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Abstract

The evolutionary trajectories of complex traits are constrained by levels of genetic variation as 

well as genetic correlations among traits. Because the ultimate source of all genetic variation is 

mutation, the distribution of mutations entering populations profoundly affects standing variation 

and genetic correlations. Here, we use an individual-based simulation model to investigate how 

natural selection and gene interactions (i.e., epistasis) shape the evolution of mutational processes 

affecting complex traits. We find that the presence of epistasis allows natural selection to mold the 

distribution of mutations, such that mutational effects align with the selection surface. 

Consequently, novel mutations tend to be more compatible with the current forces of selection 

acting on the population. These results suggest that in many cases mutational effects should be 

seen as an outcome of natural selection rather than as an unbiased source of genetic variation that 

is independent of other evolutionary processes.

Introduction

The relationship between the genotype and the phenotype, sometimes called the genotype-

phenotype map, has taken center stage in the study of complex traits for very good 

reasons1,2. For instance, many important human disorders, such as susceptibility to heart 

disease or Alzheimer’s disease, are determined by numerous genetic loci as well as 

environmental effects, thrusting these traits directly into the realm of quantitative 

genetics3,4. An understanding of how genes and the environment conspire to shape these 

traits might lead to better screening and treatment options. The complexity of the problem 

calls for an approach based on correlations of genetic variants with trait values, either in the 

context of genome-wide association studies or quantitative trait locus mapping5,6, but these 

approaches typically identify genetic loci that explain only a small fraction of the genetic 
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variance in these sorts of complex traits7. This insufficiency problem has led to a widespread 

appreciation that interactions among genes, a phenomenon called epistasis in the 

quantitative genetics literature, could make a substantial contribution to the genetic variation 

in complex traits5-9, although the matter is still hotly debated10-12.

An added wrinkle to these considerations is that traits do not exist in isolation from other 

traits. Individuals who express one trait, such as hypertension, may display a tendency to 

express other traits, such as diabetes13. In other words, different traits can be genetically 

correlated, and from an evolutionary standpoint we would like to understand how such 

genetic correlations arise and constrain population-level processes14. Genetic correlations 

can arise from a number of factors, and chief among them are natural selection and 

mutation15,16. If certain trait combinations confer a fitness advantage relative to others, then 

the variants that work well in combination will tend to be inherited together due to the 

increased fitness of their bearers17. From a mutation standpoint, if a mutation that affects 

one trait in a positive fashion also affects a second trait in a similar direction due to 

pleiotropy, then these new mutations will contribute to a genetic correlation between traits. 

This source of genetic correlations can be very strong indeed18-20. Given the central role of 

this “mutational architecture” in the evolution of complex traits and the apparent importance 

of epistasis as revealed by studies of quantitative trait loci9,21-25, our goal in the present 

study is to investigate how epistasis influences the spectrum of mutations entering 

populations and how the evolution of mutational effects in turn constrains the genetic 

architecture of complex traits at the population level. Our results show that epistasis allows 

the mutational architecture of the multivariate phenotype to be shaped by natural selection 

and that the evolution of the mutational architecture in turn affects standing levels of genetic 

variance and the ability of a population to respond to selection.

Results

The Epistasis Model

We model epistasis using an individual-based Monte Carlo approach to simulate a 

population of N individuals, each of which has a two-trait phenotype determined by both 

genetic and environmental effects. The genetic effects arise from a suite of n loci, each of 

which is pleiotropic and potentially epistatic. Epistasis is included using the multilinear 

approach26-28, which has been employed extensively to study the effects of epistasis on a 

single-trait phenotype29-31. Our implementation allows pairwise interactions among all loci. 

Because the loci are pleiotropic, the epistatic effects can occur within or between trait 

effects. Our model accommodates both types of epistasis. An individual’s phenotype is 

determined by the sum of additive effects and epistatic terms (see Methods), plus an 

environmental effect drawn from a normal distribution with a mean of zero and variance of 

one. The lifecycle consists of (1) random mating, (2) production of offspring, including 

mutation and recombination, (3) natural selection specified by a bivariate Gaussian 

individual selection surface (summarized by the ω-matrix), and (4) population regulation 

(see Methods for more details). We start with a core set of parameter values (Table 1) and 

vary numerous combinations of parameters to investigate the evolution of the genetic 

variance and mutational architecture under a wide range of biologically plausible conditions. 
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For each combination of parameters, we run the simulation for 5000 initial generations to 

reach a balance between selection, mutation, and genetic drift. These initial generations are 

followed by 5000 experimental generations, during which we calculate variables of interest 

(see Methods). For each parameter combination, we conduct 20 independent runs of the 

complete simulation, including the 5000 initial and 5000 experimental generations. We 

average values of interest across these 20 independent runs. Our main variables of interest in 

the present model are the mutational variances (M11 and M22) and mutational correlation 

(rM), which together describe the distribution of the phenotypic effects of new mutations 

entering the population and can be thought of as the mutational architecture of the two-trait 

phenotype, which we will also refer to as the M-matrix. We are also interested in the 

variables describing the distribution of genetic variation in the population, including the total 

genetic variances and covariance (11VG, 22VG and 12VG), the additive genetic variances and 

covariance (11VA, 22VA and 12VA), and the epistatic genetic variances and covariance 

(11VAA, 22VAA and 12VAA). The additive genetic variances and covariances determine the 

response of the population mean to selection, and are often organized into a matrix known as 

the G-matrix.

The Evolution of the Genetic Variance and Mutation Matrix

Several key results emerge from our analysis. The first major result is that epistasis affects 

the evolution of the genetic and mutational architecture of quantitative traits under a very 

wide range of parameter combinations. In particular, the mutational variances (i.e., measures 

of the absolute size of the phenotypic effects of new mutations entering populations) of the 

quantitative trait loci show apparently adaptive changes in response to selection when 

epistasis is present (Table 2), and these changes in mutational variances carry implications 

for the standing levels of genetic variance. One striking result is that the magnitude of 

mutational variances is negatively related to population size (Table 3).

The evolution of the mutational variances has a profound effect on the standing levels of 

genetic variation in our simulated populations. For instance, in a strictly additive model, 

mutational variances cannot evolve, and larger populations tend to harbor greater amounts of 

genetic variance compared to smaller populations due reduced losses of variation because of 

a less important role of genetic drift in the large populations (Figure 1). In the presence of 

epistasis, however, the situation changes dramatically. Smaller populations evolve larger 

mutational variances, and this pattern becomes more pronounced as the average absolute 

values of epistatic parameters increase (Figure 1, Table 2). These larger mutational 

variances increase the amount of genetic variance introduced by mutation each generation, 

which in turn increases the standing level of genetic variation. For moderately strong 

epistasis (i.e., epistatic parameter variance, ), this increase in the mutational 

variance results in a tendency for larger populations to harbor less additive genetic variance 

than their smaller counterparts (Figure 1, Table 3). However, when populations become 

exceptionally small, the variance-reducing effects of drift become strong enough to 

overcome the increase in mutational variances, resulting in a non-monotonic relationship 

between population size and additive genetic variance under moderate to strong epistasis 

(Figure 1). Thus, the evolution of the mutational variance, as a consequence of evolving 
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epistatic effects, has important implications at the population level in terms of standing 

levels of genetic variation.

Triple Alignment

Our second major result is that the mutational covariance evolves in a way that causes 

adaptive alignment with the individual selection surface. If selection favors certain 

combinations of traits, then the presence of epistasis allows the mutational architecture to 

evolve in a way that new mutations tend to reinforce these favorable trait combinations. This 

alignment result is very general, and it occurs under almost all investigated parameter 

combinations, as evidenced by the evolution of a positive mutational correlation whenever 

we impose correlational selection (Tables 2 and 3). We investigate the veracity of the 

alignment between the individual selection surface (the ω-matrix), the additive genetic 

architecture (the G-matrix), and the mutational architecture (the M-matrix), by conducting 

simulation runs involving selection surfaces oriented differently in phenotypic space, but 

otherwise of identical shape, and tracking the evolutionary responses of the G-matrix and 

M-matrix. When we perform this exercise, we find remarkable alignment between the ω-

matrix, the G-matrix and the M-matrix (Figure 2). Under our parameter combinations, the 

elongate selection surface results in a somewhat less elongate G-matrix, and in turn an even 

less eccentric M-matrix, but the leading eigenvectors of all three matrices align almost 

perfectly in phenotypic space. These aligned M-matrices tend to remain stable within a run, 

and while different runs sometimes produce quantitatively different M-matrices, nearly all 

of them evolve toward alignment with the selection surface (Supplementary Table 1). Figure 

2 shows results from a large population (N = 4096), but this sort of triple alignment also 

occurs in much smaller populations (Supplementary Table 2), even though the alignment is 

disrupted somewhat in smaller populations by the operation of genetic drift.

The evolution of larger mutational variances in small populations can be understood by 

considering the relationship between average allelic effects at the quantitative trait loci and 

the average epistatic coefficients for each locus. Because the epistatic coefficients are 

parameters in the multilinear model, they do not change during a given simulation run (see 

Methods). Rather, epistatic contributions, and hence genotypic values, evolve as the allelic 

effects of individual loci change over evolutionary time. Loci with favorable epistatic 

coefficients can evolve larger allelic effects that enhance their epistatic effects. Alternatively 

loci can evolve allelic effects in opposition to their epistatic coefficients to reduce the 

phenotypic effects of new mutations. Figure 3 shows the relationship between average 

allelic effects and average epistatic coefficients in a small population (N = 128) in which 

large mutational variances evolve, and in a large population (N = 2048) in which small 

mutational variances evolve. In the small population, we see a very weak, non-significant 

negative relationship between average allelic effects and average epistatic coefficients. 

However, in the large population, we see a strong and highly significant negative 

relationship. Thus, in the large population, loci with negative epistatic effects on average 

tend to have positive allelic effects and loci with positive epistatic effects tend to evolve 

negative allelic effects, with the consequence that the reference effects of most new 

mutations are largely counteracted by their opposing epistatic effects. This masking process 

due to opposing reference and epistatic effects is more important in larger populations than 
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smaller populations, resulting in a negative relationship between mutational variances and 

population size. In Figure 3, for the sake of simplicity, we address only the evolution of the 

mutational variance at one trait, but the evolution of mutational covariances arises from 

similar processes. In short, the mutational architecture evolves as a consequence of the 

quantitative trait loci evolving allelic effects that interact with their epistatic coefficients 

according to the current regime of selection and drift.

One other consequence of the evolution of the mutational architecture under epistasis is that 

the alignment of the M-matrix with the G-matrix will tend to strengthen any additive genetic 

correlations that exist in the population (Tables 2 and 3). Except under very strong epistasis 

or large population size and strong epistasis, the majority of genetic variance arising from 

epistasis is additive (Tables 2, 3, Supplementary Table 3), which means that this genetic 

variance can contribute to a response to selection. Indeed, our results indicate that a 

mutational architecture evolving under epistasis can enhance a population’s ability to 

respond to selection. For instance, in small populations with very high mutational variances 

(caused by epistasis), we see a stronger response to selection compared to larger populations 

(Supplementary Table 3). Much of the genetic variance in the smaller population is 

attributable to the large mutational variance, which is a product of the evolution of the 

mutational architecture made possible by epistasis. However, the majority of the genetic 

variance is nonetheless additive (compare VA to VG in Supplementary Table 3), and 

therefore available for natural selection. Similarly, the genetic covariance, which is 

strengthened by the alignment of the G-matrix and M-matrix, is mainly additive genetic in 

nature and thus produces a correlated response to selection (Supplementary Table 3).

Evolution of the M-matrix and triple alignment of the type we describe here occurs under 

almost all parameter combinations. Regardless of the strength of epistasis (Table 2), 

population size (Table 3), mutational variance of reference effects (Supplementary Table 4), 

or strength of stabilizing selection (Supplementary Table 5), we see a tendency for the M-

matrix to align with the selection surface, as evidenced by the evolution of a positive 

mutational correlation in the presence of positive correlational selection. However, we do 

observe that the evolution of the mutational correlation becomes less pronounced as 

mutations become sufficiently rare (Supplementary Table 6).

Discussion

Our analysis of the two-trait version of the multilinear model of epistasis provides several 

important insights into the evolution of the genetic variance of quantitative traits. The first 

key insight is that epistasis allows the evolution of mutational effects and in particular larger 

mutational effects and variances in smaller populations. These larger mutational variances, 

in turn, cause smaller populations to harbor greater amounts of additive genetic variance 

than larger populations, a counterintuitive result that is nevertheless consistent with the 

broader literature on the evolution of mutational effects and mutational robustness32-34, 

which is defined as the ability of an organism or trait to maintain its function despite the 

occurrence of novel mutations33. The second major insight from our model is that epistasis 

allows the mutational matrix to evolve toward alignment with the individual selection 

surface. Because both the mutational matrix and the individual selection surface influence 
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the shape and orientation of the G-matrix, we find that epistasis produces a situation of triple 

alignment, in which patterns of mutation, genetic variation and selection evolve toward a 

common orientation in phenotypic space. These results illuminate the potential importance 

of epistasis and the evolution of mutational effects in evolutionary processes.

The most counterintuitive result in our study is that smaller populations evolve larger 

mutational variances than larger populations to such a degree that smaller populations tend 

to harbor greater levels of additive genetic variance in quantitative traits. This pattern likely 

arises from three main processes, one driven by epistasis and the other two arising from 

genetic drift. First, because epistasis is non-directional on average in our model (i.e., 

positive and negative interactions potentially balance), mutational variance tends to increase 

in the absence of other evolutionary forces (see Methods). Second, the efficacy of stabilizing 

selection is lower in smaller populations, allowing these populations to maintain alleles with 

larger “reference” effects, which can be thought of as the phenotypic effect the allele would 

have in the absence of epistasis. These larger reference effects in turn increase the absolute 

magnitude of epistatic contributions. In particular, large reference effects at some loci can be 

compensated for by large reference effects of opposite sign at other loci, thus leading to 

more compensatory evolution in small populations. For a seemingly similar observation in a 

different model, see the recent report from Rajon and Masel35. The third cause of a higher 

mutational variance in smaller populations is that stabilizing selection favors the evolution 

of smaller additive genetic variances36, a phenomenon that has been observed in other 

studies as an increase in mutational robustness in large populations34,37. Because smaller 

populations tend to have their phenotypic means displaced away from the bivariate optimum 

by the action of genetic drift, they experience larger absolute forces of directional selection, 

which favors an increase in additive genetic variation38, and less stabilizing selection 

compared to larger populations. Therefore, the evolution of mutational robustness is less 

effective in the smaller populations. Together, these factors produce large mutational and 

additive genetic variances in small populations.

Another possibility is that multiple quasi-stable equilibria exist in our simulated populations, 

a phenomenon that has been observed in other studies of the multilinear model of 

epistasis26, and that genetic drift allows smaller populations to shift between these equilibria 

more often than larger populations39. Such a scenario could also produce an increase in 

genetic variance and mutational variances in the small populations. Regardless, despite the 

fact that selection is less efficient in small populations due to the effects of genetic drift, our 

results show that the combined action of drift and selection can allow these small 

populations to maintain large mutational variances. Thus, these conflicting evolutionary 

pressures combine to produce a negative correlation between effective population size and 

mutational variances, and we see a pronounced manifestation of this expectation in our 

results (Table 3).

Our analysis of the evolution of the orientation of the mutational matrix extends previous 

work, which focused exclusively on the evolution of the mutational correlation. When the 

mutational correlation is treated as a quantitative trait in an additive model, it has a tendency 

to evolve toward alignment with the selection surface20. However, a much more realistic 

way to model the evolution of the M-matrix is by using an explicit, general model of 
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epistasis, as we have done here. Our results show that, indeed, the mutational correlation 

does evolve toward alignment with the selection surface, and more importantly, the 

mutational variances and covariances evolve in tandem to produce a mutational matrix 

nearly perfectly aligned with the selection surface. Under these circumstances, the selection 

surface and mutational matrix both influence the standing genetic variance in the population, 

which also results in triple alignment of the M-matrix, G-matrix, and selection surface. This 

alignment scenario is important from an evolutionary standpoint, because constraints 

imposed by the M-matrix can be quite strong18,19, but here we see that these mutational 

constraints are shaped in part by natural selection. Triple alignment means that new 

mutations entering the population will tend to fall along the ridge of the selection surface, if 

there is one, thus mitigating their deleterious impacts. Furthermore, triple alignment will 

facilitate evolution along both genetic and selective lines of least resistance40,41. Thus, the 

evolution of robustness and of evolvability occur simultaneously in our model33,42,43.

Our study has several limitations that offer fodder for future work on how epistasis affects 

multivariate trait evolution. Importantly, we follow the convention of other individual-based 

studies of quantitative genetic phenomena, including epistasis, and use unrealistically high 

per-locus mutation rates. Although this rate inflation is likely to facilitate the evolution of 

genetic architecture34, this device is necessary because realistic per-locus mutation rates in 

such simulations tend to produce unrealistically low levels of additive genetic variance. For 

instance, with mutation rates on the order of 10-6 or 10-7, our populations lose all genetic 

variation and all interesting evolutionary phenomena cease to occur. This result illustrates 

that we still do not fully understand the mechanisms maintaining genetic variation in natural 

populations, but it also represents a real constraint for the type of model we employ here36. 

It is worth noting, however, that our mutation rates are much more realistic than those used 

in some univariate studies of the multilinear model. Le Rouzic et al.30, for instance, 

employed a per-locus mutation rate of 0.01, arguing that the mutation rate has little effect on 

the qualitative dynamics of the system beyond affecting the timescale of evolution44,45. In 

addition, our model typically focused on quantitative traits determined by a small number of 

loci, typically 20, due to computational constraints. Actual traits in living systems may be 

affected by hundreds or thousands of loci, which would give them a much larger mutational 

footprint than the traits considered here. Moreover, if quantitative traits are sometimes 

affected by suites of physically linked genes, then mutations at these supergenes could occur 

more frequently than they would occur for any single gene in the genome. These sorts of 

tightly linked gene clusters are appropriately simulated by the type of model we used here, 

where each simulated locus could be interpreted as a group of physically linked genes 

affecting the phenotype. Regardless, progress in reconciling simulation-based models and 

real data will require additional data on the genetic details of multivariate, quantitative 

phenotypes.

Our results also show that the type of epistasis influences the evolution of mutational 

architecture. Most of our simulations allow all possible pairwise epistatic effects. However, 

in our model all loci are pleiotropic, meaning each locus has an effect on trait one and an 

effect on trait two, so epistatic effects can potentially occur within or between trait effects 

across loci. If only within-trait effects are allowed (e.g., the trait one effect at one locus 
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interacts with the trait one effect at another locus to affect only the trait one phenotype), then 

the mutational correlation cannot evolve (Supplementary Table 7). Thus, the alignment of 

the M-matrix with the selection surface requires at least some between-trait epistasis. Recent 

empirical studies indicate that this type of epistasis, necessary for the evolution of 

mutational covariances, does exist in natural populations. This type of epistasis has been 

termed “differential epistasis” by Cheverud and colleagues46 and has been shown to occur 

for morphological and physiological traits in mice24,25,47.

The results of the present model should provide a foundation for studies involving more 

realistic assumptions, and several obvious directions for future studies emerge from our 

results. For instance, our model ignores complications such as dominance, directional 

epistasis and higher-order epistasis, all of which can influence the evolution of the 

mutational architecture29,48. We also allow all pairwise epistatic interactions among loci, 

whereas the genetic architectures of actual traits are probably determined by gene networks 

with far fewer epistatic interactions. Furthermore, we constrain the epistatic parameters to 

remain constant within a simulation run, a feature that we retain from the univariate version 

of the multilinear model. However, in actual biological systems, the strengths of epistatic 

interactions among loci may evolve. A model with evolving epistatic coefficients would 

require assumptions about the genetic basis and inheritance of epistatic effects and is well 

beyond the scope of the model we present here, but such a model could be very enlightening 

with respect to the evolution of mutational and genetic architectures of complex traits.

In summary, the application of the multilinear model of epistasis to a two-trait phenotype 

results in several startling insights into the evolutionary process. The most important insight 

is that natural selection, embodied by the individual selection surface, causes mutational 

architectures to evolve in an adaptive way. This result contradicts the simplistic view of 

mutation presented in most texts in which mutation is claimed to be random with respect to 

adaptation. Our results reinforce and extend the results of other studies that have addressed 

various aspects of the evolution of the mutational architecture by exploring the effects of 

epistasis in the univariate case28-31,39, by examining the evolution of mutational 

correlations20,47, and by addressing the effects of phenotypic plasticity on the evolution of 

mutational processes49. Our approach is unique in that we allow the mutational variances 

and covariance to evolve simultaneously, and our results show a striking pattern of three-

way alignment across levels of biological organization. In particular, the M-matrix, which 

describes the distribution of mutational effects entering the population, evolves to align with 

the individual selection surface. This alignment increases mutational robustness in the sense 

that it is expected to reduce the fitness impacts of novel mutations32,34. In turn, the G-

matrix, which describes the standing levels of additive genetic variance in the population, 

evolves to align with both the M-matrix and the selection surface. This three-way alignment 

of mutation, genetic variation, and selection is significant for a number of reasons. First, the 

mutational architecture of traits should not be seen as something that is independent of 

natural selection. Rather, the mutational architecture is partially a product of natural 

selection50. Second, the evolution of the M-matrix will tend to reinforce any genetic 

correlations produced by selection, and this reinforcement increases the efficacy of 

correlated responses to selection, which determine evolutionary trajectories in phenotypic 
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space. Finally, the extent of alignment between the mutational architecture and the selection 

surface will influence the fitness effects of new mutations. Stronger alignment reduces the 

deleterious impacts of new mutations. In general, our results suggest that the already 

impressive forces of natural selection may extend to the very roots of the evolutionary 

process by shaping the nature of variation that enters populations as a consequence of novel 

mutations.

Methods

The Multivariate Multilinear Model

Our Monte Carlo simulation is an extension of the models used by Jones and colleagues18-20 

to study the evolution of additive genetic variances and covariances in sexually reproducing 

populations. These models explicitly simulate all individuals in the population. Every 

individual has a two-trait phenotype determined by its genotype and random environmental 

effects. In the original models, all loci are assumed to be additive, so an individual’s genetic 

value is determined by simply summing across all alleles at all loci. As in the original 

model, all loci are assumed to be pleiotropic, so each allele has an effect on both traits and 

both effects for a particular allele are inherited together.

The most important difference between the present model and previous models is the 

addition of epistasis. Our implementation of epistasis follows the multilinear model28, which 

has been used successfully to study the effects of epistasis on a univariate phenotype29-31. 

The addition of epistasis to the model changes the way a multilocus genotype is converted 

into a phenotype. The multilinear model simply extends the additive model by specifying 

additional terms, which describe the effects of epistasis. Thus, in the univariate multilinear 

model, the phenotype is given by

(1)

where X is the individual’s genotypic value for the quantitative trait, ξ0 is the value of an 

arbitrary reference genotype, which for our model with a stationary intermediate optimum 

can be assumed to be zero, y(i) is the reference effect of an individual’s genotype at locus i 

(the two allelic values in the diploid organism are summed to obtain the genotype’s 

reference effect), and ε(i,j) is an epistatic coefficient, which determines the nature of the 

interaction between locus i and locus j. Clearly if all epistatic coefficients are zero, then this 

model reduces to a strictly additive model and the reference effects correspond to additive 

effects. This description of the multilinear model includes only pairwise interactions. In 

principle, higher order interactions can be included in the model, but in the present study we 

allow only pairwise interactions between loci.

The multiple trait version of this multilinear model requires additional notation and 

additional epistatic terms. In the present paper, we restrict attention to the two-trait case, 

which is simple enough to understand yet complex enough to capture the essence of the 

evolution of the multivariate phenotype. In our model, every locus is potentially pleiotropic, 

in the sense that it has a reference effect on both traits. In addition, every locus is potentially 
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epistatic, as specified by the multilinear model. In this model, then, every individual has two 

genotypic values, one for each trait, specified by

(2)

where aX is an individual’s genotypic value for trait a, and aξ0 is the value of the reference 

genotype, which will be zero for our analysis. As in the univariate case, ay(i) is the 

individual’s reference genotypic value on trait a at locus i, and in the absence of epistasis, 

this value would be the additive effect of the locus. The final summation term represents the 

epistatic interactions among loci, where abcε
(i,j) gives the epistatic effect on trait a of the 

interaction between the effects of locus i on trait b and locus j on trait c. We assume that no 

locus interacts with itself, so abcε
(i,i) = 0 and that interactions are symmetric in the sense 

that abcε
(i,j) = acbε(j,i) . Each epistatic term is simply the product of the relevant epistatic 

coefficient and the reference effects at the two interacting loci. However, this model allows 

the reference effects of the two loci on one trait to affect an individual’s genotypic value at 

another trait, so the model is general, and most forms of epistasis can be represented as 

special cases of this multivariate multilinear model.

Equation (2) allows us to calculate an individual’s genotypic value across all loci at both 

traits, taking into account all possible pairwise epistatic interactions. We simulate 

environmental variance by drawing a value from a normal distribution with a mean of zero 

and a variance of one independently for each trait. These environmental effects are added to 

the genotypic values to determine an individual’s phenotypic value for each quantitative 

trait.

The Life Cycle – Mating, Recombination, and Mutation

Each generation of the simulated lifecycle begins with the adults of the previous generation 

mating and producing zygotes. The epistasis model employs a mating system in which each 

female mates with exactly two males and produces a total of four offspring, two from each 

father. Mates are chosen at random, and individual males can mate as many times as they 

are chosen. This breeding design facilitates the estimation of quantitative genetic values, as 

described below. Alleles are inherited in a Mendelian fashion, and we assume that all loci 

are physically unlinked.

Each gamete contributing to a zygote has a probability of nμ of carrying a new mutation, 

where n is the number of loci affecting the quantitative traits and μ is the per-locus mutation 

rate. Recalling that each locus affects both quantitative traits, we draw mutational effects at 

random from a bivariate normal distribution with mutational variances of  (for trait one) 

and  (for trait two) and a mutational correlation specified by rμ. These mutational effects 

are then added to the existing reference effects of the allele undergoing the mutation. Hence, 

each time a mutation occurs, it alters the pleiotropic allele’s effects on both traits. The 

changes are at the level of reference effects, which will be additive effects if all the epistatic 

parameters are zero. However, in the presence of epistasis, changes in reference effects do 

not necessarily translate directly into changes in additive effects. Even though the epistatic 

coefficients remain constant throughout a simulation run, the epistatic interactions can 
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evolve as the allelic effects present at various loci change over time. Because the epistatic 

interactions also determine the mapping of reference effects to the genotypic value of an 

individual, this model allows the M-matrix, which summarizes the distribution of new 

mutations entering the population, to evolve as well.

The Life Cycle – Selection

We impose selection by assuming an individual selection surface with the shape of a 

bivariate Gaussian function. Assuming z is a vector of an individual’s phenotypic values at 

the traits under consideration, the probability of surviving selection is

(3)

where θ is a vector of trait optima, T represents matrix transposition, and ω is a matrix that 

describes the shape of the selection surface. In our two-trait case, ω is a symmetric 2×2 

matrix with diagonal elements, analogous to variances, indicating the strength of stabilizing 

selection on each trait. Smaller values result in a steeper surface with stronger stabilizing 

selection. The off-diagonal element, analogous to the covariance, indicates the strength of 

correlational selection, and can be conveniently summarized as the selectional correlation, 

rω, with larger absolute values corresponding to stronger correlational selection (see below).

We impose viability selection by choosing a uniformly distributed pseudorandom number 

between 0 and 1 for each individual. If the number is less than W(z), then the individual 

survives to the next phase of the life cycle, population regulation.

The Life Cycle – Population Regulation

In this evolutionary model, we assume that a population is near its carrying capacity, K. We 

restrict attention to cases in which the population invariably produces more than K offspring, 

and we impose population regulation by choosing K individuals at random from the 

survivors of selection. We also impose an equal sex ratio on these adults. These individuals 

are the adults of the new generation, and they will go on to mate as described above to 

produce the next generation of progeny.

Important Parameter Values

In this model, we restrict attention to a population evolving in response to a stationary 

individual selection surface. Thus, genetic drift and stabilizing selection are the main 

sources of evolutionary change. Some directional selection occurs when drift moves the 

population away from the bivariate optimum, and this directional selection moves the 

population back toward the optimum.

In the present analysis, we explore a large swath of parameter space, and we report results 

from the most important parameters. An exhaustive exploration of parameter space is 

intractable for this sort of model, so we start with a core set of parameter values and 

examine how deviations from this core set affect evolutionary dynamics. The core parameter 

set is given in Table 1.
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Several of these parameters require some explanation. As noted above, the parameters 

describing the selection surface, ω, whose elements are ω11, ω22 and ω12, are critically 

important because they determine the strength of selection and the extent to which 

correlational selection acts on the population. For convenience, we use the selectional 

correlation (rω) rather than ω12, because rω, which is constrained to fall between −1 and 1, is 

more conceptually understandable. Of course, rω is simply ω12 / , so the conversion 

between the selectional correlation and the selectional covariance is trivial. The mutational 

variances ( ) and mutational correlation (rμ) for reference effects determines the 

distribution of new mutations entering the population. Epistasis can cause the reference 

effects to be only loosely connected to the effects of the mutation on the genotype, so we 

specify the latter as the M-matrix (see below). The M-matrix is thus a variable (of 

considerable interest) in this model rather than a parameter, whereas the effects of mutations 

on the reference effects of alleles are true parameters that can be specified and remain 

constant for a given simulation run. Because we are interested in the tendency for epistasis 

to generate mutational correlations, we use a value of zero for the mutational correlation of 

reference effects (rμ).

Another feature of the epistasis model is that there are many epistatic coefficients. For 

instance, in a single-trait multilinear model, there will be a total of n(n-2)/2 such 

coefficients, where n is the number of loci. In the two-trait multilinear model, there are six 

times as many coefficients, because all interactions between reference effects within and 

between traits must be considered. Thus, a model with 20 loci has a total of 1080 unique 

epistatic coefficients. The only feasible way to model epistasis, then, is to draw these 

coefficients from a distribution. We draw them from a normal distribution with a mean of 

zero and a variance of . This approach allows a mixture of positive and negative epistasis. 

One key aspect of this model is that the epistatic parameters are set at the beginning of each 

independent simulation run, and they do not change during the run. Because the epistatic 

coefficients remain constant, the epistatic effects evolve as a consequence of changes in the 

reference effects of loci, which do evolve as a consequence of mutation, drift, and selection. 

The other parameters listed in Table 1 also remain constant throughout a particular 

simulation run.

Evolution of Mutational Effects

We show for the univariate case that the mutational variance will increase in the absence of 

other evolutionary forces if there is no directional epistasis, i.e., if E[ε]=0, as assumed 

throughout this paper. Consider just two loci. Then, by eq. (1), the effect of a mutation of 

size α at the first locus is

(4)

where we write ε = ε(1,2). Because E[α]=0, also E[Δm]=0. Taking expectations with respect 

to mutational effects, epistasis parameters, and locus effects, the variance of mutational 

effects becomes
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(5)

where we used pairwise independence of α, ε, and locus effects. Now, the assumption E[ε] = 

0 yields

(6)

However, at each particular locus mutational variances may increase or decrease, depending 

on the particular choice of epistatic parameters.

Statistical and Estimation Issues

The addition of epistasis to our model carries with it a number of challenges regarding the 

estimation of variables of interest. In this study, we are interested in the distribution of total 

and additive genetic variance in the population at any given time, and we are also keenly 

interested in the evolution of the M-matrix, which serves as the central source of motivation 

of this study. We represent the elements of the M-matrix as M11, M22 and M12, and we also 

specify the mutational correlation as rM (which is equal to M12 / ).

We estimate the genetic variance components by building a half-sib breeding design into the 

model. By having each simulated female mate twice, we generate a number of half-sib 

families equal to the number of females in the population. The analysis of this breeding 

design can be accomplished through a standard analysis of variance approach51. Our 

population lacks dominance, so the total genetic variance can be partitioned into parts 

arising from additive genetic variance and additive by additive epistatic variance. Even 

when epistatic effects are large, much of the genetic variance arising from the epistatic terms 

in equation (2) is additive and thus contributes to parent-offspring resemblance.

The M-matrix is prohibitively difficult to estimate analytically, due to the many epistatic 

interactions and the possible presence of linkage disequilibrium among loci, so we use an 

empirical approach to determine the distribution of mutational effects. Every 100 or 200 

generations, we make a copy of all progeny produced and induce individual mutations 50 

times per locus for each individual. After each single-locus mutation, we refigure each 

individual’s genotypic value for the two traits, as described in equation (2), and compare this 

new genotypic value to the value before mutation. The individual’s genotype is then set back 

to its original value before the next mutation. The change in the genotypic value is the effect 

of the mutation, and we use this approach to compile a distribution for each locus separately. 

In most cases, we report the average M-matrix, which we calculate as the mean mutational 

variances and mutational correlation across loci.

For each simulation run, we start with an initial population of adults with population size (N) 

equal to the carrying capacity (K), and indeed N = K for the duration of each run. Each locus 

starts with five equally frequent alleles with allelic effects drawn from a bivariate normal 

distribution with a mean of zero, standard deviations of the corresponding mutational 

standard deviation divided by the number of loci, and covariance of zero. This initial 
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population is then permitted to evolve for a period of 5000 generations to reach a state of 

quasi-equilibrium between genetic drift, selection and mutation. These initial generations are 

followed by 5000 experimental generations during which we calculate values of interest. For 

each combination of parameter values, we typically conduct 20 independent simulation runs. 

Variables are often averaged across generations within a run and then these means are 

averaged across runs to give the values we report.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The additive genetic variance and the mutational variance of a trait evolve as a 
function of underlying levels of epistasis.
These simulation results were produced using our core set of parameters, except we imposed 

correlational selection, rω = 0.9, and varied the population size from 64 to 2048 across 

different runs. The top panel (a) shows the relationship between the equilibrium additive 

genetic variance for trait one and the population size. In a strictly additive model, larger 

populations maintain larger amounts of additive genetic variance (red diamonds), but with 

moderate to strong epistasis (green squares, open and closed circles) the pattern is reversed 
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(with the exception of the smallest populations). The bottom panel (b) reveals the cause of 

this reversal. In an additive model, the mutational variance has no way to evolve, so small 

populations have the same equilibrium mutational variance as large populations (red 

diamonds). In the presence of epistasis, however, smaller populations evolve larger 

mutational variances than large populations (triangles, squares, circles), and these larger 

mutational variances in small populations contribute to a greater level of standing genetic 

variance, except when the effects of genetic drift are extremely strong (i.e., when N = 64). In 

(a) and (b), error bars show one standard error of the mean across 20 independent simulation 

runs; if error bars are not visible, then they are smaller than the symbol.

Jones et al. Page 18

Nat Commun. Author manuscript; available in PMC 2014 November 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Triple alignment of natural selection, genetic variation and mutation.
Epistasis promotes alignment of the individual selection surface (the ω-matrix), the additive 

genetic architecture (the G-matrix) and the mutational architecture (the M-matrix) of a two-

trait phenotype. The actual matrices are shown to the left, and graphical depictions of the 

overlapping matrices are shown to the right. These results are from simulations using our 

core parameter set, except that population size is 4096 and the individual selection surface 

(described by ω) is held at a constant shape but oriented with its long axis turned in a 

different direction in phenotypic space for different simulation runs (but note that within a 
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run the individual selection surface is always constant). The ellipses are 95-percent 

confidence ellipses, and the angle of the long axis of each ellipse is given by the leading 

eigenvector of the corresponding matrix (green for M, blue for G, and orange for ω) in a 

plot with trait one on the x-axis and trait two on the y-axis. The ω-matrix is not drawn to 

scale, but its orientation and proportions are correct. As the selection surface rotates, both 

the G-matrix and the M-matrix evolve to align with the selection surface in phenotypic 

space. This alignment result is extremely general and it occurs under almost all investigated 

parameter combinations.
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Figure 3. Epistasis allows the mutational variance to evolve as function of population size.
The average allelic effect can evolve to be correlated with the average epistatic coefficient, 

and the strength of this relationship varies with population size. These data are from 20 

independent simulation runs using our core parameter set, except with only 10 quantitative 

trait loci. In addition, we allow only within-trait epistasis affecting trait one and no epistasis 

involving trait two, with population sizes of (a) N = 128 and (b) N = 2048. Each point 

represents a single quantitative trait locus. The x-axis shows the magnitude of epistasis 

(mean epistatic effect of a locus, averaged across all of its epistatic coefficients), and the y-
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axis presents the mean allelic effect (or reference effect) of alleles at the corresponding 

locus, averaged across all alleles segregating at the locus. In small populations, large 

mutational variances are maintained by the evolution of a large range in allelic effects; we 

see a slightly negative but non-significant relationship between epistatic coefficients and 

allelic effects (linear regression, N = 200, R2 = 0.01, p = 0.09). In large populations (b), 

which evolve lower mutational variances than small populations, we see a much smaller 

range in allelic effects and these effects show a strong negative relationship with the mean 

epistatic coefficients across loci (linear regression, N = 200, R2 = 0.22, p << 0.0001). Thus, 

the allelic effects of a particular locus tend to evolve values that are largely counteracted by 

the epistatic effects of the locus in question. This figure is concerned with the evolution of 

the mutational variance, but a similar effect explains the evolution of mutational 

covariances.
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Table 1
Key parameters and core parameter values for the multivariate epistasis model.

Parameter Symbol Core Value Range Investigated

Adult carrying capacity K 512 64-4096

Adult population size N 512 64-4096

Number of offspring per female 2B 4 4

Number of loci n 20 4-50

Mutational variances of reference effects α1
2

,α2
2 0.05 0.01-0.50

Mutational correlation of reference effects r μ 0 −0.9-0.9

Mutation rate per locus μ 0.0005 0.0001-0.001

Selection surface width ω11,ω22 49 4-199

Selectional correlation rω 0 0-0.9

Variance of epistatic coefficients σε
2 1 0.1-10
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Table 2
The effects of the epistatic parameter variances on the genetic variance and the M-matrix.

rω σε
2

11 V G 22 V G r G 11 V A 22 V A 12VA(rA) 11 V AA 22 V AA 12 V AA M 11 M 22 r M

0 0 0.53 0.51 0.018 0.52 0.50 0.010 (0.02) 0.007 0.004 0.000 0.05 0.05 0

0.50 0 0.48 0.49 0.126 0.48 0.48 0.065 (0.14) 0.004 0.003 0.001 0.05 0.05 0

0.75 0 0.41 0.39 0.266 0.41 0.39 0.113 (0.28) 0.002 0.002 0.000 0.05 0.05 0

0.90 0 0.30 0.30 0.420 0.30 0.30 0.132 (0.44) 0.002 0.002 0.000 0.05 0.05 0

0 0.1 0.59 0.59 0.014 0.54 0.54 0.009 (0.02) 0.047 0.045 0.000 0.108 0.107 0.007

0.50 0.1 0.53 0.50 0.137 0.49 0.45 0.077 (0.16) 0.038 0.040 0.002 0.103 0.097 0.038

0.75 0.1 0.44 0.44 0.311 0.40 0.41 0.148 (0.37) 0.029 0.029 0.000 0.098 0.097 0.095

0.90 0.1 0.30 0.31 0.455 0.27 0.29 0.147 (0.53) 0.019 0.018 0.002 0.078 0.083 0.120

0 0.5 0.70 0.69 0.019 0.58 0.57 0.014 (0.02) 0.111 0.106 0.000 0.196 0.186 0.003

0.50 0.5 0.62 0.59 0.198 0.53 0.50 0.121 (0.24) 0.091 0.086 0.004 0.191 0.186 0.064

0.75 0.5 0.47 0.49 0.318 0.40 0.41 0.162 (0.40) 0.064 0.067 0.002 0.152 0.163 0.112

0.90 0.5 0.31 0.31 0.453 0.27 0.27 0.146 0.041 0.041 0.004 0.126 0.131 0.151

0 1.0 0.75 0.79 0.002 0.60 0.63 0.001 (0.00) 0.144 0.147 0.002 0.267 0.276 -0.002

0.50 1.0 0.67 0.64 0.185 0.54 0.51 0.124 (0.24) 0.114 0.113 0.002 0.251 0.248 0.057

0.75 1.0 0.45 0.44 0.278 0.36 0.35 0.131 (0.37) 0.082 0.082 0.003 0.195 0.189 0.066

0.90 1.0 0.31 0.31 0.441 0.25 0.26 0.141 (0.55) 0.054 0.048 0.004 0.168 0.167 0.141

0 10.0 0.75 0.74 0.008 0.46 0.44 0.003 (0.01) 0.277 0.280 0.002 0.565 0.553 0.005

0.50 10.0 0.59 0.60 0.134 0.35 0.36 0.078 (0.22) 0.227 0.224 0.010 0.496 0.491 0.047

0.75 10.0 0.42 0.40 0.191 0.25 0.25 0.078 (0.31) 0.151 0.142 0.007 0.411 0.389 0.043

0.90 10.0 0.23 0.23 0.260 0.14 0.14 0.059 (0.42) 0.081 0.085 0.007 0.282 0.284 0.074

Ave. SEM 0.016 0.017 0.019 0.015 0.016 0.011 0.004 0.004 0.001 0.009 0.009 0.017

These results are derived from a population evolving under the core parameter set, except we use selectional correlations (rω) ranging from 0 to 0.9 

(first column), and we use variances in our epistatic parameters ( ) ranging from 0 (no epistasis) to 10.0 (second column). The variables reported 

in this table include the total genetic variances for traits one and two (11VG, 22VG), the total genetic correlation between the traits (rG), the 

additive genetic variances and covariance (11VA, 22VA, and 12VA) with the additive genetic correlation shown parenthetically (rA), the additive-

by-additive epistatic variances and covariance (11VAA, 22VAA, and 12VAA), and the average mutational variances and mutational correlation 

across loci (M11, M22, and rM). The last row shows the average standard errors of the mean (SEM) across all entries in the corresponding column 

to provide a rough guide to the dispersion of the data. In the first four rows of the table, the values for VAA are not precisely zero, despite the 

absence of epistasis, due to a small amount of statistical error that arises from our breeding-design approach of estimating genetic variance 
components.
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Table 3
The effects of population size on the evolution of the genetic variance and the M-matrix.

r ω N 11 V G 22 V G r G 11 V A 22 V A 12VA(rA) 11 V AA 22 V AA 12 V AA M 11 M 22 r M

0 128 0.77 0.79 0.05 0.71 0.72 0.034 (0.05) 0.040 0.049 0.004 0.710 0.818 0.018

0.50 128 0.63 0.66 0.22 0.58 0.61 0.151 (0.25) 0.036 0.035 0.005 0.620 0.628 0.109

0.75 128 0.52 0.51 0.30 0.48 0.47 0.174 (0.37) 0.024 0.026 0.004 0.567 0.561 0.029

0.90 128 0.33 0.32 0.41 0.30 0.30 0.155 (0.52) 0.016 0.017 0.002 0.425 0.423 0.081

0 256 0.80 0.84 -0.02 0.72 0.75 -0.014 (-0.02) 0.065 0.070 0.000 0.463 0.498 -0.011

0.50 256 0.70 0.65 0.19 0.62 0.58 0.136 (0.23) 0.061 0.059 0.004 0.461 0.407 0.031

0.75 256 0.51 0.52 0.33 0.46 0.46 0.185 (0.40) 0.046 0.048 0.005 0.326 0.319 0.102

0.90 256 0.33 0.33 0.45 0.29 0.29 0.160 (0.55) 0.035 0.032 0.004 0.236 0.259 0.135

0 512 0.74 0.74 0.01 0.60 0.59 0.002 (0.00) 0.132 0.141 0.003 0.259 0.261 0.020

0.50 512 0.64 0.64 0.23 0.51 0.50 0.152 (0.30) 0.132 0.131 0.004 0.220 0.223 0.108

0.75 512 0.49 0.49 0.32 0.39 0.40 0.164 (0.42) 0.084 0.082 0.002 0.205 0.221 0.113

0.90 512 0.30 0.30 0.44 0.26 0.25 0.141 (0.55) 0.052 0.054 0.005 0.154 0.150 0.147

0 1024 0.70 0.70 0.00 0.44 0.44 0.003 (0.01) 0.240 0.246 -0.002 0.168 0.164 -0.009

0.50 1024 0.60 0.60 0.17 0.39 0.40 0.100 (0.25) 0.200 0.191 0.005 0.158 0.156 0.069

0.75 1024 0.43 0.43 0.28 0.32 0.30 0.127 (0.41) 0.128 0.125 0.004 0.142 0.135 0.105

0.90 1024 0.28 0.28 0.40 0.20 0.21 0.111 (0.54) 0.066 0.069 0.005 0.112 0.117 0.163

0 2048 0.68 0.65 -0.02 0.37 0.34 -0.013 (-0.04) 0.297 0.305 0.000 0.139 0.135 -0.012

0.50 2048 0.56 0.56 0.15 0.32 0.32 0.085 (0.27) 0.235 0.238 0.002 0.126 0.128 0.065

0.75 2048 0.40 0.39 0.24 0.25 0.24 0.095 (0.39) 0.147 0.146 0.003 0.112 0.108 0.097

0.90 2048 0.26 0.27 0.40 0.19 0.19 0.105 (0.55) 0.074 0.074 0.002 0.095 0.097 0.177

Ave SEM 0.019 0.018 0.020 0.018 0.016 0.013 0.004 0.004 0.002 0.015 0.016 0.020

Other than population size (N) and selectional correlation (rω), the parameter values used to generate this table are from the core set. The variables 

reported in this table include the total genetic variances for traits one and two (11VG, 22VG), the total genetic correlation between the traits (rG), 

the additive genetic variances and covariance (11VA, 22VA, and 12VA) with the additive genetic correlation shown parenthetically (rA), the 

additive-by-additive epistatic variances and covariance (11VAA, 22VAA, and 12VAA), and the average mutational variances and mutational 

correlation across loci (M11, M22, and rM). The last row shows the average standard errors of the mean (SEM) across all entries in the 

corresponding column to provide a rough guide to the dispersion of the data.
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