

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 3 March 2017
Accepted 23 March 2017

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; 4,6-dihydroxypyrimidine; manganese(II); octahedral coordination.

CCDC reference: 1539878

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of tetraaquabis(pyrimidin-1-ium-4,6-diolato- $\kappa \mathrm{O}^{4}$)manganese(II)

Khaled A. Shennara, ${ }^{\text {a }}$ Ray J. Butcher ${ }^{\text {b }}$ and Frederick T. Greenaway ${ }^{\text {a* }}$

${ }^{\text {a Carlson School of Chemistry and Biochemistry, Clark University, } 950 \text { Main St, Worcester, MA 01610, USA, and }}$
${ }^{\mathbf{b}}$ Department of Chemistry, Howard University, Washington, DC 20059, USA. *Correspondence e-mail: fgreenaway@clarku.edu

The $\mathrm{Mn}^{\mathrm{II}}$ ion in the structure of the mononuclear title compound, [$\left.\mathrm{Mn}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$, is situated on an inversion center and is coordinated by two O atoms from two deprotonated 4,6-dihydroxypyrimidine ligands and by four O atoms from water molecules giving rise to a slightly distorted octahedral coordination sphere. The complex includes an intramolecular hydrogen bond between an aqua ligand and the non-protonated N ring atom. The extended structure is stabilized by intermolecular hydrogen bonds between aqua ligands, by hydrogen bonds between N and O atoms of the ligands of adjacent molecules, and by hydrogen bonds between aqua ligands and the non-coordinating O atom of an adjacent molecule.

1. Chemical context

H-tautomeric forms of 4,6-dihydroxypyrimidine (DHP) are known to exist and are associated with low disproportionation energies (Katrusiak \& Katrusiak, 2003). Although crystal structures have been reported where cobalt(II) and nickel(II) are coordinated by the 4,6-dihydroxypyrimidine ligand through a ring nitrogen atom (Huang et al., 2005; Wang et al., 2006), prior to this report no complexes with ligation through a phenolate oxygen atom have been reported even though this mode of coordination does occur in complexes of 3,6-dihydroxypyridizine (Shennara et al., 2015).

2. Structural commentary

Crystallographic analysis reveals that the title compound consists of a centrosymmetric mononuclear $\left[\mathrm{Mn}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2^{-}}\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$] complex in which the $\mathrm{Mn}^{\mathrm{II}}$ ion is in an O_{6} environment that is close to octahedral. Two deprotonated 4,6-dihydroxypyrimidine ligands coordinate through the phenolate oxygen atom (O1) at axial positions, while four water molecules occupy the equatorial sites (Fig. 1). The bond lengths in the pyrimidine ligand are very similar to those found for the

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 2^{\text {i }}$	0.80 (3)	2.03 (3)	2.8152 (14)	170 (2)
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O} 1^{\text {ii }}$	0.82 (3)	1.90 (3)	2.7127 (13)	176 (3)
$\mathrm{O} 2 W-\mathrm{H} 2 W 1 \cdots \mathrm{~N} 2$	0.82 (3)	1.91 (3)	2.6929 (14)	159 (2)
$\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O} 2^{\text {iii }}$	0.84 (2)	1.85 (2)	2.6754 (13)	167 (2)
$\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 2{ }^{\text {iv }}$	0.91 (2)	1.92 (2)	2.7966 (14)	162 (2)

Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $-x,-y+1,-z+1$; (iii) $x+1,-y+\frac{1}{2}, z-\frac{1}{2}$; (iv) $-x,-y,-z+1$.

Co and Ni complexes in which, however, ligation to the metal is through a nitrogen atom. For all three complexes, the structures indicate a zwitterionic form of the ligand resulting from transfer of a proton from the hydroxyl group to a ring nitrogen atom. Others have reported variability in the H tautomeric forms of 4,6-dihydroxypyrimidine associated with low disproportionation energies (Katrusiak \& Katrusiak, 2003). The structure of the complex includes an intramolecular hydrogen bond between an aqua ligand (O2W) and the non-protonated N^{3} ring atom (N2) (Table 1).

3. Supramolecular features

Intermolecular hydrogen bonds between the aqua ligands of adjacent molecules are present. Hydrogen bonds also occur between the non-coordinating NH^{+}and O^{-}atoms of two DHP ligands in adjacent molecules and between an aqua ligand and the non-coordinating oxygen atom of an adjacent molecule (Table 1). This gives rise to a complex threedimensional network, which is best analyzed in terms of graph-set theory (Etter et al., 1990). There are four inter-

Figure 1
Diagram showing the complex and atom labeling, as well as the formation of $\left\{C(4)\left[R_{2}^{2}(8)\right]\right\}$ chains in the a-axis direction linked by hydrogen bonds. Atomic displacement parameters are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2
Diagram showing how the molecules link up into chains through the formation of $C(6)\left[R(6) R_{2}^{2}(8)\right]$ hydrogen bonds. Atomic displacement parameters are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Figure 3
Diagram showing one of the two mutually perpendicular chains linked through the formation of $C(6)\left[R_{3}^{2}(8)\right]$ hydrogen bonds. Atomic displacement parameters are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
penetrating chains of hydrogen bonds. The first has a $C(4)\left[R_{2}^{2}(8)\right]$ motif and is shown in Fig. 1. The second has a $C(6)\left[R_{1}^{1}(6) R_{2}^{2}(8)\right]$ motif and is shown in Fig. 2. The chain depicted in Fig. 3 has a $C(6)\left[R_{3}^{2}(8)\right]$ motif and is duplicated in two mutually perpendicular directions, thus making up four chains altogether. The overall packing is shown in Fig. 4.

4. Database survey

A search in the Cambridge Structural Database (CSD version 5.37; Groom et al., 2016) for structures of manganese of 4,6-dihydroxypyrimidines revealed that no such structures

Figure 4
Diagram showing how the four sets of chains linked by hydrogen bonds gives rise to the overall packing. Hydrogen bonds are shown as dashed lines.

Table 2
Experimental details.
Crystal data
Chemical formula
M_{r}
Crystal system, space group
Temperature (K)
$a, b, c(\AA)$
β (${ }^{\circ}$)
$V\left(\mathrm{~A}^{3}\right)$
Z
Radiation type
$\mu\left(\mathrm{mm}^{-1}\right)$
Crystal size (mm)
Data collection
Diffractometer
Absorption correction
$T_{\text {min }}, T_{\text {max }}$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections
$R_{\text {int }}$
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$
No. of reflections
No. of parameters
H -atom treatment
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$
$\left[\mathrm{Mn}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
349.17

Monoclinic, $P 2_{1} / c$
120
5.2156 (5), 14.0812 (14), 9.0595 (9)
99.366 (2)
656.48 (11)

2
Mo $K \alpha$
1.05
$0.55 \times 0.41 \times 0.40$

Bruker APEXII CCD
Multi-scan (SADABS; Sheldrick, 1996)
0.614, 0.746

2971, 1848, 1752
0.016
0.730
0.027, 0.071, 1.10

1848
117
H atoms treated by a mixture of independent and constrained refinement
$0.48,-0.32$

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2002), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b) and SHELXTL (Sheldrick, 2008).
exist, although there are twelve examples of manganese complexes of 2,4-dihydroxypyrimidine derivatives (CSD codes AMPTMN, AQAPAK, ICESEQ, IMEGAJ, JIRNUU, NOPSER, OFUDAU, QOSDOT, QOSNOD, RAGLAO, TAGVOM, and ZOGFOQ).

5. Synthesis and crystallization

$0.5 \mathrm{~m} M$ aqueous solutions of the ligand and anhydrous MnCl_{2}, both purchased from Aldrich, were adjusted to pH 5.5 with $\mathrm{NaOH} / \mathrm{HCl}$ and then mixed together in a $1: 2$ stoichiometry. The solutions were left to crystallize slowly at room temperature. Light-yellow crystals formed over two weeks. Room-temperature X-band EPR spectra of powdered crystals exhibited a single broad line centered at a g-value of near to 2.0 with a peak-to-peak line width of 660 G , the breadth of which indicates $\mathrm{Mn} \cdots \mathrm{Mn}$ magnetic interactions, although not as strong as in the related maleic hydrazide (MH),
$\mathrm{Mn}(\mathrm{MH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$, complex, for which a line width of 920 G was found (Shennara et al., 2015). EPR spectra of aqueous solutions of the title complex had $g=2.006$ and $A_{\text {iso }}(\mathrm{Mn})=$ 95.2 G, similar to that of the $\mathrm{Mn}(\mathrm{MH})_{2}$ complex

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined as riding: $\mathrm{C}-\mathrm{H}=0.95 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) . \mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ hydrogen atoms were refined isotropically without restrictions on the bond lengths. Four reflections which were obvious outliers were omitted from the refinement $(132,163,100,011)$.

Acknowledgements

Data were collected by Matthias Zeller of Youngstown State University, Youngstown, Ohio, USA, on an X-ray diffractometer funded by NSF grant 0087210, Ohio Board of Regents Grant CAP-491, and by Youngstown State University. RJB is grateful to NSF award 1205608, Partnership for Reduced Dimensional Materials for partial funding of this research.

Funding information

Funding for this research was provided by: National Science Foundation, Division of Chemistry (award Nos. 0087210, 1205608); Ohio Board of Regents (award No. CAP-491).

References

Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Huang, Y.-G., Zhou, Y.-F., Yuan, D.-Q., Wu, B.-L. \& Hong, M.-C. (2005). Acta Cryst. E61, m832-m834.

Katrusiak, A. \& Katrusiak, A. (2003). Org. Lett. 5, 1903-1905.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Shennara, K. A., Butcher, R. J. \& Greenaway, F. T. (2015). Inorg. Chim. Acta, 425, 247-254.
Wang, Y.-T., Lou, X.-H., Wang, J.-G. \& Fan, Y.-T. (2006). Acta Cryst. E62, m1924-m1926.

supporting information

Acta Cryst. (2017). E73, 620-622 [https://doi.org/10.1107/S2056989017004649]

Crystal structure of tetraaquabis(pyrimidin-1-ium-4,6-diolatoκO^{4}) manganese(II)

Khaled A. Shennara, Ray J. Butcher and Frederick T. Greenaway

Computing details

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Tetraaquabis(pyrimidin-1-ium-4,6-diolato- κO^{4})manganese(II)

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$
$M_{r}=349.17$
Monoclinic, $P 2{ }_{1} / c$
$a=5.2156$ (5) Å
$b=14.0812(14) \AA$
$c=9.0595(9) \AA$
$\beta=99.366(2)^{\circ}$
$V=656.48(11) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.614, T_{\text {max }}=0.746$
2971 measured reflections
$F(000)=358$
$D_{\mathrm{x}}=1.766 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2512 reflections
$\theta=2.7-31.2^{\circ}$
$\mu=1.05 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block, yellow
$0.55 \times 0.41 \times 0.40 \mathrm{~mm}$

1848 independent reflections
1752 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=31.2^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-7 \rightarrow 7$
$k=-18 \rightarrow 18$
$l=-3 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.071$
$S=1.10$
1848 reflections
117 parameters
0 restraints

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.033 P)^{2}+0.3858 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.48 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.32 \mathrm{e} \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Mn	0.500000	0.500000	0.500000	$0.00759(9)$
O1	$0.25688(17)$	$0.38379(6)$	$0.56407(10)$	$0.01144(18)$
O2	$-0.08946(18)$	$0.07807(6)$	$0.62265(10)$	$0.01204(18)$
O1W	$0.17104(18)$	$0.54921(7)$	$0.33556(11)$	$0.01243(18)$
H1W1	$0.114(5)$	$0.5129(16)$	$0.271(3)$	$0.029(6)^{*}$
H1W2	$0.045(5)$	$0.5682(17)$	$0.370(3)$	$0.040(7)^{*}$
O2W	$0.6010(2)$	$0.40720(7)$	$0.32982(11)$	$0.0164(2)$
H2W1	$0.562(5)$	$0.3534(18)$	$0.353(3)$	$0.037(6)^{*}$
H2W2	$0.702(5)$	$0.4026(17)$	$0.267(3)$	$0.035(6)^{*}$
N1	$0.2263(2)$	$0.10486(8)$	$0.48187(11)$	$0.0094(2)$
H1N	$0.219(5)$	$0.0429(18)$	$0.453(3)$	$0.033(6)^{*}$
N2	$0.4089(2)$	$0.25411(8)$	$0.45266(11)$	$0.0102(2)$
C1	$0.2421(2)$	$0.29415(9)$	$0.54070(13)$	$0.0084(2)$
C2	$0.0651(2)$	$0.23594(9)$	$0.60057(13)$	$0.0101(2)$
H2A	-0.049639	0.263207	0.660180	0.012^{*}
C3	$0.0573(2)$	$0.13885(9)$	$0.57302(13)$	$0.0090(2)$
C4	$0.3920(2)$	$0.16342(9)$	$0.42645(13)$	$0.0102(2)$
H4A	0.503298	0.136653	0.364320	0.012^{*}

Atomic displacement parameters (\hat{A}^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn	$0.00731(13)$	$0.00453(14)$	$0.01196(13)$	$-0.00112(8)$	$0.00470(9)$	$-0.00066(8)$
O1	$0.0118(4)$	$0.0049(4)$	$0.0192(4)$	$-0.0018(3)$	$0.0074(3)$	$-0.0011(3)$
O2	$0.0165(4)$	$0.0057(4)$	$0.0163(4)$	$-0.0030(3)$	$0.0097(3)$	$-0.0001(3)$
O1W	$0.0105(4)$	$0.0099(5)$	$0.0173(4)$	$0.0014(3)$	$0.0032(3)$	$-0.0025(3)$
O2W	$0.0242(5)$	$0.0076(5)$	$0.0219(5)$	$-0.0037(4)$	$0.0172(4)$	$-0.0024(3)$
N1	$0.0123(5)$	$0.0051(5)$	$0.0121(4)$	$-0.0013(3)$	$0.0058(4)$	$-0.0019(3)$
N2	$0.0096(5)$	$0.0085(5)$	$0.0134(4)$	$-0.0014(3)$	$0.0050(4)$	$-0.0002(4)$
C1	$0.0073(5)$	$0.0070(5)$	$0.0110(4)$	$-0.0006(4)$	$0.0018(4)$	$0.0000(4)$
C2	$0.0101(5)$	$0.0074(6)$	$0.0143(5)$	$-0.0010(4)$	$0.0063(4)$	$-0.0002(4)$
C3	$0.0091(5)$	$0.0082(6)$	$0.0106(4)$	$-0.0007(4)$	$0.0040(4)$	$0.0002(4)$
C4	$0.0108(5)$	$0.0090(6)$	$0.0118(5)$	$-0.0009(4)$	$0.0049(4)$	$0.0007(4)$

Geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

$\mathrm{Mn}-\mathrm{O} 2 \mathrm{~W}$	$2.1510(10)$	$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W} 2$	$0.84(2)$
$\mathrm{Mn}-\mathrm{O} 2 \mathrm{~W}^{\mathrm{i}}$	$2.1510(10)$	$\mathrm{N} 1-\mathrm{C} 4$	$1.3491(15)$
$\mathrm{Mn}-\mathrm{O} 1 \mathrm{~W}$	$2.1934(10)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.3871(14)$

$\mathrm{Mn}-\mathrm{O} 1 \mathrm{~W}^{\text {i }}$	2.1935 (10)	N1-H1N	0.91 (2)
$\mathrm{Mn}-\mathrm{O} 1$	2.2050 (9)	N2-C4	1.2993 (16)
$\mathrm{Mn}-\mathrm{Ol}^{\text {i }}$	2.2050 (9)	N2-C1	1.3917 (15)
O1-C1	1.2801 (15)	C1-C2	1.4074 (16)
O2-C3	1.2778 (14)	C2-C3	1.3892 (17)
O1W-H1W1	0.80 (3)	C2-H2A	0.9500
O1W-H1W2	0.82 (3)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9500
O2W-H2W1	0.82 (3)		
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Mn}-\mathrm{O} 2 \mathrm{~W}^{\mathrm{i}}$	180.0	$\mathrm{Mn}-\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W} 1$	106.3 (17)
O2W-Mn-O1W	87.76 (4)	$\mathrm{Mn}-\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W} 2$	141.9 (16)
$\mathrm{O} 2 \mathrm{~W}^{\mathbf{i}}-\mathrm{Mn}-\mathrm{O} 1 \mathrm{~W}$	92.24 (4)	$\mathrm{H} 2 \mathrm{~W} 1-\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{~W} 2$	108 (2)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Mn}-\mathrm{O} 1 \mathrm{~W}^{\mathrm{i}}$	92.25 (4)	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3$	121.20 (10)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Mn}-\mathrm{O} 1 \mathrm{~W}^{\mathrm{i}}$	87.75 (4)	C4-N1-H1N	118.5 (14)
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Mn}-\mathrm{O}^{\text {W }}{ }^{\text {i }}$	180.0	C3-N1-H1N	120.1 (15)
O2W-Mn-O1	87.49 (4)	C4-N2-C1	118.21 (10)
$\mathrm{O} 2 \mathrm{~W}^{\mathrm{i}}-\mathrm{Mn}-\mathrm{O} 1$	92.51 (4)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2$	117.88 (10)
O1W-Mn-O1	89.62 (4)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	122.43 (11)
O1W ${ }^{\text {i }}-\mathrm{Mn}-\mathrm{O} 1$	90.38 (4)	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	119.69 (11)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{Mn}-\mathrm{Ol}^{1}$	92.51 (4)	C3-C2-C1	120.38 (11)
$\mathrm{O} 2 \mathrm{~W}^{\mathrm{i}}-\mathrm{Mn}-\mathrm{O} 1^{\mathrm{i}}$	87.49 (4)	C3-C2-H2A	119.8
$\mathrm{O} 1 \mathrm{~W}-\mathrm{Mn}-\mathrm{Ol}^{\text {i }}$	90.38 (4)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.8
O1W ${ }^{\text {i }}-\mathrm{Mn}-\mathrm{O} 1^{\text {i }}$	89.62 (4)	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{N} 1$	116.96 (11)
$\mathrm{O} 1-\mathrm{Mn}-\mathrm{Ol}^{\text {i }}$	180.0	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	126.70 (11)
C1-O1-Mn	135.24 (8)	N1-C3-C2	116.34 (10)
Mn-O1W-H1W1	116.9 (17)	N2-C4-N1	124.15 (11)
Mn-O1W-H1W2	115.8 (18)	N2-C4-H4A	117.9
H1W1-O1W-H1W2	105 (2)	N1-C4-H4A	117.9
$\mathrm{Mn}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2$	-1.40 (18)	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{O} 2$	-178.77 (11)
$\mathrm{Mn}-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	178.55 (9)	$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	1.38 (17)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 1-\mathrm{O} 1$	-178.88 (11)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	178.56 (12)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	1.17 (17)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	-1.61 (17)
O1-C1-C2-C3	-179.55 (11)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4-\mathrm{N} 1$	-1.49 (18)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	0.39 (18)	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4-\mathrm{N} 2$	0.19 (19)

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O}^{\mathrm{iii}}$	$0.80(3)$	$2.03(3)$	$2.8152(14)$	$170(2)$
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O}^{\mathrm{iii}}$	$0.82(3)$	$1.90(3)$	$2.7127(13)$	$176(3)$
$\mathrm{O} 2 W-\mathrm{H} 2 W 1 \cdots \mathrm{~N} 2$	$0.82(3)$	$1.91(3)$	$2.6929(14)$	$159(2)$
$\mathrm{O} 2 W-\mathrm{H} 2 W 2 \cdots \mathrm{O}^{\mathrm{iv}}$	$0.84(2)$	$1.85(2)$	$2.6754(13)$	$167(2)$
$\mathrm{N} 1 — \mathrm{H} 1 N \cdots \mathrm{O}^{v}$	$0.91(2)$	$1.92(2)$	$2.7966(14)$	$162(2)$

Symmetry codes: (ii) $x,-y+1 / 2, z-1 / 2$; (iii) $-x,-y+1,-z+1$; (iv) $x+1,-y+1 / 2, z-1 / 2 ;$ (v) $-x,-y,-z+1$.

