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Microsatellites are repeats of 1- to 6-bp units, and approximately 10 million microsatellites have been identified across the

human genome. Microsatellites are vulnerable to DNA mismatch errors and have thus been used to detect cancers with

mismatch repair deficiency. To reveal the mutational landscape of microsatellite repeat regions at the genome level, we an-

alyzed approximately 20.1 billion microsatellites in 2717 whole genomes of pan-cancer samples across 21 tissue types. First,

we developed a new insertion and deletion caller (MIMcall) that takes into consideration the error patterns of different types

of microsatellites. Among the 2717 pan-cancer samples, our analysis identified 31 samples, including colorectal, uterus, and

stomach cancers, with a higher proportion of mutated microsatellite (≥0.03), which we defined as microsatellite instability

(MSI) cancers of genome-wide level. Next, we found 20 highlymutatedmicrosatellites that can be used to detect MSI cancers

with high sensitivity. Third, we found that replication timing and DNA shape were significantly associated with mutation

rates of microsatellites. Last, analysis of mutations in mismatch repair genes showed that somatic SNVs and short indels had

larger functional impacts than germline mutations and structural variations. Our analysis provides a comprehensive picture

of mutations in the microsatellite regions and reveals possible causes of mutations, as well as provides a useful marker set for

MSI detection.

[Supplemental material is available for this article.]

Recent large-scale whole-genome sequencing (WGS) studies have
revealed the complexity of the mutational landscape of the cancer
genome (Fujimoto et al. 2016;Nik-Zainal et al. 2016;Hayward et al.
2017; Northcott et al. 2017). In cancer genomes, various types of
mutations, such as single-nucleotide variants (SNVs), short indels
(insertions and deletions [IDs]), genomic rearrangements, copy
number alterations, insertion of retrotransposons, and virus ge-
nome integrations, have been identified, and their oncogenic roles
have been characterized (Helman et al. 2014; Ewing et al. 2015;
Fujimoto et al. 2016; Nik-Zainal et al. 2016; Hayward et al.
2017; Northcott et al. 2017). Additionally, genome sequencing
studies have revealed the molecular basis of somatic mutations
(Alexandrov et al. 2013, 2016; Chen and Zhang 2015; Tubbs and
Nussenzweig 2017).However, somaticmutations inmicrosatellites
or repeat sequenceshavenotbeenwell characterized ina largeWGS
cohortowing todifficulties inaccuratelydetectingmutationsusing
presently available short-read sequencing technologies.

A microsatellite is defined as a tract of repetitive DNA motif
composed of short repeating units (Ellegren 2004). The mutation
rate of microsatellites has been known to be higher than other ge-
nomic regions owing to DNA polymerase slippage during DNA
replication and repair (Ellegren 2004). In cancer genetics studies,
microsatellite instability (MSI) has been used for molecular diag-
nosis of Lynch syndrome and cancers with mismatch repair
(MMR) deficiency (Boland and Goel 2010). Furthermore, MSI-
positive tumors are generally burdened with higher numbers of
somatic mutations and present many mutation-associated neoan-
tigens, which might be recognized by the immune system.
Currently, MSI can also be used as a marker to predict the effect
of immune therapy (Le et al. 2017). The MSI phenotype is most
common in colorectal (CR) cancers, stomach (ST) cancers, and
uterine (UT) endometrial cancers (10%–15%), although it has
also been observed across many tumor types at a few percentages
(Boland and Goel 2010; Bailey et al. 2018). The MSI phenotype
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is defined by the presence of somatic indels of two to fivemicrosat-
ellite markers and immunohistochemistry (Shia 2008; Boland and
Goel 2010; Geiersbach and Samowitz 2011).

Irrespective of the clinical importance of microsatellites,
large-scale analysis of somatic changes in microsatellites across
various type of cancers is limited for WGS data (Kim et al. 2013;
Cortes-Ciriano et al. 2017). In the current study, we analyzed
indels in microsatellites for 2913 International Cancer Genome
Consortium (ICGC) pan-cancer samples from 21 tissues (The
International Cancer Genome Consortium 2010; The ICGC/
TCGA Pan-Cancer Analysis of Whole Genomes Consortium
2020) to reveal the whole-genomemutational landscape of micro-
satellite regions. We developed a method to detect somatic indels
in microsatellite regions, selected appropriate parameters for our
purpose, and identified indels inmicrosatellite regions.We identi-
fiedMSI-positive samples and factors affecting themutation rate of
microsatellites, as well as highly mutated microsatellites. We also
analyzed the association of mutation rate of microsatellites with
somatic and germline mutations in DNA repair genes and com-
pared mutational signatures between MSI and other samples.
Our analysis provides a comprehensive picture of mutations in
themicrosatellite regions and reveals possible causes ofmutations,
as well as provides a useful marker set for MSI detection.

Results

Identification of microsatellite regions in the genome

We detected microsatellites using three methods (MsDetector,
Tandem Repeat Finder, and MISA software) (Benson 1999; Girgis
and Sheetlin 2013; Hause et al. 2016). To exclude microsatellites
potentially arising from readmapping errors, we selectedmicrosat-
ellites based on the uniqueness of flanking sequences and pattern
of repeats. A total of 9,292,677 microsatellites were used for subse-
quent analyses. Within these selected microsatellites, it was ob-
served that the MISA software identified a larger number
comparedwith othermethods (Supplemental Fig. S1). Poly(A) tails
of mobilized transposable elements are also included in this anal-
ysis as microsatellites, if the length is >5 bp.

Error rate estimation of microsatellites

During library preparation and sequencing processes, indel errors
can be introduced by PCR in reads containing short repeats owing
to replication slippage of DNA polymerases. Because the error rates
should depend on the length and type of microsatellites, we first
estimated the error rates of different types of microsatellites. The
type of microsatellites was defined by length of the microsatellite
region in the reference genome and repeat unit (see Methods).
By using sequence data of Chr X from 32 normal tissues of male
individuals, we estimated the error rate among different types
and lengths of microsatellites. As the male Chr X is hemizygous,
the error rate can be inferred without the influence of heterozy-
gous polymorphisms (Supplemental Fig. S2; Fujimoto et al.
2010; Maruvka et al. 2017). As expected, error rates depended on
the unit and length of the microsatellites, with longer microsatel-
lites having higher error rates (Supplemental Fig. S3). In all types of
microsatellites, deletion errors were more frequent than insertion
errors, and smaller changes of unit number were predominant
(Supplemental Fig. S3). These results suggest that PCR or sequenc-
ing processes are prone to induce short deletion errors. Error rates
of microsatellites between 5 and 9 bp in length within the refer-
ence genome were very low (<0.2%), whereas those of longer mi-

crosatellites were higher (>5% error rate for 20–100 bp of
microsatellites in the reference genome length); 2-bp repeats had
higher error rates than other microsatellites (Supplemental Fig.
S3). The A/T type of microsatellite was observed to have higher er-
ror rates compared with G/C microsatellites (Supplemental Fig.
S3). Because the estimated error rates were quite different among
the types and lengths of microsatellites, we used the difference be-
tween error rates to detect somatic indels in themicrosatellites.We
generated a table of error rates for analyzingmutations inmicrosat-
ellite regions based on the estimated error rates (Supplemental
Table S1).

Validation with simulation data sets and determination

of thresholds

Mutations in microsatellite regions were identified based on likeli-
hoods (see Methods). To estimate false-positive and false-negative
rates and to select appropriate parameters, we generated simula-
tion data sets by using sequence reads mapped on Chr X of male
individuals. In this analysis, the false-positive rate was defined as
heterozygous calls in homozygous loci (additional alleles are de-
tected), and false negatives were homozygous calls in heterozy-
gous loci (existing alleles are missed). First, we determined the
genotype of each microsatellite on Chr X. Because Chr X is hemi-
zygotic in males, we considered the major reads as the true geno-
type of each sample. We assumed that the major read type is the
true genotype and others were errors. For example, when there
were 10, three, and one reads containing (AT)8, (AT)7, and (AT)9
in a microsatellite locus, we considered (AT)8 the true genotype
(Supplemental Fig. S2). We then mixed Chr X reads from two
male individuals and identified the variation in the microsatellite
regions with our algorithm (Supplemental Fig. S2). By comparing
the true genotypes and identified variants from the mixed data,
we estimated the false-positive and false-negative rates (Supple-
mental Fig. S2). The false-positive and -negative rates were varied
according to the likelihood values (L), and higher Ls had higher
false-negative and lower false-positive rates (Supplemental Fig.
S4). To identify somatic mutations in microsatellites, we required
reads that completely cover target microsatellites. The length of
reads is ∼100 bp; therefore, longer microsatellites have fewer reads
covering them compared with shorter microsatellites and thus
have a lower sensitivity (Supplemental Fig. S4). Based on the anal-
ysis, Lwas set to−8 for cancer samples and −1 for matched normal
samples.

Analysis of indels in the microsatellite regions in pan-cancer

samples

We analyzed thewhole-genome sequence data of 2917 pan-cancer
samples (The ICGC/TCGA Pan-Cancer Analysis of Whole Ge-
nomes Consortium 2020) with our method and compared them
against somatic and germline variants detected by the Pan-Cancer
Analysis of Whole Genomes (PCAWG) project (The ICGC/TCGA
Pan-Cancer Analysis of Whole Genomes Consortium 2020). To
compare our results with somatic consensus indels from the four
PCAWG indel callings, we gathered indels located ±5 bp in themi-
crosatellite regions in the PCAWG calls. On average, 1826.5 indels
were detected by our indel caller (MIMcall) in themicrosatellite re-
gions (Supplemental Code 1). Of these, 1185.1 were found only by
MIMcall (Supplemental Fig. S5), suggesting a higher sensitivity of
our indel calls compared with the other PCAWG callers for micro-
satellite regions. PCAWG calls removed repetitive regions to
achieve highly accurate mutation calling; therefore, our result
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can complement the PCAWG calls. We
then compared the number of indels in
the microsatellite regions between our
indel caller and PCAWG callers. In the
microsatellite regions, the number of
indels uniquely identified by our indel
caller was significantly correlated with
that of commonly identified indels
(identified by two or more PCAWG call-
ers; Pearson product-moment correlation
coefficient; r=0.90, P-value <10−16)
(Supplemental Fig. S5). We further per-
formed experimental validation with
Japanese liver (LI) cancer samples for
themutation candidates in longermicro-
satellites by capillary electrophoresis
(Supplemental Fig. S6). The false-discov-
ery rate of our method was estimated to
be 7% (2/29) (Supplemental Fig. S6).
These results indicate that MIMcall can
effectively identify indels in the micro-
satellite region.

Microsatellites covered by 15 or
more reads in 2500 or more samples
(7,650,128 microsatellites) were subject-
ed to further analysis, and samples with
6 million or more testable microsatellites
were used for the analysis (2717 samples)
(Supplemental Table S2). On average,
7,407,000 microsatellites were analyzed
ineachsample.Wecompared thepropor-
tion of mutated samples for each micro-
satellite. Most of the microsatellites in
whole genomes were not mutated in the
pan-cancer samples (Fig. 1A), we there-
fore selected 198,578 microsatellites
with proportions of mutated samples
0.001 or more (more than two to three
mutated samples in the pan-cancer sam-
ples) and considered themas informative
microsatellites. The proportions of mu-
tated samples were different among the
types and lengths of microsatellite, with
A/T microsatellites more frequently
mutated than other types (Fig. 1B). We
then calculated the proportion of mutat-
edmicrosatellite by (total number of mu-
tated microsatellite)/(total number of
microsatellite) and compared the propor-
tions among annotations. The propor-
tions of mutated microsatellites were
significantly lower in exonic and intronic
regions but were higher in nongenic re-
gions (Supplemental Fig. S7). Microsatel-
lites in coding sequence (CDS) regions
would evolve to be more stable to
avoid mutations, and this would cause
lower mutation rates in the CDS regions.
Lower mutation rates in intronic regions
suggests the influence of transcription-
coupled repair (Gonzalez-Perez et al.
2019).

E

F

BA

C

D

G

Figure 1. Pattern of somatic indels in microsatellite regions. (A) Mutation rate of each microsatellite;
7,650,128 microsatellites were sorted by the proportion of mutated samples. The red box indicates in-
formative microsatellites defined in this study (proportion of mutated samples 0.001 or more).
(B) Mutation rate among different microsatellites. Microsatellites are classified based on sequence of
unit and length of each microsatellite in the reference genome. (C ) Comparison of mutation rate of mi-
crosatellites and number of somatic SNVs and indels in different types of cancer. MSI samples are shown
in red. (D,E) Pattern of insertions (positive change in repeat length in x-axis) and deletions (negative
change in repeat length in x-axis) in microsatellites of the MSI (D) and MSS (E) samples. Correlation be-
tween the mutation rate of microsatellites and the number of somatic SNVs. Pearson product-moment
correlation; r=0.19, P-value = 1.6 × 10−23. MSI samples are shown in red. (F) Correlation between the
mutation rate of microsatellites and the number of somatic SNVs. Pearson product-moment correlation;
r=0.19, P-value = 1.6 × 10−23. MSI samples are shown in red. (G) Correlation between the mutation rate
of microsatellites and the number of somatic indels. Pearson product-moment correlation; r=0.97, P-val-
ue < 1.0 × 10−200. MSI samples are shown in red.
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Wenext defined samples with proportions of mutatedmicro-
satellites 0.03 or more as MSI samples (n=31) at the genome-wide
level (Fig. 1C; Supplemental Fig. S8A), and others as microsatellite
stable (MSS) samples. As expected, CR, UT, and ST cancers had a
larger number of MSI samples, but MSI was also observed in a mi-
nority of samples for liver, pancreas (PA), ovary (OV), kidney (KI),
and skin (SK) cancers (Fig. 1C). The proportions of MSI samples
were 11.9% for CR (7/59, 95% C.I. 4.9%–22.9%), 7.7% for ST (6/
78, 95% C.I. 2.8%–16.0%), and 22.0% for UT (11/50, 95% C.I.
11.5%–36.0%) cancers, which are consistent with previous studies
(Hampel et al. 2005, 2006; Arai et al. 2013; Bailey et al. 2018). We
additionally analyzed Bethesdamarkers, which are a conventional
marker set for MSI definition. Although the number of reads
thatmapped to these regions was quite small and we could not an-
alyze their mutations in most of the samples, the pattern of
Bethesda markers was consistent with that of all microsatellites
(Supplemental Fig. S8B–D).

Themutation pattern ofmicrosatelliteswas different between
theMSI andMSS samples. In theMSI samples, deletionsweremore
predominant compared with insertions (Fig. 1D,E). We compared
the proportion of mutated microsatellites and the number of
somatic SNVs and somatic indels (Fig. 1F,G). The number of
somatic SNVs and indels showed significant strong correlation (r
>0.7) in three and 11 cancers, respectively (Supplemental Figs.
S9, S10). In the overall samples, the numbers of indels (r=0.97)

showed stronger correlation with the proportion of mutated mi-
crosatellites than that of somatic SNVs (r=0.19) (Fig. 1F,G). One
may think that the high correlation between the indels and the
proportion of mutated microsatellites is strongly influenced by
specific regions. To examine whether SNVs and indels in specific
regions were correlated with SNV and indel numbers at the
whole-genome level, we divided the genome into 1-Mbp bins
and tested the correlation between the number of all SNVs and
indels and these within bins. All bins showed significantly high
correlation (Supplemental Table S3), suggesting that the correla-
tions between the proportion of mutated microsatellites and the
number of SNVs/indels are a genome-wide pattern and are not in-
fluenced by specific genome regions. These results suggest thatmi-
crosatellite and nonmicrosatellite indels are affected by common
mechanisms of mutation and repair.

Mutability of microsatellites

Recent studies have suggested that epigenetic factors, such as DNA
structures, and sequence motif influence the mutation rate
(Fungtammasan et al. 2012; Woo and Li 2012; Chen and Zhang
2015; Lemmens et al. 2015; Tubbs and Nussenzweig 2017).
However, little is known about factors that influence the mutabil-
ity of microsatellites.We first analyzed the replication timings and
microsatellite mutation rates (proportion of mutated samples for a

E F

BA C D

G H

Figure 2. Analysis of mutation rate of each microsatellite. The mutation rates of 198,578 informative microsatellites were analyzed. (A–D) Association of
replication timing with insertion and deletion rates. The edges of the boxes represent the 25th and 75th percentile values. The whiskers represent the most
extreme data points, which are nomore than 1.5 times the interquartile range from the boxes. (A) Insertions in MSS samples (χ2 test; P-value < 1 ×10−200);
(B) insertions inMSI samples (χ2 test; P-value < 1 ×10−200); (C) deletions inMSS samples (χ2 test; P-value < 1 ×10−200); (D) deletions inMSI samples (χ2 test;
P-value < 1 ×10−200). (E–H) Association of DNA shape with mutation rate. The top 1000 A/T microsatellites with 10- to 30-bp length were used for the
analysis. The microsatellites were divided into the three categories based on the mutation rate. (E) Helix twist (HelT) of insertions in MSS samples; (F)
the ·OH Radical Cleavage Intensity (ORChID2) of insertions in MSS samples; (G) Propeller Twist (ProT) of deletions in MSI samples; (H) slide of deletions
in MSI samples. In this figure, we divided the microsatellites with mutation rates (0–0.001, 0.001–0.003, and greater than 0.003 for MSS; 0–0.4, 0.4–0.8,
and greater than 0.8 for MSI) and showed the DNA shape values. The arrows show base positions with significant association between the DNA shape
values and mutation rates (Supplemental Table S4).
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microsatellite) (Fig. 2A–D; The ENCODE Project Consortium
2012). The late-replicating regions had lower mutation rates for
IDs in MSS samples and insertions in MSI samples (Fig. 2A–C).
However, an inverse pattern was observed for deletions of the
MSI samples, with early-replicating regions having higher muta-
tion rates (Fig. 2D).

For a more detailed analysis, we performed multiple regres-
sion. In our analysis, the majority of mutated microsatellites
were A/T mononucleotide repeat as previously reported, suggest-
ing that the fragility is primarily determined by the base composi-
tion (Fig. 1B; Maruvka et al. 2017). Therefore, to find other factors
that associatewith themutation rate ofmicrosatellites, we selected
1000 highly mutated A/T microsatellites of 10- to 30-bp length in
the reference genome and analyzed them for IDs in the MSS and
MSI samples. We considered replication timing, nuclear lamina
binding region, G-quadruplexes, and predicted DNA shapes.
Nuclear lamina binding regions are known to be associated with
genomic fragile sites (Fungtammasan et al. 2012), whereasG-quad-
ruplexes can cause replication errors (Lemmens et al. 2015). The
impact of DNA shapes is not well known, but one DNA shape pa-
rameter ·OH Radical Cleavage Intensity [ORChID2]) has been re-
ported to be associated with mutation rate of somatic indels
(Chen and Zhang 2015). Multiple regression analyses for these fac-
tors showed that the length of microsatellite, replication timing,
and several DNA shapes were significantly associated with themu-
tation rate of microsatellites (Supplemental Table S4).

The predictedDNA shapes of the flanking sequences were sig-
nificantly associated with the proportion of mutated samples (Fig.
2E—H; Supplemental Table S4; Chiu et al. 2015). Several DNA
shape features—such as ORChID2, Helix Twist (HelT), Opening,
Minor Groove Width (MGW), Rise, Propeller Twist (ProT), Roll,
and Slide—were significantly associated with the prevalence of
IDs in microsatellite regions (Fig. 2E–H; Supplemental Fig. S11;
Supplemental Table S4). The nuclear lamina binding region and
G-quadruplexes were not significantly associated (Supplemental
Table S4). The adjusted R2-values of the multiple regression analy-
sis were 0.25 in the deletions of MSI, 0.14 in the insertions of MSI,
0.28 in the deletions of MSS, and 0.29 in the insertions of MSS
(Supplemental Table S4).

Microsatellites are highly polymorphic and have also been
used as genetic markers for population genetics studies (Ellegren
2004). To evaluate the genetic polymorphism, we detected germ-
line polymorphism with MIVcall method (Supplemental Code 2)
and estimated the heterozygosity of each microsatellite locus in
normal tissues. The proportion of mutated samples in cancers
and theheterozygosity innormal tissueswas significantly correlated
(Pearson product-moment correlation coefficient; r=0.31, P-value<
10−16) (Supplemental Fig. S12), suggesting that genetic variations
and somatic mutations are influenced by the same factors.

Highly mutated microsatellites

We compared mutability of each microsatellite between the
MSI and MSS samples and selected the top 20 highly mutated
microsatellites with the highest mutation rates (proportion of mu-
tated samples for a microsatellite) (Supplemental Table S5).
We performed a clustering analysis with thesemicrosatellitemark-
ers and confirmed that they perfectly distinguished the MSI
andMSS samples inCR,UT, and ST cancers (Fig. 3A–C; Supplemen-
tal Fig. S13).

For validation in an independent cohort, we analyzed DNA
from 36 CR and 12 UT cancer tissues, which were evaluated for

MSI using the standard microsatellite markers (BAT25, BAT26,
NR21, NR24, MONO27, D5S346, D17S250, and D2S123) at
Saitama Cancer Center. These standard MSI markers identified
36 MSI-positive (24 CRs and 12 UTs) and 12 negative CRs. For
these samples, we analyzedmicrosatellitemutations of 18 newmi-
crosatellite markers among the 20 highly mutated microsatellites
and 11 recurrently mutated coding microsatellites (see below).
Figure 3D summarizes the presence/absence of the indels in each
of these highly mutated microsatellites. Three microsatellites
were mutated in >90% of the validation samples (MS05, MS11,
and MS20), which was a comparable sensitivity to conventional
markers (BAT26, NR21, and NR24). Although the efficiency of
these markers should be evaluated by a larger cohort, we consider
that they have a technical advantage over known MSI markers in
availability in WGS and combinations of the markers can be
used as a new marker set.

Genes with large number of mutated microsatellites

To find genes with high mutation rates (proportion of mutated
samples), we tested the total number of indels in microsatellites
for each gene across the 21 tumor types. For the analysis, microsat-
ellites within each gene (located between the transcription start
and end sites) were used. We counted the number of mutated mi-
crosatellites and the total number of analyzed microsatellites for
each gene and identified geneswith larger numbers ofmutatedmi-
crosatellites compared with others. After adjusting for multiple
testing, 1134 genes had significantly larger numbers of mutated
microsatellites for at least one tissue (q-value <0.01) (Supplemental
Table S6). Of these genes, ALB, which is known to be highly ex-
pressed in LI, showed the largest number of mutatedmicrosatellite
(Fisher’s exact test; q-value =6.5 × 10−15, odds ratio = 65.1) in LI
cancer (Supplemental Fig. S14). A previous study suggested that
some cell lineage–specific highly expressed genes, including ALB
in LI, had recurrent short indels (Imielinski et al. 2017). This result
is consistent with the previous study, and strong DNA damage in
cell lineage–specific highly expressed geneswould influencemuta-
tion rate of microsatellites (Supplemental Table S6).

Recurrently mutated microsatellites in the coding regions

To comparemutation rates in the samemicrosatellite in the coding
regions between MSS and MSI samples, we calculated the propor-
tion of mutated samples for each microsatellite in coding regions
(Fig. 4; Supplemental Table S7). Most of all mutations were frame-
shift indels (Supplemental Table S7). Microsatellites or repeat se-
quences in ACVR2A and TGFBR2, which have been reported to
be frequently mutated in MSI tumors (Kim et al. 2013; Cortes-
Ciriano et al. 2017;Maruvka et al. 2017), were recurrentlymutated
in 60% and 47% of the MSI samples, respectively. In addition, mi-
crosatellites in ASTE1, USF3, LIN1, and CDH26 were also mutated
in >50% of the MSI samples. Mutations in microsatellites in
COSMIC Cancer Genes (MSH6, JAK1, BLM, IL7R, and CSF3R)
were identified as MSI-specific mutations. Of these, indels in
MSH6, which is aMMRgene, are likely to cause theMSI phenotype
(Boland andGoel 2010).Mutations in JAK1 inMSI cancers were re-
ported to associate with tumor immune evasion (Albacker et al.
2017). In the MSS samples, microsatellites or repeat sequences in
APC and TCF12 were mutated only in MSS samples, suggesting
that these mutations cause cancer without MSI.

Although many of the recurrently mutated coding microsat-
ellites have been reported by whole-genome or exome sequencing
studies (Supplemental Table S7; Kim et al. 2013; Cortes-Ciriano
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et al. 2017; Kondelin et al. 2017; Maruvka et al. 2017), our analysis
identified new genes with recurrently mutated microsatellites. Of
these, the GINS1 gene encodes a subunit of DNA replication com-
plex (Ueno et al. 2005). MBD4 has been reported to contribute to
tumorigenesis and work as a modifier of mutation in MMR-
deficient cancer (Tricarico et al. 2015). BLM is included in the
COSMIC Cancer Gene database and has functions in DNA replica-
tion and DNA double-strand break repair (Patel et al. 2017). These
results suggest that mutations in microsatellites can work as driver
events.

Association between microsatellite mutations and gene

expression

To further examine the functional impact of mutations in micro-
satellites, we tested the association between the mutations and
gene expression levels. We analyzed CR, ST, and UT, which had
highly mutated microsatellites, and focused on microsatellites in
the promoter and UTR regions. We compared gene expression

levels between samples with and without mutations in promoter
and UTR microsatellites. However, after adjusting for multiple
testing, no significant association was observed (Supplemental
Tables S8–S10).

MMR and proofreading genes

We analyzed the association between the proportion of mutated
microsatellites, and somatic and germline variants of eight DNA
repair genes (MLH1, MLH3, MSH2, MSH3, MSH6, PMS2, POLE
and POLD1). First, we focused on stop gain, splice site, nonsense
mutations, and gene-disrupting structural variations (SVs) in tu-
mor and matched normal samples (Fig. 5A–D). Two samples in
CR and UT had loss-of-function germline mutations in the
MSH2 or PSM2 gene, suggesting that they cause Lynch syndrome
in these patients (Fig. 5A,C; Boland and Goel 2010). The number
of samples with somatic SNVs and indels in these genes were sig-
nificantly enriched in the MSI samples (Fisher’s exact test; CR:
P-value =2.0 ×10−8, odds ratio = 10.6; ST: P-value =1.2 ×10−4,

BA C
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Figure 3. Highly mutated microsatellite markers. Result of clustering analysis with the top 20 microsatellites. (A) Colon/rectum (CR) cancer; (B) stomach
(ST) cancer; (C) uterus (UT) cancer. Mutation status for the 20 microsatellites in each sample are shown. Colors indicates mutation status of each micro-
satellite (red, mutated; blue, unmutated; and white, unanalyzed owing to low depth). (D) Result of validation study in the independent CR and UT cancer
cohort (n =48). MSI status was defined by BAT25, BAT26, NR21, NR24, MONO27, D5S346, D17S250, and D2S123. Standard microsatellite markers, 18
highly mutatedmicrosatellites, and homopolymers in coding regions were analyzed byMiSeq (Supplemental Fig. S19). Number of mutated samples in the
MSI samples are shown in the bar plot (right). Colors indicates mutation status of each microsatellite (orange, mutated; white, unmutated; and gray, not
tested). (MS) Microsatellite.
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odds ratio = 49.0; UT: P-value =1.4 ×10−5, odds ratio = 40.6),
whereas those with germline variants and SVs were not signifi-
cantly enriched. These results suggest that most of theMSI pheno-
types in cancer were mainly caused by somatic short indels or
somatic SNVs. Germline SVs of PMS2 were frequently observed
in MSS tumors, indicating that PMS2 could have a lower impact
on DNA MMR deficiency or MSI (Senter et al. 2008).

Most MSI samples had larger numbers of somatic SNVs (Fig.
1C) owing to functional deficiency of MMR genes. However, 40

MSS samples had larger numbers of somatic SNVs than the average
number of SNVs in the MSI samples (151,816.6 SNVs). Of these,
eight had somatic missense mutation in the exonuclease domain
of POLE (residues 268–471) (Supplemental Fig. S15; Supplemental
Table S11; Church et al. 2013; Shinbrot et al. 2014), suggesting that
exonuclease domain mutations of POLE were associated with a
large number of SNVs in MSS, not MSI.

Association with somatic mutational signatures in PCAWG

We compared mutational signatures found in single base substi-
tution (SBS), doublet base substitution (DBS), as well as IDs be-
tween the MSI and MSS samples (Fig. 6A–C; Supplemental Fig.
S16; Supplemental Table S12). The PACWG signature analysis
detected 49 SBS, 11 DBS, and 17 ID signatures (Alexandrov
et al. 2020). We compared the fraction of each mutational signa-
ture between MSI and MSS samples in CR, ST, and UT and found
that six SBS signatures (SBS5, SBS15, SBS20, SBS21, SBS26, and
SBS44), one ID signature (ID2), and four DBS signatures (DBS3,
DBS7, DBS8, and DBS10) were significantly different among
the MSI and MSS samples in at least one cancer type
(Wilcoxon signed-rank test, q-value<0.05). Except for DBS3
and DBS8, most of these mutational signatures have been report-
ed to be associated with tumors having defective DNA MMR
(Alexandrov et al. 2020). We found DBS3 and DBS8 to be asso-
ciated with MSI. DBS3 was also associated with the mutations in
exonuclease domain of POLE in the current study (Wilcoxon
signed-rank test, q-value <0.05) (Supplemental Table S13), and
no etiology has been proposed for DBS8, which was observed
in esophagus (ES) adenocarcinoma and CR (Alexandrov et al.
2020). In the ID signatures, the fraction of ID2 (A/T deletion)

Figure 4. Proportion of mutated samples in coding microsatellites.
(x-axis) Proportion ofmutated samples in theMSI samples; (y-axis) propor-
tion of mutated samples in the MSS samples. COSMIC cancer genes are
shown in red.
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B D

Figure 5. Mutation in mismatch repair (MMR) and proofreading genes. (A) Colon/rectum (CR) cancer; (B) stomach (ST) cancer; (C) uterus (UT) cancer;
(D) other MSI cancers. LI, liver; SK, skin; OV, ovary; PA, pancreas; and KI, kidney. Mutated genes and mutation rate of microsatellites are shown.
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was significantly different between MSI and MSS in CR, ST, and
UT, which is consistent with an excess of A/T indels in the mi-
crosatellite regions (Fig. 1B).

Neoantigen load from the microsatellite or repeat coding regions

MSI cancers are known to show specific immune reactions such as
Crohn-like reaction and diffused infiltration of lymphocytes in pa-
thology (Umar et al. 2004), and PD-1 inhibiting immune therapy
is a highly effective treatment for all types of tumors showing MSI
(Le et al. 2017). Its specific immune reaction should be related to
neoantigen burden, and we thus calculated the neoantigen bur-
dens of MSI and MSS tumors by using somatic mutations and
HLA genotypes, taking into account neopeptides generated from
indel or frameshift mutations of the coding microsatellites. The
number of predicted neoantigens in MSI tumors (median 393)
was significantly higher than MSS tumors (median 11; P-value =
5.9 ×10−20) (Supplemental Fig. S17), which is consistent with the
mutational burden. Although 95% of neoantigens were derived
from SNVs in MSS tumors, in MSI tumors, 51% of the predicted
neoantigens were derived from short indels and 5% were derived
from indels of themicrosatellites. To examine their relevance to tu-
mor immunology, we analyzed RNA-seq of 967 tumor samples in
PCAWG. The number of neoantigens generated from microsatel-
lite indels was zero for 938 tumors, one to 10 for 15 tumors, and
greater than 10 for 14 tumors. mRNA expression levels of antitu-
mor immunity genes GZMA and IFNG were positively correlated
with microsatellite neoantigens (P-values < 0.05, Jonckheere-
Terpstra trend test) (Supplemental Fig. S17). This suggests that mi-
crosatellite neoantigens may be involved in antitumor attack by
immune cells.

Discussion

Because of the clinical importance of MSI phenotypes, exome se-
quencing and small-scale WGS studies were performed for the
MSI samples (Kim et al. 2013; Cortes-Ciriano et al. 2017;
Kondelin et al. 2017;Maruvka et al. 2017). These studies identified
recurrently mutated microsatellites and driver genes mainly locat-
ed in coding regions, as well as created an algorithm to find MSI
with smaller number ofmicrosatellite sets. However, detailed anal-
ysis for factors that influence mutation rate and validation of the
selectedmicrosatellitemarker sets in independent cohortswas lim-
ited. Here, we performed an analysis of microsatellite mutations in
the largest WGS cohort with the largest number of microsatellites
to date, so as to characterize microsatellite mutations and MSI tu-
mors at the genome-wide level.

To identify microsatellite regions in the human genome, we
used results from three types of software (Tandem Repeat Finder,
MS Detector, and MISA) (Benson 1999; Girgis and Sheetlin 2013;
Hause et al. 2016). After filtering, we obtained 9,292,677microsat-
ellites in the genome for analysis. Among the methods for detect-
ing microsatellites, the MISA software identified the largest
number of microsatellites (Hause et al. 2016). Although most of
them were short and may not be considered as microsatellites by
the other two methods, they contained highly mutated repeat re-
gions. It has been reported that the rate of mutation of longer mi-
crosatellites is higher than that of shorter microsatellites (Sun
et al. 2012). However, current short-read sequencing technologies
are unable to analyze longer microsatellites. Indeed, we could not
obtain sufficient number of reads for Bethesda markers (Supple-
mental Fig. S8). We therefore decided to prioritize shorter repeats
as the main targets for the current WGS study. Alternatively, in
this study, we detected highly mutated short microsatellites (Fig.
3; Supplemental Table S5; Supplemental Fig. S13), and they could
be useful for clinical diagnosis of MSI with current short-read
technologies.

The analysis of WGS and the validation study in an indepen-
dent cohort found 20 novel microsatellite markers (Fig. 3), which
canbeused to predict tumorswithMSI. In addition to theMSI sam-
ples, our analysis foundsampleswith largernumberof SNVs inMSS
(Supplemental Fig. S15). As the analysis of neoantigens showed
that SNVs can also produce a larger number of neoantigens
(Supplemental Fig. S17), identification of these samples is also im-
portant for diagnosis. The analysis of MSS samples with a larger
number of SNVs showed that mutations in the exonuclease
domain of POLE can partly explain the high mutation rate of
SNVs, instead of indels and microsatellites (Supplemental Fig.
S15). Therefore, analysis of mutations in the POLE gene in MSS
samples can identify more tumors with high mutational burdens
(Mehnert et al. 2016).

Our WGS analysis found high rates of short deletions in the
microsatellites of both the MSI and MSS samples (Fig. 1D,E). The
excess of deletion events was also observed in previous studies
(Maruvka et al. 2017). Therefore, the excess of short deletions
should not be owing to a bias of our mutation calling method
and can be considered as a common feature of cancers. Amicrosat-
ellite mutation model suggests that deletions are generated by a
misalignment loop in the template strand, and insertions are sub-
sequently generated in the nascent strand (Ellegren 2004). During
the DNA replication of cancer cells, template strands could exist as
single strands for a longer period compared with nascent strands,
resulting in a higher chance to generate misaligned loop struc-
tures, which would induce larger numbers of deletions.

BA C

Figure 6. Comparison of mutational signatures between the MSI and MSS samples. (A) CR cancer; (B) ST cancer; (C) UT cancer. Signatures showing
significant difference between the MSI and MSS samples are shown in rectangles in the legends (Wilcoxon signed-rank test, q-value < 0.05).
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The analysis of replication timing showed a different pattern
between deletions in MSI and others (Fig. 2A–D; Supplemental
Table S4). As observed in the SNVs, replication timing and muta-
tion rate were positively correlated with the IDs of MSS samples,
as well as insertions of MSI samples (Fig. 2A–D). It is suggested
that early-replicating regions are more accessible for DNA repair
machineries, resulting in more chances for repair (Tubbs and
Nussenzweig 2017). However, deletions inmicrosatellites were en-
riched in the early-replicating regions of MSI samples (Fig. 2D). A
recent exome sequencing study also reported the inverse correla-
tion between the microsatellite indels and replication timing in
MSI tumors (Maruvka et al. 2017). Because MSI tumors should
have defects in their DNA MMR machinery, this result would re-
flect the pattern of mutation without DNA MMR. In early replica-
tion, template strands may exist as single strands for a longer
period, facilitating the occurrence of deletions.

In addition to replication timing,DNA shape parameters were
also associated with the mutation rate of microsatellites.
Microsatellites with lower HelT, higher ProT, higher Roll, and
higher Slide had higher insertion rates (Fig. 2E–H; Supplemental
Fig. S11).Microsatellites with higherHelT, higherOpening, higher
ProT, higher Roll, and lower Slide had higher deletion rates (Fig.
2E–H; Supplemental Fig. S11). Because DNA shapes were associat-
ed in both the MSI and the MSS tumors, they would affect the fra-
gility of DNA strand and mainly influence the mutation
generation instead of the repair process.

In the present study, we considered that the mutation rate of
microsatellites is mainly influenced by the following: fragility of
DNA sequences (length and unit type of microsatellite, DNA
shape) (Figs. 1B, 2E–H), activity of DNA repair machinery (muta-
tions or activities in MMRmachinery genes) (Fig. 5), DNA damage
against cell lineage–specific highly expressed genes (Supplemental
Fig. S14; Supplemental Table S6), and accessibility of DNA repair
machinery (DNA replication timing) (Fig. 2A–D). Furthermore,
because themutation rate in cancerwas correlatedwith the hetero-
zygosity of germline variations, these factors may also affect the
mutation rate in germline variations (Supplemental Fig. S12). Of
these factors, activity of DNA repair machinery affects mutation
rate among samples, and other factors influence the difference of
mutation rate among microsatellite loci. We consider that the
strongest factors are length and unit type of microsatellites. In ad-
dition, local replication timing, which reflects accessibility of DNA
repair machinery, and DNA shape also influence the mutation
rate. The effect of DNA damage against cell lineage–specific highly
expressed genes is limited to microsatellites within specific genes
in specific tissues (such as ALB gene in LI).

The current study analyzed somatic indels in microsatellite
regions in the largest WGS cohort to date. We found a microsatel-
lite marker set to detect MSI, factors that influence the mutation
rate of microsatellite, genes with recurrently mutated microsatel-
lites, and the influence somatic mutations inMMR and proofread-
ing genes have on MSI. Our analysis provides a mutational
landscape of microsatellites in cancer samples for future clinical
applications.

Methods

Samples and data

WGS data were obtained by the ICGC pan-cancer project (The
International Cancer Genome Consortium 2010; The ICGC/
TCGA Pan-Cancer Analysis of Whole Genomes Consortium

2020). The list of analyzed samples is shown in the
Supplemental Tables S2 and S14. Data sets of somatic point muta-
tions, short indels, SVs, and copy number alterations were generat-
ed as part of the PCAWG project (The ICGC/TCGA Pan-Cancer
Analysis of Whole Genomes Consortium 2020). Overall, WGS
data from 2834 donors (2913 tumor samples) are represented in
the PCAWG data sets, spanning a range of cancer types (bladder,
sarcoma, breast, LI-biliary, cervix, leukemia, CR, lymphoma,
prostate, ES, ST, central nervous system, head/neck, KI, lung,
melanoma, OV, PA, thyroid, and UT). Mapping reads to GRCh37
was performed by PCAWG, and we used the generated BAM
files (The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes
Consortium2020). Realigning the reads to GRCh38would not sig-
nificantly affect the conclusions becausewe usedmicrosatellites in
nonrepetitive regions (see below). The consensus somatic SNVs
and short indels in PCAWG samples were determined using differ-
ent algorithms; calls made by at least two algorithms were used in
downstream analyses (The ICGC/TCGA Pan-Cancer Analysis of
Whole Genomes Consortium 2020).

Definition of microsatellite regions for the analysis

We determined microsatellite regions using MsDetector, Tandem
Repeat Finder, and MISA software (Benson 1999; Girgis and
Sheetlin 2013; Hause et al. 2016). Microsatellite regions defined
by the Tandem Repeat Finder were obtained from the UCSC
Genome Browser (Girgis and Sheetlin 2013). Identification of mi-
crosatellites with MISA was performed by (unit size) = 1–5, (mini-
mum number of repeats) = 5 and (max difference between two
microsatellites) = 10. Because these three methods used different
algorithms to define microsatellites, we first defined the repeat
unit of each microsatellite. We divided each region by different
lengths (1–6 bp) and calculated the entropy of the character string.
The length with the lowest entropy was selected as the unit length
of eachmicrosatellite region. For the analysis of the microsatellite,
we filtered microsatellite regions according to the following crite-
ria: (1) the proportion of the most frequent unit ≥0.8, and (2) dis-
tance between closest neighboringmicrosatellite ≥30 bp. (3) If the
microsatellite regions were detected by two or more methods, we
selected the longest one and discarded others; (4) upstream and
downstream flanking sequences (100 bp) of each microsatellite
were mapped against human reference genome (GRCh37) by
BLAT software (Kent 2002) with the options of -stepSize = 5 and
-repMatch=2253, and microsatellites that had ≥90 bp of flanking
sequences mapped to different positions were removed; and
(5) the length of microsatellite region was <80 bp. As a result of
this selection procedure, 9,292,677 microsatellites, in which
8,817,054 were autosomal, remained and were used for the subse-
quent analyses (Supplemental Figs. S1, S18).

Error rate estimation of each repeat unit

To identify somatic indels in the microsatellite regions, we first es-
timated the error rate of the different types of repeat units. The
type of microsatellites was defined by length of microsatellite re-
gion in the reference genome and repeat unit. Microsatellites
were categorized by length (6–9, 10–19, 20–29, 30–39, and
40–100 bp), and repeat unit and error rates were estimated for
each category (see Supplemental Table S1). For this purpose, we
used data from Chr X of 32 male normal samples because Chr
X is hemizygous, and error rates can be estimated without the in-
fluence of heterozygous polymorphisms (Fujimoto et al. 2010;
Maruvka et al. 2017). We assumed that the major read type is
the true genotype and that others were errors. For example,
when 10, three, and one reads contain (AT)8, (AT)7, and (AT)9 in
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a microsatellite locus, we considered (AT)8 the true genotype and
three deletion error reads ((AT)8 to (AT)7) and one insertion error
read ((AT)8 to (AT)9) observed. The estimated error rates are shown
in Supplemental Figure S3.

Identification of change of repeat unit from whole-genome

sequence (algorithm in MIMcall)

Microsatellites are repeat sequences and mapping errors can influ-
ence the accuracy of detection. To removepossiblemapping errors,
we removed improper pairs and reads with low mapping quality
(less than 30), as well as reads with large (>550-bp) or small
(<100-bp) read pair distance.

We counted the number of repeat units in eachmicrosatellite
region. We then determined the genotype of the matched normal
tissues and detected somatic indels by comparing the genotype of
the normal and cancer samples. To distinguish the mutation or
variation from sequencing errors, we incorporated the binomial
distribution with the estimated error rates (Supplemental Fig. S3)
and calculated a likelihood for each variant candidate.

For normal samples, we calculated the likelihood for the sec-
ond most frequent number of repeat:

Li = n
r

( )
( pi)

r(1− pi)
n−r ,

where n is the total number of reads that cover the microsatellite,
r is the number of reads containing ith repeat, and pi is the estimat-
ed error rate of the ith repeat. If the likelihood is lower than a
threshold value, the genotype was assumed to be heterozygous
for the major repeat and second major repeat. We next calculated
the likelihood for the number of repeats in the cancer. If the like-
lihood of the nongermline repeat was lower than a threshold val-
ue, we defined the repeat as a somatic indel candidate.

To find the appropriate likelihood threshold values, we ap-
plied this algorithm on data from other male Chr X. Based on
the estimated false-positive and false-negative rates, we set −1
and −8 for germline genotyping and somatic mutation calling
(Supplemental Fig. S4), respectively. Based on the comparison,
we set L=−8 for tumor and L=−1 for matched normal samples.
We selectedmicrosatellites that were covered by five or more reads
in both the cancer andmatched normal samples. Additionally, we
selected somatic indels with variant allele frequencies in cancer or
0.15 ormore andnumber of support reads in cancer of two ormore
and one or less in normal samples.

Estimation of false discovery rate

We randomly selected 29 somatic MS mutations detected in LI
cancer samples RK001, RK249, and RK308 and performed valida-
tion with a previously reported method (Schuelke 2000).
Amplicons were analyzed using the ABI PRISM 3100 genetic ana-
lyzer (Applied Biosystems), and GeneMapper software (Applied
Biosystems). Validation for the selected microsatellites was also
performed using the Sanger sequencing method (Supplemental
Fig. S6).

Selection of highly mutated microsatellites

To select microsatellites, we compared the number of mutated
samples in MSI and MSS samples for each microsatellite using a
Fisher’s exact test. Nine microsatellites with odds ratio [(number
of mutated samples in the MSI)/(number of unmutated samples
in the MSI)/(number of mutated samples in the MSS)/(number
of unmutated samples in the MSS)]≥500 and proportion of the
mutated samples in the MSI samples of 0.8 or more were selected
and genotyped in the additional samples. Three microsatellites

were selected from highly mutated microsatellites in the MSI sam-
ples. Ten microsatellites were selected from recurrently mutated
coding microsatellites.

Validation study of the CR and UT cancer cohort

For new microsatellite markers or mutated regions, we designed
primers to amplify them (primer information in Supplemental
Table S15) and performed multiplex-PCR on DNA from 48 frozen
cancer tissues and their corresponding normal tissues, which were
collected at the Saitama Cancer Center, Japan. Ethical committees
at RIKEN, the Saitama Cancer Center, and all groups participating
in this study approved this work. Standardized MSI analysis was
performed using fluorescence-based PCR, as described previously
(Ishikubo et al. 2004) at the Saitama Cancer Center. MSI status
was determined using five Bethesda markers (BAT25, BAT26,
D5S346, D2S123, and D17S250) or Promega panel (BAT25,
BAT26, NR21, NR24, and MONO27) and classified as MSI-H (two
or more markers shown to be unstable), MSI-low (MSI-L; only
one marker unstable), and MSS (no markers unstable). MSI-posi-
tivemarkers were re-examined at least twice to confirm the results.
MSI-L was included with MSS in this study. We selected 24 MSI-
positive CR cancers, 12 MSI-positive UT cancers, and 12 MSI-neg-
ative CR cancers for the validation study. Multiplex-PCR of these
new MSI markers was performed, and pools of the amplicons
were sequenced by MiSeq after Illumina adaptor ligation. We
then determined indel mutations by read number distributions
mapped to the target microsatellite regions (Supplemental Fig.
S19).

Threshold determination for MSI

Because the mutation status of conventional MSI markers could
not be obtained (see Supplemental Fig. S8), we needed to deter-
mine the threshold value to select MSI. We first excluded CR, ST,
and UT cancers (n =186) from all samples (n=2717). We assumed
that the other cancers contained negligible number of MSI sam-
ples. We then calculated the average and standard deviation of
the mutation rates. We also assumed that the distribution of the
mutation rates follows a normal distributionwith the obtained av-
erage and standard deviation. The 99.99th percentile of the nor-
mal distribution was 0.0254. Therefore, we adapted 0.03 (slightly
conservative value from the 99.99th percentile) for the criteria
for MSI in genome-wide level, and 31 samples were defined as
MSI in this study. No CR, ST, or UT cancers were used to determine
the threshold value; however, the value still gave a reasonable
grouping for CR, ST, and UT cancers (please see Fig. 1B;
Supplemental Fig. S8).

Comparison of mutational signatures between the MSS and MSI

Mutational signatures and their proportions were obtained from
the result of the PCAWAG signature working group (Alexandrov
et al. 2020). The proportion of each signature was compared be-
tween the MSI and MSS samples in CR, UT, and ST using the
Wilcoxon signed-rank test. Multiple testing adjustment was per-
formed using the Benjamini and Hochberg’s FDR method
(Benjamini and Hochberg 1995).

Correlation between the total number of SNVs/indels and the

number of SNVs/indels in 1-Mbp bins

To examine whether SNVs and indels in specific regions were cor-
related with total number of SNV and indel, we divided the ge-
nome into 1-Mbp bins and tested the correlation between the
number of all SNVs and indels and these within bins. The
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Pearson’s correlation coefficient was calculated and tested by R (R
Core Team 2017).

Identification of genes with recurrently mutated microsatellites

To identify highly mutated genes, we compared the mutation rate
of microsatellites in each gene. We compared the total number of
analyzed microsatellites and total number of mutated microsatel-
lites in introns and exons in each gene. We also counted the total
number of analyzed microsatellites and total number of mutated
microsatellites in the entire genome in MSS samples for each can-
cer type; (total number of mutated microsatellites in gene i in all
MSS samples in cancer j)/(total number of unmutated microsatel-
lite in gene i in all MSS samples in cancer j) and (total number of
mutatedmicrosatellite in entire genome in all MSS samples in can-
cer j)/(total number of unmutatedmicrosatellite in entire genome i
in all MSS samples in cancer j), and these were compared with a
Fisher’s exact test. Multiple testing adjustment was performed us-
ing the Benjamini and Hochberg’s FDR method (Benjamini and
Hochberg 1995), and from this analysis, we could obtain genes
with larger numbers of mutated microsatellites compared to the
entire genome.

Driver genes shown in Figure 4 were based on COSMIC data-
base (https://cancer.sanger.ac.uk/cosmic).

Association between microsatellite mutations and gene

expression

To further examine the functional impact of mutations of micro-
satellites, we tested the association between the mutations and
gene expression levels. First, we selectedmicrosatellite in promoter
(1000 bp from transcription start sites) and UTR regions. Then, we
compared gene expression levels between samples with and with-
out mutations in promoter and UTR microsatellites (syn5553985)
(The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes
Consortium 2020). A statistical test was performed using a
Mann–Whitney U test with Python 3 (https://docs.python.org/3
.8/). We applied this analysis for CR, ST, and UT cancers, which
have highly mutated microsatellites. In the promoter and UTR re-
gions, 799, 260, and 784 genes had mutated microsatellites in CT,
ST, and UT, and adjustment of the multiple testing was performed
by the number of tested genes.

Analysis of epigenetic factors on mutability of microsatellites

To find the factors that influence the mutability of microsatellites,
we considered replication timing, nuclear lamina binding region,
G-quadruplexes, and predicted DNA shapes (replication timing:
https://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncode
UwRepliSeq; DNA shapes: http://rohsdb.cmb.usc.edu/GBshape/;
and nuclear lamina binding region: https://static-content.springer
.com/esm/art%3A10.1038%2Fnature06947/MediaObjects/41586_
2008_BFnature06947_MOESM252_ESM.txt). G-quadruplex was es-
timated using software (Lemmens et al. 2015; https://github.com/
dariober/bioinformatics-cafe/blob/master/fastaRegexFinder.py).
For the replication timing, we downloaded data of HepG2, K562,
MCF-7, SK-N-SH, and GM12878 cells. We averaged the replication
timingwithin 1-Mbpbins for each cell line, and binswith standard
deviation of 15 or less were used for the analysis. The presence or
absence of a nuclear lamina binding region and G-quadruplexes
within ±1000 bp from the start and end of microsatellites was ex-
amined. The predicted DNA shapes (Buckle, HelT, MGW,
ORChID2, Opening, ProT, Rise, Roll, Shear, Shift, Slide, Stagger,
Stretch, and Tilt) of ±5 bp from the start and end of each microsat-
ellite were used for the analysis. We performed a multiple regres-
sion analysis of the parameters with the lm function of the R

software, and parameter selection was performed with the step()
function (R Core Team 2017). We tested 144 parameters for IDs
of MSI and MSS samples. Therefore, we adjusted P-values by 144.

Prediction of neoantigens

HLA genotyping from WGS data was generated as part of the
PCAWG project. Somatic point mutations, non-MS indels detect-
ed by the PCAWG project, and MS indels detected by our method
were combined and annotated using ANNOVAR. Mutant peptides
of the length of eight to 11 residues were assessed for their binding
affinity (IC50) to the HLA class I of matched patients using
NetMHCpan-3.0 (Nielsen and Andreatta 2016). Mutant peptides
of IC50 < 50 nM were predicted as neoantigens.

Data access

The result ofMSI call was released from ICGC (https://dcc.icgc.org/
releases/PCAWG/msi). Source code for microsatellite analysis can
be found at GitHub (https://github.com/afujimoto/MIMcall) and
as Supplemental Code (MIMcall, Supplemental Code 1; MIVcall,
Supplemental Code 2). Genotype table of all identified mutations
is provided as supplemental material (Supplemental Table S16).
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