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We describe using the Newton Krylov method to solve the coupled cluster equation.

The method uses a Krylov iterative method to compute the Newton correction to

the approximate coupled cluster amplitude. The multiplication of the Jacobian with

a vector, which is required in each step of a Krylov iterative method such as the

GeneralizedMinimumResidual (GMRES) method, is carried out through a finite difference

approximation, and requires an additional residual evaluation. The overall cost of the

method is determined by the sum of the inner Krylov and outer Newton iterations.

We discuss the termination criterion used for the inner iteration and show how to

apply pre-conditioners to accelerate convergence. We will also examine the use of

regularization technique to improve the stability of convergence and compare the method

with the widely used direct inversion of iterative subspace (DIIS) methods through

numerical examples.
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1. INTRODUCTION

The coupled cluster (CC) theory, introduced to quantum chemistry by Čížek (1966), Paldus and
Li (1999), and Bartlett and Musiał (2007), over the past few decades has established itself as one of
the most accurate ab initio method for electronic structure calculations. The systematic inclusion
of higher-rank excitations in the cluster operator allows one to establish a hierarchy of more
and more accurate approximations converging toward the full configuration interaction (FCI)
limit (Gauss, 1998). These standard approximations also provide a number of unique features
such as size-extensivity of the resulting energies, orbital invariance of theory under separate
rotations of occupied and virtual orbitals, the possibility of approximating higher excitations by
products of lower-rank clusters, which are especially important in proper description of chemical
transformations associated with bond forming and bond breaking processes. The CC theory is
based on an exponential ansatz acting on the reference wave function, typically Slater determinant
obtained fromHartree–Fock (HF), density functional theory, or other independent particle models,
which is assumed to provide a reasonable zeroth order description of the correlated ground-state
wave function. The CC wave function is determined by the so-called cluster amplitudes obtained
by solving nonlinear energy-independent CC equations.

The exponential ansatz ensures the size-extensivity of the CC method, but in contrast to
configuration interaction methods, the CC method is not variational (unless all excitations are
included). In practice, to make CC approximation numerically feasible, the cluster operator is
defined by low-rank excitations. For example, one of the most widely used coupled cluster single
and double (CCSD) model includes single and double excitations (Purvis and Bartlett, 1982).
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The single-reference CCSD method and non-iterative technique
for the inclusion of collective triple excitations [the so-called
CCSD(T) approach; Raghavachari et al., 1989] is currently
considered as a “gold standard” of high-accuracy computational
chemistry. It is available in many program packages and
employed widely in a wide variety of chemical applications. The
numerical cost scales polynomially with the system size, where
the numerical scaling of CCSD is proportional toO(N6), whereas
for (T) correction is proportional to O(N7) (N represents
symbolically system size).

For the treatment of the static correlation effects, the
multireference CC approach has been introduced, which
generalizes the CC exponential parameterization of the wave
function (Lyakh et al., 2012). Out of many formulations
of MRCC theories, the class of methods relevant to this
work is externally corrected CC, which extracts information
about the most important higher excitations or active space
single and double excitations from an “external” calculation
performed by a different method such as complete active space
self-consistent field (CASSCF) or multireference configuration
interaction (MRCI) (Li and Paldus, 1997; Li, 2001; Kinoshita
et al., 2005). In this work, we employed the tailored CCSD
(TCCSD) method, where the information for external correction
is obtained from a density matrix renormalization group
(DMRG) calculation. The TCC approach has been successfully
applied (Kinoshita et al., 2005; Lyakh et al., 2011) and
generally performs well, although a large active space and
CASSCF orbitals might be required for good accuracy.
TCC also features the desirable property of being rigorously
size extensive.

The CCSD equations correspond to the polynomial set of
equations of fourth order, whose solving for large number of
cluster amplitudes (often exceeding 1010) in the presence of
strong correlation effects may pose a significant challenge and
may adversely affect the time to solution associated with solving
CC equations, even when efficient implementation of the CCSD
method is available. Therefore, the design of fast converging
CC solvers is inextricably linked to the effort of enabling CC
methods at exa-scale. Currently, CC equations are typically
solved via an inexact Newton (IN) method combined with
an acceleration scheme called the direct inversion of iterative
space (DIIS) (Pulay, 1980), which is also used in many other
quantum chemical algorithms to accelerate the convergence, for
example in the self-consistent field (SCF) iterations for solving
the HF equations. Several other algorithms such as reduced
linear equation (Purvis and Bartlett, 1981), quasilinearization of
nonlinear terms techniques (Piecuch and Adamowicz, 1994), and
multimodel Newton-type algorithms (Kjønstad et al., 2020) have
been tested especially in the context of solving CC equations
involving high-rank clusters.

In this paper, we describe using the Newton–Krylov (NK)
method for solving the projected CC equation. The NKmethod is
a widely used method for solving large-scale nonlinear equations
in many fields (Knoll and Keyes, 2004). Its use in quantum
chemistry appears to be new. We will describe the basic steps of
the method in the context of CCSD in section 3. We compare
the method with DIIS in section 4 and discuss the possibility

of combining the two methods together. In section 5, we
demonstrate the performance of the NK method and compare
it with DIIS.

2. COUPLED CLUSTER EQUATIONS

In this section, we briefly discuss the algebraic form of the CC
equations for cluster amplitudes. In general, a correlated wave
function |9〉 can be written as,

|9〉 = �|8〉 , (1)

where |8〉 is the reference wave function (typically the HF Slater
determinant) and � is the wave operator. In the CC method, the
wave operator is assumed in an exponential form

� = eT , (2)

where T is the cluster operator defined by excitations producing
excited Slater determinant when acting on the reference function.
This property of the cluster operator T assures the so-called
intermediate normalization of the CC wave function, i.e.,

〈9|8〉 = 1 , (3)

assuming that orthonormal molecular basis set was used to
discretize many-body problem of interest. The cluster operator
T is a sum of its many-body components

T = T1 + T2 + ... , (4)

where Tn is the linear combination of excitation operators, which
corresponds to n-tuple excitations. Thus, for single- and double-
excitations one can write

T1 =
∑

i,j

tai a
†
aai (5)

T2 =
∑

i<j;a<b

tabij a
†
aa

†
b
ajai , (6)

. . . (7)

The coefficients tab..ij.. are the cluster amplitudes, which will be

determined by solving CC equations. We use the standard
notation, i.e., indices i, j denote occupied, a, b virtual, and p, q

general molecular spin orbitals. a†
p and aq are fermionic

creation or annihilation operators which satisfy set of
anticommutation relations

{a†
p, aq} = a†

paq + aqa
†
p = δpq (8)

{a†
p, a

†
q} = {ap, aq} = 0 . (9)

In the context of deriving algebraic form of CC equations,
particle-hole formalism is invoked (Shavitt and Bartlett, 2009).

Inserting the CC ansatz into the Schrödinger equation and
pre-multiplying from the left by e−T yields

e−THeT8 = E8 . (10)
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To employ various diagrammatic techniques to derive CC
equations, it is useful to introduce the normal product form of
the electronic Hamiltonian (HN) defined as

HN = H−〈8|H|8〉 =
∑

pq

FpqN{p
†q}+

1

4

∑

pqrs

〈pq||rs〉N{p†q†sr} ,

(11)
Using the Baker–Campbell–Hausdorff formula, we get

e−THNe
T = HN + [HN ,T]+

1

2
[[HN ,T],T]+

+
1

3!
[[[HN ,T],T],T]+

1

4!
[[[[HN ,T],T],T],T]

≡ (HNe
T)C , (12)

where subscript “C” corresponds to a connected part of a
given operator expression. Since electronic Hamiltonians are
defined by one- and two-body interactions, the above expansion
terminates after quadruple commutator (11). For the derivation
of the correlation energy expression and amplitude equations,
we project the e−THNe

T |8〉 term to the bra vectors 〈8|, 〈8a
i |,

〈8ab
ij |, etc.:

1Ecorr = 〈8|HNe
T |8〉C , (13)

〈8ab...
ij... |HNe

T |8〉C = 0 (14)

where 〈8a
i |, 〈8

ab
ij |, ... represent singly, doubly, etc., excited Slater

determinants with respect to the reference function.
The general TCC wave function employs the following split-

amplitude ansatz

�TCC = eT
ext+Tact

, (15)

where Tact represents the active amplitudes obtained from the
active space calculation. These amplitudes are kept constant
when solving the amplitude equations, only Text are iterated. The
Tact amplitudes are computed from the CI coefficients, extracted
from the matrix product states wave function optimized during
the DMRG calculation. We will use t to denote, collectively, the
CCSD amplitudes in Equations (5) and (6) that are contained
in Text. These amplitudes satisfy a nonlinear equation that can
be derived from Equation (14). In the rest of the paper, we will
simply write this equation as,

r(t) = 0. (16)

3. ALGORITHMS FOR SOLVING THE CCSD
EQUATION

In this section, we begin with a short description of a general
scheme for solving the CCSD nonlinear equation using an
inexact Newton’s method. We review a commonly used diagonal
approximation to the Jacobian, and then describe the NKmethod
for solving the CCSD equation.

3.1. Inexact Newton’s Method
Even though Equation (16) is only a second-order nonlinear
equation, it is not easy to solve due to the large number of
variables contained in t. One should remember that in the state-
of-the-art CCSD calculations, the total number of sought cluster
amplitudes exceeds 1010. An iterative procedure is generally
required to solve the equation numerically. The best known
algorithm for solving a general system of nonlinear equations is
the Newton’s method. In the k+1st iteration of such amethod, the
approximation to the solution of Equation (16) is updated as

t(k+1) = t(k) −
[

J(k)
]−1

r(t(k)), (17)

where t(k) is the approximate solution obtained from the kth
iteration, and J(k) is the Jacobian of r(t) evaluated at t(k).

Because it is not practical to write down the Jacobian of r(t)
or its inverse analytically, we cannot use the Newton’s method
directly to solve the CC equation. Instead, an IN algorithm of
the form

t(k+1) = t(k) −
[

Ĵ(k)
]−1

r(t(k)) (18)

where Ĵ(k) is an approximate Jacobian matrix evaluated at t(k), is
often used. In Equations (17) and (18), we view t and r(t) as a
column vector with all amplitudes in (5) and (6) enumerated in
some specific order, and the contracted tensor amplitudes in r(t)
enumerated in the same order.

In CCSD calculation, a common practice is to choose Ĵ
as a diagonal matrix with HF orbital energy difference as the
diagonal elements. This is justified because J is known to be
diagonal dominant in many cases, and the diagonal matrix of
HF orbital energy differences contributes most to the diagonal
of J. Replacing J with Ĵ typically works well when the system
is near equilibrium. In this case, the computational cost of the
IN method is dominated by the tensor contraction cost for
evaluating r(t(k)) for each k, which has the complexity of O(N6)
where N is the number of atomic basis used to discretize HF
molecular orbitals.

For systems that do not satisfy this property, the diagonal
approximation may not be sufficient. As a result, many IN
iterations may be required to reach convergence, which is defined
by the norm of r(t) being less than a prescribed tolerance level τ .
This will lead to extremely long wall clock time.

3.2. Newton–Krylov Method
Even though J is not explicitly available, it is possible to
approximate the product of J(t) with any tensor w that has the
same dimension as t. This can be done through a finite difference
calculation of the form

J(t)w ≈
r(t + δw)− r(t)

δ
, (19)

where δ is a small constant.
The possibility to approximate J(t)w by one extra function

evaluation allows us to solve the Newton correction equation

J(t(k))1 = −r(t(k)), (20)
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by a Krylov subspace-based iterative method such as the GMRES
algorithm (Saad and Schultz, 1986) even when J(t) is not
explicitly available. The solution 1 is used to update the
approximate amplitude via

t(k+1) = t(k) +1. (21)

This approach is often referred to as the NK method.
In Algorithm 1, we give a description of the simplest Newton-

GMRES algorithm for solving the coupled clustered equation.
We treat the CC amplitude t and tensors (r, w) of the same
dimension as vectors, and denote the inner product of t and r
simply as 〈t, r〉. We treat a set of tensors as a matrix, and use
V(:, j), i.e., the jth column of V , to denote the jth tensor in such a
set. The vector e1 used in this algorithm denotes a unit vector of
length jg + 1 with 1 in the first entry and 0 elsewhere.

Input: Initial guess t(0) to the solution of the coupled
cluster equation; convergence tolerance tol;
Maximum number of GMRES iterations
allowed (jg);

Output: More accurate approximation t to solution of
the coupled cluster equation that satisfies
‖r(t)‖ ≤ tol;

1: k = 0;
2: while ‖r(t(k))‖ > tol do
3: β = ‖r(t(k))‖;
4: V(:, 1)← r(t(k))/β ;
5: for j = 1, 2,...jg do

6: w← r[t(k) + δV(:, j)];
7: w← (w− r(t(k)))/δ;
8: H(:, 1 : j)← 〈V(:, 1 : j),w〉;
9: w← w− V(:, 1 : j)H(1 : j, j);
10: H(j+ 1, j) = ‖w‖;
11: V(:, j+ 1) = w/H(j+ 1, j);
12: end for

Solve the projected linear least squares problem
13: mins ‖Hs− e1β‖
14: t(k+1) = t(k) − V(:, 1 : jg)s;
15: k← k+ 1;
16: Evaluate r(t(k));
17: end while

Algorithm 1: A Newton–Krylov method for solving the
coupled cluster equation.

The outer k loop of Algorithm 1 performs the Newton update
(21) in line 14, using 1 = Vs as the the approximate solution to
the Newton correction equation, where V is an n × jg matrix,
where n is the total number of CCSD amplitudes, and jg is
the number of inner GMRES iterations. The inner j iteration
of Algorithm 1 solves the Newton correction Equation (20)
using the GMRES method. The GMRES method performs a

Gram–Schmidt process to produce an orthonormal basis of the
Krylvo subspace

K(J, r0) ≡ {r0, Jr0, J
2r0, ..., J

jgr0},

where J is the Jacobian evaluated at a particular approximation
to the CCSD amplitudes t, and r0 is the function value of r
in Equation (16) defined at such a t. This orthonormal basis is
stored in columns of theV matrix. In exact arithmetic, thismatrix
satisfies the equation

JV = ṼH, (22)

where V contains the leading jg columns of Ṽ , which are

orthonormal, i.e., VTV = I, and H is a (jg + 1) × jg upper
Hessenberg matrix. The approximation to the solution of (20)
is represented as 1 = Vs for some vector s of length jg. This
vector can be solved from the least squares problem defined by
the Galerkin projection

min
s
‖ṼT(JVs− r0)‖ (23)

It follows from Equation (22), ṼTṼ = I, and the fact that the
first column of V is r0/‖r0‖, solving Equation (23) is equivalent
to solving

min
s
‖Hs− βe1‖, (24)

where β = ‖r0‖. This is the least squares problem solved on line
13 of the algorithm. The solution is used in line 14 to update the
CCSD amplitude.

3.3. Precondition
An iterative procedure for computing the solution to the Newton
correction Equation (20) can be accelerated by using a pre-
conditioner P. Instead solving (20), we solve

P−1J(k)1 = −P−1r(t(k)), (25)

with the hope that P−1J(k) has a reduced conditioner number.
The reduced condition number can lead to faster convergence.

It is well-known that the Jacobian associated with the
projected coupled cluster equation can be partitioned as

J(t(k)) = D+ E(t(k)), (26)

where D is a diagonal matrix consisting of the difference between
virtual and occupied HF orbital energies, and E is a complicated
term that depends on the fluctuation potential (Helgaker et al.,
2014). When the HF amplitude is relatively large, the first term
is dominant. Hence the diagonal matrix can be used as a pre-
conditioner for the iterative solver of Equation (20).

Applying such a pre-conditioner only requires adding an
extra step before the while loop in Algorithm to compute the
preconditioned right-hand side in Equation (25) and modifying
line 7 of the algorithm to apply P−1 to theW tensor.

When D is ill conditioned due to the presence of near
degenerate HF orbital energy levels, it may be necessary to
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introduce a shift σ and use D − σ I as the preconditioner. This
regularization technique is similar to the level-shifting technique
often used in HF SCF calculation (Saunders and Hillier, 1973).

When J is not dominated by D, i.e., when contribution from
the HF amplitude is less significant, it is desirable to construct
alternative pre-conditioners to accelerate the convergence of the
NK method.

3.4. Stopping Criterion
It is well-known that fast convergence of the IN algorithm can
be achieved even when the Newton correction Equation (20) is
not solved to full accuracy (Eisenstat and Walker, 1994). This
is especially true in earlier IN iterations in which the residual
norm ‖r(t)‖ is still relatively large. A general strategy proposed in
Eisenstat andWalker (1994) is to solve the correction equation to
satisfy the following condition:

‖J(t(k))1+ r(t(k))‖ ≤ ηk‖r(t
(k))‖, (27)

for some small constant 0 < ηk < 1. A sophisticated scheme
was proposed in Eisenstat and Walker (1994) to ensure the so-
called “global convergence.” However, such a scheme requires
backtracking and additional residual function evaluations and
is thus likely to increase the overall cost of the NK method.
In this work, we use a simple strategy and set ηk to 10−1 with
the left-hand side of Equation (27) estimated by the projected
residual norm evaluated at the least squares solution to Equation
(24). As the residual norm ‖r(t(k))‖ decreases in the outer
iteration, the absolute error in the approximate solution to
the correction equation also decreases when Equation (27) is
satisfied. Note that there is a trade-off between the number of
inner GMRES iterations required to solve the Newton correction
equation and the number of NK outer iterations. Setting ηk
to a small number may result in too many GMRES iterations
performed at each NK iteration and thus increase the overall
cost the algorithm. In our implementation, we set a limit on the
maximum number of GMRES iterations allowed in each Newton
iteration. Our computational experiments show that it is usually
sufficient to limit the maximum number of GMRES iterations to
5. Furthermore, ηk can also be chosen in a dynamic way with ηk
being relatively large for small k and relatively small for large k.

4. COMPARISON WITH DIIS

The DIIS method (Pulay, 1980) is a commonly used technique to
accelerate the convergence of iterative method for solving the CC
equation. At the kth iteration, we form a new approximation as

t̃(k+1) =

k
∑

j=k−ℓ

ωk−j

[

t(j) +1(j)
]

, (28)

for some constant ℓ < k, where ωj’s are chosen to be the solution
to the following constrained minimization problem

min
∑

j ωj=1
‖
∑

j

ωj1
(k−j)‖. (29)

The k+ 1st amplitude approximation is then computed from

t(k+1) = t̃(k+1) − 1̃(k+1), (30)

where 1̃(k+1) is the approximate solution to the Newton
correction Equation (20) or (25).

Note that in some formulations of the DIIS algorithm, the
1(k−j) term in the objective of Equation (29) are simply replaced
by r(t(k−j)). Since 1̃(k−j) is often computed as D−1r(t(k−j)),
where D is the diagonal component in Equation (26), these two
formulations are equivalent up to a scaling matrix D.

In some implementations of the DIIS acceleration method,
one performs a fixed number of IN iteration with D in
Equation (26) as the approximate Jacobianmatrix before the DIIS
procedure is used to update t(k+1) according to Equation (30). In
other implementations, DIIS is performed in each IN iteration.

The convergence of the DIIS method and its connection
with the Broyden’s method (Dennis and Schabel, 1996) has
been analyzed in Rohwedder and Schneider (2011) and
Walker and Ni (2011). The connection between DIIS and
Krylov subspace method is made in Harrison (2004) and
Ettenhuber and Jrgensen (2015).

One of the practical issues one needs to consider when
implementing the DIIS method is the solution of the constrained
minimization problem (29). A commonly used approach in
existing quantum chemistry software is to write down the linear
equation representing the first-order necessary condition of
Equation (29) and solve the equation using a Cholesky or LU
factorization based method. This approach is not numerically
stable, especially when the set of {1(k−j)} becomes nearly linearly
dependent. A more stable way to solve Equation (29) is to
turn it into a unconstrained least squares problem and obtain
the optimal solution via a rank-reveal QR factorization of the
matrix consisting of 1(k−j) as its columns. However, applying
rank-reveal QR to {1(k−j)} is rather costly. In comparison,
performing a rank-reveal QR factorization for solving the
projected least squares problem (24) in the NK method is
relatively straightforward, and does not introduce significant
overhead. To improve numerical stability and computational
efficiency, it may be necessary to keep only a subset of {1(k−j)}’s
for a small number of j’s.

In terms of memory usage, NK is slightly more efficient.
In addition to storing the current approximation to the CC
amplitudes and the residual, NK also stores orthonormal basis
tensors of the Krylov subspace used to obtain approximate
solution to the Newton’s correction equation. The DIIS method
typically needs to store a set of {1(k−j)}’s as well as the
corresponding set of previous amplitude approximations.

Although one can view the DIIS method as a way to solve
theNewton correction Equation (20) (Rohwedder and Schneider,
2011), it is also possible to combine DIIS acceleration with the
NK procedure. In such a hybrid scheme, we simply use GMRES
to compute 1̃(k+1) correction in Equation (30) after t̃(k+1) is
obtained from a DIIS update.
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FIGURE 1 | A comparison of different CCSD solvers for the H2O molecule.

5. RESULTS AND DISCUSSION

In this section, we present a few numerical examples to
demonstrate the effectiveness of the NK method and compare
with the inexact Newton method accelerated by DIIS. All
algorithms compared below were implemented using the
NWChem software (Valiev et al., 2010) version 6.6.

5.1. H2O Molecule
In the first example, we show how the NK algorithm behaves
when it is applied to a simple water molecule in equilibrium. We
use the cc-pvtz basis set to discretize the problem. We compare
the NK algorithm with the IN method in which the Jacobian is
approximated the diagonal matrix D in Equation (26), and the
IN method accelerated by the DIIS procedure (labeled as DIIS).
When DIIS is used to accelerate convergence, it is applied every
5 IN iterations. We set the convergence tolerance to 10−7, i.e.,
we terminate the IN, DIIS, and NK iterations when the Euclidean
norm of the residual r(t) falls below 10−7.

In Figure 1, we plot the change of residual norm of each
method with respect to the cumulative number of CCSD
residual function evaluations (tensor contractions). Note that
in the IN and DIIS runs, the number of function evaluations
is equivalent to the number of IN iterations. However, in
the NK run, the number of function evaluations is the total
number of inner GMRES iterations and the number of outer
NK iterations.

We observe that for this relatively easy problem, the
IN method converges without DIIS acceleration. It takes
19 iterations (and 19 function evaluations) to reach
convergence. The use of DIIS acceleration reduces the
total number function evaluations to 16. This is also the
number of function evaluations used in the NK method.
By combining NK and DIIS, we reduce the number of
functions by 1.

FIGURE 2 | A comparison of different CCSD solvers for the Cr2 molecule.

5.2. Cr2
In this section, we show how NK performs on a Cr2 molecular.
The interatomic distance between two Cr atoms is set to 1.7
angstrom, which is near equilibrium. We use the cc-pvdz basis
set to discretized the problem.

This is a relatively difficult problem. As we can see from
Figure 2, without DIIS acceleration, the IN iteration diverges
quickly. Even when the DIIS acceleration is activated, which is
applied every 5 IN iterations, the change of residual norm has
a zig-zag pattern with the residual norm decreasing only after
a DIIS step. It takes a total of 61 residual evaluations before
convergence is reached. Both NK and the hybrid NK and DIIS
converge rapidly. We used a maximum of 5 GMRES iterations in
each NK iteration. The residual norm decreases monotonically in
both runs. There is very little difference between the two.

As we indicated earlier, there is a tradeoff between performing
more GMRES iterations in the inner loop of the NK method
and the number of NK iterations. In Figure 3, we compare the
total number of NK iterations and the total number of function
evaluations for several NK runs in which different numbers of
GMRES iterations were performed in each outer NK iteration.

We can see from Figure 3 that performing 3 GMRES
iterations per NK iteration is not enough to achieve rapid
convergence. On the other hand, taking too many GMRES
iterations does not help either, especially in the first few NK
iterations when the residual norm is still relatively large. For this
problem, setting the maximum number of GMRES iterations per
NK iteration to 5 appears to yield best performance.

In Figure 4, we also show the change of the relative GMRES
residual norm defined as ‖Hs−βe1‖/β , whereH, s, e1, and β are
as defined in Equation (24), with respect to the GMRES iteration
number during the first and the 10th NK iterations when the
number of GMRES iterations is fixed at 10. We observe that the
GMRES iteration converge slowly in the first NK iteration when
the CCSD amplitudes are relatively far from the solution. As the
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FIGURE 3 | A comparison of three Newton–Krylov (NK) runs that use 3, 5 and

10 Generalized Minimum Residual (GMRES) iterations per NK iteration.

FIGURE 4 | The change of relative GMRES residual norm in the first and 10th

NK iterations.

amplitudes become closer to the solution, the GMRES iteration
converges faster.

5.3. Trans-dimer Ti2O4
The next example we use for testing the NK method
is a titanium oxide system. Its geometry is shown in
Figure 5. We use the aug-cc-pvtz basis set to discretize
the problem.

This is a difficult problem. Figure 6 shows that DIIS fails to
converge. In fact, the residual norm quickly increases. This is
mainly caused by the fact that the D matrix used in the IN
method is extremely ill-conditioned. To overcome this difficulty,
we regularize the NK calculation by subtracting a constant shift
σ from the diagonal of D. The same level-shifting is used in
the IN accelerated by DIIS. Figure 6 shows that DIIS converges
when σ is chosen to be 0.1. However, the convergence is rather

FIGURE 5 | The atomic configuration of the trans-dimer Ti2O4 system.

FIGURE 6 | A comparison of different CCSD solvers for the trans-dimer

Ti2O4 molecule.

slow with this choice of level shift. By setting σ to 0.5, we can
achieve much faster convergence. The shift can also be applied
to in NK when D − σ I is used as a preconditioner in the
GMRES iteration. For this problem, the NK (combined with
DIIS) converges with 41 residual function evaluations, which is
fewer than the 47 function evaluations required in DIIS. Similar
convergence is observed for NK without DIIS (which we do not
plot here) also.

5.4. oxo-Mn (salen)
We now compare the performance of NK and DIIS for
an oxo-Mn (salen) molecule shown in Figure 7. In practical
applications, this system catalyzes enantioselective epoxidation
of unfunctional olefines and represents an important substance
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FIGURE 7 | The atomic configuration of the oxo-Mn (salen) molecule.

FIGURE 8 | A comparison of direct inversion of iterative subspace (DIIS) and

NK combined with DIIS (NKDIIS) convergence for the oxo-Mn (salen) molecule.

in industry. Due to the quasi-degeneracy of the lowest states,
this system is a considerable challenge even for multireference
methods and has been intensively studied recently (Irie et al.,
1990; Zhang et al., 1990; Antalík et al., 2019).

We have performed TCCSD calculations in CAS(28,22)
space, where external amplitudes were obtained from
DMRG calculation.

Figure 8 shows the convergence history of the IN iteration
accelerated by DIIS, NK, and NK combined with DIIS
(NKDIIS). For this example, the IN iteration appears to
converge very fast. Both the NK and NKDIIS are slightly
slower, but converges in 10 NK iterations.This example
shows that for systems with multireference features, it is
important to use an appropriate model that can treat the

multireference character of the molecule effectively. With
such a model, the CCSD nonlinear equation can become
easier to solve. Although NK may not offer too much
advantage in this case, it is still an effective solver for such
as model.

5.5. The G2/97 Dataset
In addition to testing the NK algorithm on the above
representative molecules, we performed a more extensive testing
of the algorithm on a much wider range of molecules randomly
selected from the G2/97 dataset (Curtiss et al., 1997). Among
130 systems we tested, NK performs better on 123 of them.
On average, NK uses 12% fewer function evaluations when
compared with DIIS. In the best case, NK uses 33% fewer
function evaluations. In the worst case, NK uses 40% more
function evaluations.

6. CONCLUSION

We presented a NK method for solving CC amplitude equations.
In such a method, the Newton correction equation is solved
by a Krylov subspace iterative method such as the GMRES
method. Preconditioners can be applied in the iterative
solver to accelerate convergence. We discussed the trade-
off between performing more inner (GMRES) iteration and
outer Newton iteration, and suggested an adaptive stopping
criterion for the inner iteration. We compared the NK
method with the widely used DIIS method and showed how
the two methods can be combined. We presented several
numerical examples to demonstrate the effectiveness and
robustness of the NK method not only for standard CCSD
calculations but also for tailed CCSD calculations where
the information for external correction is obtained from a
DMRG calculation. Although the results we presented in
this paper are on developments made in an older version
NWChem software, the NK has been implemented in the next
generation of NWChem software (NWChemEx) (Richard
et al., 2019) designed for exa-scale high-performance
computing platforms.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual
contribution to the work, and approved it for publication.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of 474 Science and the National
Nuclear Security Administration (CY, DW-Y, and KK). This

Frontiers in Chemistry | www.frontiersin.org 8 December 2020 | Volume 8 | Article 590184

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Yang et al. Coupled Cluster by Newton Krylov

research used resources of the National Energy Scientific
Computing Center (NERSC) and the Oak Ridge Leadership
Computing Facility, which are DOE Office of Science User

Facilities supported under Contracts DE-AC05-00OR22725. JB
acknowledges support from the Czech Science Foundation
(Grant No. 19-13126Y).

REFERENCES

Antalík, A., Veis, L., Brabec, J., Demel, O., Örs Legeza, and Pittner, J.
(2019). Toward the efficient local tailored coupled cluster approximation
and the peculiar case of oxo-mn(salen). J. Chem. Phys. 151:084112.
doi: 10.1063/1.5110477

Bartlett, R. J., and Musiał, M. (2007). Coupled-cluster theory in quantum
chemistry. Rev. Mod. Phys. 79, 291–352. doi: 10.1103/RevModPhys.79.291
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