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Abstract

microRNAs (miRNAs) are small non-coding RNAs related to a number of complicated bio-

logical processes. A growing body of studies have suggested that miRNAs are closely asso-

ciated with many human diseases. It is meaningful to consider disease-related miRNAs as

potential biomarkers, which could greatly contribute to understanding the mechanisms of

complex diseases and benefit the prevention, detection, diagnosis and treatment of extraor-

dinary diseases. In this study, we presented a novel model named Graph Convolutional

Autoencoder for miRNA-Disease Association Prediction (GCAEMDA). In the proposed

model, we utilized miRNA-miRNA similarities, disease-disease similarities and verified

miRNA-disease associations to construct a heterogeneous network, which is applied to

learn the embeddings of miRNAs and diseases. In addition, we separately constructed

miRNA-based and disease-based sub-networks. Combining the embeddings of miRNAs

and diseases, graph convolutional autoencoder (GCAE) was utilized to calculate associa-

tion scores of miRNA-disease on two sub-networks, respectively. Furthermore, we obtained

final prediction scores between miRNAs and diseases by adopting an average ensemble

way to integrate the prediction scores from two types of subnetworks. To indicate the accu-

racy of GCAEMDA, we applied different cross validation methods to evaluate our model

whose performances were better than the state-of-the-art models. Case studies on a com-

mon human diseases were also implemented to prove the effectiveness of GCAEMDA. The

results demonstrated that GCAEMDA was beneficial to infer potential associations of

miRNA-disease.

Author summary

Numerous studies have demonstrated that miRNAs are closely related to several common

human diseases, so observing unverified associations between miRNAs and diseases is

conducive to the diagnose and treatment of complex diseases. Considerable models pro-

posed to infer potential miRNA-disease associations have made the prediction more effec-

tive and productive. We constructed GCAEMDA model to acquire more accuracy
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prediction result by integrating graph convolutional network and autoencoder to make

prediction based on multi-source miRNA and disease information. The five-fold cross vali-

dation and global leave-one-out cross validation were implemented to evaluate the perfor-

mance of our model. Consequently, GCAEMDA reached AUCs of 0.9415 and 0.9505

respectively that were distinctly higher than AUCs of other comparative models. Further-

more, we carried out case studies on lung neoplasms and breast neoplasms to demonstrate

the practical application of the model, 47 and 47 of top-50 candidate miRNAs were con-

firmed by experimental reports. In summary, GCAEMDA could be considered as an effec-

tive and accuracy model to reveal relationship between miRNAs and diseases.

Introduction

MicroRNAs (miRNAs) belong to one class of significant small endogenous non-coding RNA

(~22nt), which inhibit post-transcriptional level of gene expression [1–4]. The first miRNA

(lin-4) was observed from the research result of C. elegans larval development timing [5]. The

lin-4 functions in a 22 nucleotide regulatory RNA that is different from common protein cod-

ing genes [5, 6]. Since the discovery of lin-4, thousands of miRNAs are detected in several liv-

ing organisms, and then these miRNAs are demonstrated to be associated with many complex

biological processes including cell proliferation [7], differentiation [8], development [9],

metabolism [10], apoptosis [11] and so on. In addition, miRNAs also are proved to be related

to various complex human diseases including heart disease, lung disease, breast disease and so

on [12–15]. Hence, the exploration of miRNA-disease association contributes to understand-

ing the molecular mechanisms of different diseases and improving the accuracy of disease

diagnosis to a great extent. Considerable traditional experiments have been conducted to infer

the relationship between miRNAs and diseases, such as polymerase chain reaction and micro-

array [16]. But the traditional methods are almost expensive and time-consuming, only little

associations of miRNA-disease can be confirmed [17]. Based on the above analyses, it is neces-

sary to propose efficient computational models that can accurately discover interactions of

miRNA-disease on a large scale.

According to the theory that functionally similar miRNAs are likely to be allied with pheno-

typically similar diseases and vice versa [18, 19], numerous computational methods have been

proposed to infer possible associations of miRNA-disease. Jiang et al [20] utilized hypergeo-

metric distribution method in the miRNA-disease association prediction model, which com-

bined verified miRNA-disease association data, miRNA similarity matrix and disease

similarity matrix to infer unknown interactions between miRNAs and diseases. But the pro-

motion of this model needed to integrate other varieties of biological information, which was

laborious to collect and calculate. Wei et al. [21] proposed a computational model to observe

the relationship of miRNA-disease by integrating various miRNA similarity information and

disease similarity information. After integrating miRNA and disease data sources, they applied

kernelized Bayesian matrix factorization to infer unverified miRNA-diseases connections. The

model HGIMDA was proposed by Chen et al. [22] that predicted unknown connections by

combining similarity networks and the known miRNA-disease association network to con-

struct a heterogeneous graph with all the 3-length paths. However, the shortcoming of

HGIMDA was that the best parameters could not be felicitously chosen. Chen et al. [23]

applied heterogeneous label propagation algorithm in the HLPMDA model to predict possible

relationship of miRNA-disease. They constructed the multi-network of miRNA, long non-

coding RNA (lncRNA) and disease to propagate label that could be utilized to infer unknown
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interaction information of miRNA-disease. Recently, Li et al. [24] predicted miRNA-disease

connections by utilizing the modified random forest algorithm that relied on sequence infor-

mation and symptom information in Seq-SymRF model. Moreover, Euclidean distance-based

clustering method was applied to choose reliable negative samples in this model.

Currently, with the amazingly quick development of the intelligence technology, machine

learning algorithms are gradually utilized to observe potential relationship between miRNAs

and diseases. In order to predict possible miRNAs associated with diseases, Chen et al. [25] uti-

lized within and between score of each miRNA-disease pair in the novel model named

WBSMDA. Furthermore, WBSMDA could predict the potential relationship between new dis-

eases and new miRNAs, which had unknown association information. You et al. [26] proposed

the prediction model-PBMDA that integrated numerous biological information including

known miRNA-disease associations, miRNA functional similarity and Gaussian interaction

profile (GIP) kernel similarity, disease semantic similarity and GIP kernel similarity to con-

struct a heterogeneous graph contained three interlinked sub-graphs. Then, depth-first search

algorithm was adopted to infer possible miRNA-disease connections. Qu et al. [27] also inte-

grated numerous biological data in MDLPMDA model to predict miRNA-disease associations.

They utilized matrix decomposition to process miRNA-disease association matrix for reducing

noise data. Then, they applied label propagation method on miRNA similarity network and

disease similarity network to obtain different prediction results, respectively. Two different

prediction results were combined by an average ensemble way to obtain final target association

matrix. Li et al. [28] utilized similarity network fusion method to integrate different kinds of

miRNA similarity information and disease similarity information to form final miRNA and

disease similarity matrices, respectively. Then, they used inductive matrix completion method

on acquired biological data to make an association prediction. Guo et al. [29] utilized multi-

layer linear projection method to predict potential miRNA-disease associations. They gradu-

ally updated miRNA-disease association matrix by using the top n neighbors of miRNA node

and disease node, which contributed to employing the local structure and enhancing data rich-

ness. In addition, they utilized updated association matrix, miRNA similarity matrix and dis-

ease similarity matrix to construct a heterogeneous matrix, which were utilized by designed

multiple computing layers to obtain predicted miRNA-disease association scores.

Meanwhile, there are also a number of graph convolutional network or autoencoder-based

methods that are successfully put forward later. For example, the model named HGCNMDA

[30] was proposed to infer potential interactions of miRNA-disease. The node2vec method

[31] and graph convolutional networks were adopted on Protein-Protein Interactions (PPI) to

obtain the cross-features of diseases and miRNAs. HGCNMDA constructed an edge features

extraction component based on these cross-features for achieving accuracy predictive perfor-

mance. The model named NIMCGCN [32] implemented the graph convolutional networks

on similarity networks of miRNA and disease for inferring more valuable features. And

NIMCGCN applied neural inductive matrix completion to generate predictive miRNA-disease

associations. Li et al. [33] proposed the FCGCNMDA model, which applied fully connected

homogeneous graph to indicate corresponding correlation coefficient between various

miRNA-disease pairs. And then miRNA-disease pairs feature matrix and the fully connected

graph were fed into a graph convolutional networks with two-layer for training. Finally, the

FCGCNMDA made full use of trained network to infer unknown scores of miRNA-disease

pairs. Tang et al [34] developed the MMGCN model to predict potential miRNA-disease asso-

ciations. The MMGCN severally employed GCN encoder to extract the features of miRNA

and disease in different similarity views. Moreover, MMGCN could enhance the acquired

latent representations for association prediction by implementing multichannel attention,

which adaptively learned the importance of different features. Ji et al. [35] presented the
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AEMDA model that applied a learning-based way to obtain high-dimensional disease represen-

tations and miRNA representations. Then, AEMDA utilized a deep autoencoder that only need

positive samples to observe disease-related miRNAs. Li et al. [36] proposed a novel model

named GAEMDA that constructed a graph neural networks-based encoder to obtain the

miRNA low-dimensional embeddings as well as disease low-dimensional embeddings and

achieve the efficacious fusion of heterogeneous information. In addition, the bilinear decoder

applied acquired miRNA embeddings and disease embeddings to predict potential associations

between miRNAs and diseases. The VAEMDA model [37] utilized integrated miRNA similar-

ity, integrated disease similarity and known miRNA-disease association to construct two spliced

matrices, which were used to train the variational autoencoder, respectively. They integrated

the prediction scores from different trained variational autoencoder models to infer unverified

miRNA-disease associations. Liu et al. [38] developed a computational model called to infer

unknown miRNA-disease associations. SMALF first utilized the stacked autoencoder to extract

miRNA and disease latent features from the original association matrix of miRNA-disease.

Then, SMALF integrated miRNA functional similarity, miRNA latent feature, disease semantic

similarity and disease latent feature to form the feature vector of denoting miRNA-disease.

Finally, XGBoost was utilized in SMALF to predict potential miRNA-disease associations.

In conclusion, most proposed models first get the feature representations of miRNAs and

diseases, and then make prediction with those representations. However, the feature represen-

tation can’t completely denote the deep relationships in the network of miRNA-disease, which

indicates these models ignore the abundant structural information contained in the network.

To overcome the mentioned limitations of existing prediction models, we introduced a novel

computational model (GCAEMDA) to infer potential miRNA-disease associations by integrat-

ing graph convolutional network and autoencoder. Specifically, the main contributions of our

study included following parts:

• The embeddings of miRNAs and diseases were learned by a heterogeneous network, which

was constructed by miRNA-miRNA similarity network, disease-disease similarities and

known miRNA-disease associations.

• Based on the embeddings of miRNAs and diseases, graph convolution autoencoder was

applied to obtain prediction scores of miRNA-disease from miRNA-based and disease-based

sub-networks, which were constructed by giving the similarity networks with different

threshold values.

• Furthermore, we obtained final prediction scores of miRNA-disease by adopting an average

ensemble way to integrate the two prediction scores.

We applied five-fold cross validation (5-CV) and global leave-one-out cross validation

(global LOOCV) to evaluate accuracy of the GCAEMDA, which obtained AUCs of 0.9415 and

0.9505, respectively. Case studies on colon neoplasms and prostate neoplasms were also car-

ried out to prove the prediction ability of the model. As a result, most of the predicted miRNAs

associated with these diseases were verified by miR2Disease database [39] and dbDEMC v2.0

database [40]. In conclusion, GCAEMDA can effectively predict potential miRNA-disease

association.

Materials

Human miRNA-disease associations

In this paper, we extracted the verified miRNA-disease association information from HMDD

v3.2 database [41] that obtained 12446 experimentally certified associations between 853
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miRNAs and 591 diseases after merging duplicates and removing the irregular data. In order

to better represent these biological information, we constructed a binary matrix A2Rnm×nd to

denote known miRNA-disease associations. The nm and nd were applied to represent the

number of miRNAs and number of diseases, respectively. The matrix A only included two val-

ues that were 1 and 0 indicated verified associations and unverified associations between miR-

NAs and diseases, respectively.

miRNA sequence similarity

We obtained corresponding miRNA sequences form miRBase database [42], and the Needle-

man-Wunsch [43] algorithm was utilized to calculate sequence similarity of miRNAs. For the

convenience and efficiency of subsequent calculation, we constructed the matrix SM1 to store

the data. The element SM1(mi, mj) represents the value of sequence similarity between miRNA

mi and miRNA mj.

Disease semantic similarity

The MeSH database [44] that contains numerous disease descriptors is obtained by the

National Library of Medicine, and disease semantic similarity can be calculated via utilizing

the arborescence attribute of disease in MeSH database where every disease node is marked in

the directed acyclic graph (DAG) [45]. For a specific disease D, we defined DAG(D) = (D,T
(D),E(D)), where T(D) denoted the node set that included D itself and its ancestor nodes and E
(D) denoted the edge set that included the direct links to connect child nodes with parent

nodes directly. We constructed the matrix SD1 to store the similarity information and element

SD1(di, dj) represents the value of semantic similarity between disease di and disease dj.

Gaussian interaction profile kernel similarity

On the basis of assumption that the miRNAs with similar functions are likely to be related to

diseases with similar phenotypes and vice versa [18, 45], we introduced Gaussian interaction

profile kernel similarity to represent miRNA similarity and disease similarity. First, the inter-

action profile of miRNA mi was denoted by a binary vector P(mi) that represented presence

association or absence association between miRNA mi and each disease in verified miRNA-

disease associations, which was also the row i of matrix A. Furthermore, the GIP kernel simi-

larity of miRNA can be calculated as follows:

SM2ðmi;mjÞ ¼ expð� rmkPðmiÞ � PðmjÞk
2
Þ ð1Þ

where SM2(mi, mj) denotes the GIP kernel similarity between miRNA mi and miRNA mj, and

the adjustment parameter ρm is defined by the below formula:

rm ¼ r
0

m=
1

nm

Xnm

i¼1

kPðmiÞk
2

 !

ð2Þ

where r0m denotes the original bandwidth that is defined as 1 on the basis of the previous study

[46].

In the same manner, the GIP kernel similarity SD2(di, dj) between disease di and disease dj
can be calculated as follows:

SD2ðdi; djÞ ¼ expð� rdkPðdiÞ � PðdjÞk
2
Þ ð3Þ
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rd ¼ r
0

d=
1

nd

Xnd

i¼1

kPðdiÞk
2

 !

ð4Þ

Integrating similarity for miRNA and disease

In this section, the SM1 and SM2 are combined to construct the final miRNA similarity matrix

SM by the below formula.

SM mi;mj

� �
¼

SM1ðmi;mjÞ þ SM2ðmi;mjÞ

2
if SM1ðmi;mjÞ 6¼ 0

SM2ðmi;mjÞ otherwise
ð5Þ

8
><

>:

Similarly, the SD1 and SD2 are combined to construct the ultimate disease similarity matrix

SD by the following formula.

SD di; dj
� �

¼

SD1ðdi; djÞ þ SD2ðdi; djÞ
2

if SD1ðdi; djÞ 6¼ 0

SD2ðdi; djÞ otherwise
ð6Þ

8
><

>:

In order to clearly show specific information of miRNA similarity matrix and disease simi-

larity matrix, the visualizations of SM and SD are shown in Fig 1A and 1B.

Methods

Heterogeneous network and sub-networks

In order to promote the contribution of similarities in the propagation process of graph convo-

lutional network, we normalized similarity matrices SM and SD to obtain matrix M and matrix

D by M ¼ Dm
� 1

2SMDm
� 1

2 and D ¼ Dd
� 1

2SDDd
� 1

2, where Dm = diag(∑jSMij) and Dd = diag

Fig 1. Visualization of (A) miRNA similarity matrix, (B) disease similarity matrix.

https://doi.org/10.1371/journal.pcbi.1009655.g001
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(∑jSDij). Then, we applied the normalized matrices and known human miRNA-disease associ-

ation matrix A to construct a heterogeneous network. The corresponding matrix X of hetero-

geneous network is defined as follow:

X ¼
M A

AT D

" #

ð7Þ

where AT denotes the transpose of adjacent matrix A. The matrix X can be applied to obtain

feature representation of each entity. Specifically, the first nm rows of adjacent matrix X denote

feature vectors of nm miRNAs, the feature vector of miRNA mi can be presented as [Mi1,

Mi2,. . .,Minm, Ai1, Ai2,. . .,Aind]. Similarly, the last nd rows of adjacent matrix X denote feature

vectors of nd diseases, the feature vector of disease dj can be presented as

[AT
j1;A

T
j2; . . . ;AT

jnm;Dj1;Dj2; . . . ;Djnd].

In addition, we constructed the two sub-networks, which were miRNA-based sub-network

and disease-based sub-network, respectively. Specifically, miRNA similarity matrix SM and

verified miRNA-disease association matrix A were utilized to construct miRNA-based sub-

network m, and we binarized edge-weighted sub-network m into unweighted network with

the similarity threshold tm. As the same way, disease similarity matrix SD and verified

miRNA-disease association matrix A were utilized to construct disease-based sub-network d,

and similarity threshold td was used to binarize edge-weighted sub-network d to unweighted

network.

Graph convolutional auto-encoder

The graph convolutional network (GCN) was created by Kipf et al [47], which could effectively

learn graph structure information and the representations of node attributes. The graph con-

volutional auto-encoder (GCAE) can apply GCN to incorporate node features and then utilize

latent variables to learn interpretable latent representation for undirected graph from the per-

spective of data distribution. The GCAE includes graph convolution network encoder and

Inner product decoder, which are clearly showed in Fig 2.

Fig 2. The overview of our proposed GCAEMDA method for predicting potential miRNA-disease association.

https://doi.org/10.1371/journal.pcbi.1009655.g002
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GCN encoder contains three layers of graph convolutional networks, which can generate a

corresponding lower-dimensional feature matrix. In our paper, we utilized GCN encoder to

process miRNA-based sub-network m and disease-based sub-network d, respectively. The spe-

cific process to deal with m is shown by following formulas:

Hðlþ1Þ ¼ f HðlÞ;m
� �

¼ s D� 1
2m̂D� 1

2HðlÞWðlÞ
� �

ð8Þ

Dij ¼ diagð
X

j
m̂ijÞ ð9Þ

m̂ ¼ mþ I ð10Þ

where H(l) denotes the embeddings of nodes at the lth layer, H(0) is feature matrix X, W(l)

denotes a weight matrix which represents a map from high dimensions features to low dimen-

sions features and σ(�) denotes ReLU activation function.

Owing to the embeddings of different layers acquire diverse structural information of het-

erogeneous network, the contributions of these embeddings are inequable. The attention

mechanism is introduced to combine embeddings of different layers to obtain final embedding

hm as follows:

hm ¼
X

l
alH

ðlÞ ð11Þ

where al represent weight parameters that are utilized to control the contributions of the

embeddings at different convolution layers to the final embeddings. In order to better under-

stand above mechanism, the overview of feature processing is clearly shown in Fig 3.

The decoder in fact is an inner product between latent vector hm, which is briefly showed in

Fig 4. According to the principle of matrix factorization (MF), the reconstructed score matrix

m� can be calculated by the following formula:

m� ¼ sigmoidðhmh
T
mÞ: ð12Þ

In our paper, we utilized the weighted cross-entropy as loss function, so we should calculate

the weighted cross-entropy between the target m and the output m�. The loss function is

defined as follows:

L ¼ � ½m � logðsigmoidðm�ÞÞ � oþ ð1 � mÞ � logð1 � sigmoidðm�ÞÞ� ð13Þ

where ω is weight coefficient, which equals to the radio of negative samples to positive

samples.

Similarly, we also used GCN encoder to process disease-based sub-network d, and embed-

ding hd could be obtained, which was final latent vector of disease. In addition, we utilized hd
to obtain reconstructed matrix d�. The weighted cross-entropy between the target d and the

output d� could be calculated by loss function.

After score matrix m� and score matrix d� were obtained, the ultimate miRNA-disease

interaction matrix A� would be get by the average of m� and d�.

A� ¼
m� þ d�

2
ð14Þ
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Fig 3. The overview of feature processing in encoder.

https://doi.org/10.1371/journal.pcbi.1009655.g003

Fig 4. The overview of inner project in decoder.

https://doi.org/10.1371/journal.pcbi.1009655.g004
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Results

Experiment setting

GCAEMDA is conducted on Python based on PyTorch that is considered as an open source

machine learning framework, and version 1.1 is implemented in our experimental environ-

ment. In addition, the Ubuntu 16.04 platform with 2 Tesla P100 GPUs is used to run our all

experiments.

In this study, several hyperparameters more or less affect the performance of the

GCAEMDA. The model includes miRNA-based sub-network and disease-based sub-network,

which are kept the same structure. Adam optimizer is chosen as the optimizer during the train-

ing, and the Relu function [47] is chosen as active function in all hidden layers. The learning

rate, number of layers and dimensionality of embeddings ultimately are set to 1e−4, 3 and 64

after many adjustments, respectively. We considered different combinations of the total train-

ing epochs of GCAEMDA β and the dropout rate γ from the ranges β2{100, 200, 300, 400} and

γ2{0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. As a result, we set β = 400 and γ = 0.3 for reaching the best experi-

mental results.

Performance comparison

In this section, we compared GCAEMDA with other excellent computational methods that

included BNPNDA [48], MSCHLMDA [49], NIMCGCN [32] and HFHLMDA [50] by imple-

menting 5-CV and global LOOCV. In order to make comparative results persuasive, we used

biological information consistent with GCAEMDA in compared methods.

In the framework of 5-CV, we divided verified associations into five folds in a random way,

and test set was held by each fold in turn, training set included rest parts. And many times

repeated segmentations on verified positive samples were applied to reduce potential devia-

tions. In order to effectively evaluate the performance of these models, we calculated the areas

under the Receiver operating characteristics (ROC) curves (AUCs) of these methods whose

values were between 0 and 1. In the ROC curve, the false positive rate (FPR) and true positive

rate (TPR) are served as horizontal axis and vertical axis, respectively. As shown in Fig 5, we

could see that GCAEMDA, BNPMDA, MSCHLMDA, NIMCGCN and HFHLMDA acquired

AUC values of 0.9415, 0.9155, 0.9314, 0.9378 and 0.9301 in 5-CV.

In the framework of global LOOCV, the test set was orderly hold by each verified associa-

tion, the training set consisted of other verified associations. Once again the AUCs of these

models were applied to reflect their performance. As shown in Fig 6, we could see that

GCAEMDA, BNPMDA, MSCHLMDA, NIMCGCN and HFHLMDA acquired AUC values of

0.9505, 0.9159, 0.9378, 0.9410, and 0.9321, respectively, which were significantly demonstrated

the performance of GCAEMDA was better than other comparative models.

Performance analysis

Because similarity thresholds tm and td, which are used to convert edge-weighted similarity

network into unweighted network for generating sub-networks, determine the number of

miRNA similarities and number of disease similarities, they can affect the prediction perfor-

mance of model. In this section, we specifically analyze the values of tm and td.

The tm and td are set to different values as {0.1, 0.2,. . .,0.9, 1}. The AUC of 5-CV is applied

to evaluate the prediction performance, and the influence of different combinations of tm and

td on the prediction results of GCAEMDA under 5-CV is shown in Fig 7. It is obvious that

when the values of tm and td are chose as 0.9 and 0.9, respectively, the model obtains the best

prediction performance. Furthermore, we could draw a conclusion that the influence of
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parameter tm on the prediction performance of model is greater than the influence of parame-

ter td by analyzing experiment results, which may be attribute to the number of miRNAs

nodes is more than the number of diseases nodes.

Layer attention mechanism analysis

Layer attention is regarded as one important component of the network architecture in

encoder and plays an important role in controlling and quantifying the inter-dependence of

distinct convolution layers. In this section, we concluded the influence of the layer attention

mechanism.

We utilized the embeddings at the l-th layer of encoder with l = 1, 2, 3 to build different

models, which are abbreviated as GCAE-L1, GCAE-L2 and GCAE-L3, respectively. The AUCs

of these models obtained by the 5-CV are shown in Fig 8, which clearly indicates the prediction

performances of GCAE-L1 and GCAE-L2 are better than prediction performance of

GCAE-L3. The results denote that the node information contained by first-layer embeddings

and second-layer embeddings is more than the third-layer embeddings, which may be attrib-

uted to the over-smoothing of GCN [48]. GCAEMDA integrates embeddings of all layers to

obtain the prediction result that is better than the prediction results of GCAE-L1, GCAE-L2

and GCAE-L3.

On the basis of previous study [51], the l-th layer of GCN can capture the l-th order proxim-

ity, so the attention weight indicates the corresponding contribution of the embeddings at

Fig 5. AUC of 5-CV compared with those of BNPMDA, MSCHLMDA, NIMCGCN and HFHLMDA.

https://doi.org/10.1371/journal.pcbi.1009655.g005
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every convolution layer to the ultimate embeddings. The 5-CV was implemented in 10 times

for GCAEMDA, and the attention weights for three layers based on the computational results

were visualized in Fig 9. Three layers possess different attention weights and gradually

decreases, which meets the condition in GCN that the higher order, the lower contribution

[51]. The results also contribute to state the performances of GCAE-L1, GCAE-L2 and

GCAE-L3 in Fig 8. Hence, paying different attention weights to three convolution layers is

conducive to improve prediction performance. According to experiment results, we paid 50%,

35% and 15% attention weights to l-th layer with l = 1, 2, 3, respectively.

There are also other ways to combining embeddings at different layers, so we use GCAE-A

and GCAE-C to compare with our model for demonstrating the effectiveness of attention

mechanism in GCAEMDA. GCAE-A assigns same weights to different embeddings; GCAE-C

directly concatenates different embeddings. The comparison results are also shown in Fig 8,

which indicates GCAEMDA produces better result than GCAE-A and GCAE-C.

Case studies

For the purpose of demonstrating the effectiveness and accuracy of GCAEMDA, we applied

the case studies on lung neoplasms and breast neoplasms to validate the performance of

GCAEMDA for new miRNA-disease association prediction. Lung neoplasms have long been

considered as the leading cause of death worldwide [52]. And breast neoplasms are considered

as the common female cancer whose molecular mechanisms should be thoroughly exploited

Fig 6. AUC of global LOOCV compared with those of BNPMDA, MSCHLMDA, NIMCGCN and HFHLMDA.

https://doi.org/10.1371/journal.pcbi.1009655.g006
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for better treatment [53]. Hence, there is an increasing requirement for seeking biomarkers

that can strengthen biological mechanisms understanding of lung neoplasms and breast neo-

plasms. In this section, all verified associations in the HMDD v3.2 database were put into the

training set of GCAEMDA. Then, according to their prediction scores, the top 50 investigated

disease-related miRNAs could be selected. Furthermore, we would utilize miR2Disease and

dbDEMC v2.0 databases to verify these findings. The miR2Disease database was confirmed

manually after the automatic extraction. The dbDEMC database collected differentially

expressed miRNAs in various human diseases, and dbDEMC v2.0 added more disease-related

miRNAs obtained from expression data. The results demonstrated that a part of verified

miRNA-disease associations in HMDD v3.2 database also existed in miR2Disease and

dbDEMC v2.0 databases after comparing the HMDD v3.2 with miR2Disease/ dbDEMC v2.0.

As a result, 47 out of the top 50 miRNAs were verified to be associated with lung neoplasms

(Table 1), and 47 out of the top 50 miRNAs were verified to be associated with breast neo-

plasms (Table 2). The results demonstrated that our model could effectively predict unknown

miRNA-disease associations.

Discussion and conclusion

In this paper, we introduced a novel method of GCAEMDA in which we applied graph convo-

lutional autoencoder to predict possible associations between miRNAs and diseases. In this

model, we applied miRNA sequence similarity and GIP kernel similarity to integrate miRNA

Fig 7. AUCs of 5-CV at different values of tm and td.

https://doi.org/10.1371/journal.pcbi.1009655.g007
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similarity network as well as applied disease semantic similarity and GIP kernel similarity to

integrate disease similarity network. Then, we utilized miRNA similarity network, disease sim-

ilarity network and verified miRNA-disease interaction network to construct the heteroge-

neous network that was applied to obtain the embeddings of miRNAs and diseases. In

addition, graph convolution auto-encoder was applied to predict unknown miRNA-disease

associations by utilizing the embeddings of miRNAs and diseases as well as miRNA-based and

disease-based sub-networks, respectively. Furthermore, we obtained final prediction scores of

miRNA-disease by integrating the two prediction score matrix. In the frameworks of 5-CV

and global LOOCV, the AUCs of GCAEMDA achieved 0.9415 and 0.9505 that indicated the

performance of GCAEMDA had a significant improvement relative to previous methods. And

the case studies implemented on lung neoplasms and breast neoplasms also confirmed the pre-

diction ability of GCAEMDA. In conclusion, all results demonstrated that GCAEMDA could

effectively observe disease-associated miRNAs.

What should be denoted is that the following factors may contribute to the reliable perfor-

mance of GCAEMDA. First of all, we integrated plentiful biological data to construct the het-

erogeneous network that ensured the information richness of embeddings of miRNAs and

Fig 8. Performance of GCAEMDA based on different embeddings.

https://doi.org/10.1371/journal.pcbi.1009655.g008
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Fig 9. Attention weights for three convolution layers in GCAEMDA.

https://doi.org/10.1371/journal.pcbi.1009655.g009

Table 1. The top 50 potential miRNAs associated with lung neoplasms.

miRNA evidence miRNA evidence

hsa-mir-93 m; d hsa-mir-660 d

hsa-mir-96 d hsa-mir-610 d

hsa-mir-99a m; d hsa-mir-545 d

hsa-mir-98 m; d hsa-mir-616 d

hsa-mir-7 m; d hsa-mir-671 d

hsa-mir-31 m; d hsa-mir-605 d

hsa-mir-9 m; d hsa-mir-520h d

hsa-mir-574 d hsa-mir-608 d

hsa-mir-630 d has-mir-205 m; d

hsa-mir-570 d hsa-mir-557 d

hsa-mir-95 m; d hsa-mir-526b d

hsa-mir-592 d hsa-mir-522 d

hsa-mir-92a d hsa-mir-564 d

hsa-mir-629 d hsa-mir-1298 d

hsa-mir-939 d hsa-mir-1973 d

hsa-mir-638 d hsa-mir-3662 d

hsa-mir-944 d hsa-mir-412 d

hsa-mir-652 d hsa-mir-4302 d

hsa-mir-769 unconfirmed hsa-mir-4326 d

hsa-mir-558 d hsa-mir-4423 unconfirmed

hsa-mir-548j unconfirmed hsa-mir-4500 d

has-mir-614 d has-mir-1323 d

hsa-mir-641 d hsa-mir-143 m; d

hsa-mir-937 d hsa-mir-145 m; d

hsa-mir-873 d has-mir-21 m; d

m: miR2Disease database; d: dbDEMC v2.0 database

https://doi.org/10.1371/journal.pcbi.1009655.t001
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diseases. In addition, we adaptively combined embeddings at different convolution layers with

an attention mechanism, which leads to a more information representation of miRNAs and

diseases. Moreover, we constructed miRNA-based and disease-based sub-networks that

guaranteed the full completion of missing data.

However, there are some limitations that may influence the performance of GCAEMDA.

The data we utilized included verified interactions of miRNA-disease, miRNA similarity data

as well as disease similarity data, which may obtain noise and outliers. In addition,

GCAEMDA is possible to cause several bias to diseases that are related to plenty of miRNAs

and vice versa. Therefore, we should continuously optimize our model to improve its perfor-

mance in the later days.

Supporting information

S1 Table. Known human miRNA-disease associations obtained from HMDD v3.2 data-

base.

(XLSX)

S2 Table. Names of 853 miRNAs involved in known human miRNA-disease associations

obtained from HMDD v3.2 database.

(XLSX)

Table 2. The top 50 potential miRNAs associated with breast neoplasms.

miRNA evidence miRNA evidence

hsa-mir-96 m; d hsa-mir-519d d

hsa-mir-93 d hsa-mir-718 d

hsa-mir-99a d hsa-mir-663a d

hsa-mir-542 d hsa-mir-760 d

hsa-mir-92b d hsa-mir-561 d

hsa-mir-98 m; d hsa-mir-608 d

hsa-mir-630 d hsa-mir-627 d

hsa-mir-708 d hsa-mir-98 m

hsa-mir-625 d has-mir-520h d

hsa-mir-574 unconfirmed hsa-mir-873 d

hsa-mir-629 d hsa-mir-570 d

hsa-mir-590 unconfirmed hsa-mir-603 d

hsa-mir-663 m hsa-mir-584 d

hsa-mir-9 m; d hsa-mir-888 d

hsa-mir-874 d hsa-mir-576 unconfirmed

hsa-mir-520c m hsa-mir-661 m; d

hsa-mir-613 d hsa-mir-605 d

hsa-mir-675 d hsa-mir-573 d

hsa-mir-638 d hsa-mir-526b d

hsa-mir-940 d hsa-mir-519e d

hsa-mir-592 d hsa-mir-765 d

has-mir-650 d has-mir-575 d

hsa-mir-744 d hsa-mir-942 d

hsa-mir-939 d hsa-mir-618 d

hsa-mir-671 d has-mir-548c d

m: miR2Disease database; d: dbDEMC v2.0 database

https://doi.org/10.1371/journal.pcbi.1009655.t002
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S3 Table. Names of 591 diseases involved in known human miRNA-disease associations

obtained from HMDD v3.2 database.
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S4 Table. The constructed miRNA sequence similarity score matrix.
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S5 Table. The constructed disease semantic similarity score matrix.
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