
dietary patterns and regular exercise training have an
influence on the gut microbiota, increasing α-diversity and
the production of metabolites such as short chain fatty
acids (SCFA) from dietary fiber and gut-derived phenolics
from plant polyphenols (14, 68, 69). SCFAs may support
athletic performance by influencing fuel utilization and
skeletal muscle function, and gut-derived phenolics may
improve post-exercise metabolic recovery by mitigating
inflammation (68). SCFAs are the preferred fuel for
colonocytes, and have also been linked to regulation of
energy homeostasis, body weight, immune function, and
inflammation (69).

THE FUTURE OF PRECISION SPORTS
NUTRITION

The metabolic variance in the way individuals respond to
exercise and nutritional interventions is considerable and largely
unexplained. The other major challenge in precision nutrition
includes the translation of costly multiomics biomarker data to
evidence-based individualized nutrition recommendations that
are acceptable to the athlete and efficacious in terms of actual
performance, recovery, and health.

At this time, a precision sports nutrition approach based
on integrated multiomics to tailor recommendations at the
individual athlete level is an emerging discipline with more
questions than answers. Precision nutrition emphasizes
multiomics tools and methods to sharpen the scientific certainty
needed for specific nutrition recommendations for athletes
and fitness enthusiasts. However, to make this work, larger
studies are needed that focus on mechanisms underlying
metabolic heterogeneity with deep phenotyping, multiomics,
and machine learning (6). Thus, precision nutrition will
require huge investments and scientific advances before
this approach becomes accurate and practical for athletes.
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The costs and scientific challenges make this stratagem
appear unattainable, but what is being accomplished
today in precision nutrition seemed impossible just two
decades ago.
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