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Elisabeth A. M. Sanders1, Debby Bogaert1*

1 Department of Pediatric Immunology and Infectious Diseases, UMC Utrecht, Utrecht, The Netherlands, 2 Julius Center for Health Sciences and Primary Care, UMC

Utrecht, Utrecht, The Netherlands, 3 Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands

Abstract

To understand the role of human microbiota in health and disease, we need to study effects of environmental and other
epidemiological variables on the composition of microbial communities. The composition of a microbial community may
depend on multiple factors simultaneously. Therefore we need multivariate methods for detecting, analyzing and
visualizing the interactions between environmental variables and microbial communities. We provide two different
approaches for multivariate analysis of these complex combined datasets: (i) We select variables that correlate with overall
microbiota composition and microbiota members that correlate with the metadata using canonical correlation analysis,
determine independency of the observed correlations in a multivariate regression analysis, and visualize the effect size and
direction of the observed correlations using heatmaps; (ii) We select variables and microbiota members using univariate or
bivariate regression analysis, followed by multivariate regression analysis, and visualize the effect size and direction of the
observed correlations using heatmaps. We illustrate the results of both approaches using a dataset containing respiratory
microbiota composition and accompanying metadata. The two different approaches provide slightly different results; with
approach (i) using canonical correlation analysis to select determinants and microbiota members detecting fewer and
stronger correlations only and approach (ii) using univariate or bivariate analyses to select determinants and microbiota
members detecting a similar but broader pattern of correlations. The proposed approaches both detect and visualize
independent correlations between multiple environmental variables and members of the microbial community. Depending
on the size of the datasets and the hypothesis tested one can select the method of preference.
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Introduction

Microbial communities naturally populate our body surface,

though differ with respect to composition and function between

body sites. Human microbiota consist of approximately 100 trillion

bacterial cells that outnumber host cells with a factor ten or more

[1,2]. Microbiota have important functions in health, for example

by influencing nutritional processes [3,4], or affecting susceptibility

to inflammatory processes like inflammatory bowel diseases

[5,6,7,8,9], pneumonia [5,6,7,8,9], and asthma [5]. Nevertheless,

the determinants of human microbial communities are still poorly

understood.

The rapid development of deep sequencing technologies has

enabled us to measure in detail the composition of even most

complex microbial communities in various environments, which

has lead to a new world of knowledge [10,11]. An increasing

number of articles are being published on the human microbiome,

showing correlations between microbiota profiles and different

environmental or health characteristics. For example, Gill et al.

described that the distal gut microbiome is significantly enriched

for several metabolic functions [12]. Turnbaugh et al. observed

that the composition of the gut microbiome differed in twins when

comparing obese and lean individuals [13]. Jakobsson et al.

identified changes in microbial communities of the oropharynx

and faeces after antibiotic treatment [14]. Bogaert et al. recently

reported the presence of seasonal changes in the nasopharyngeal

microbiota of young Dutch children [15]. All these studies showed

that variability in species dominating these microbial communities

may be highly related to environmental factors and the person’s

health status. Therefore, thorough investigation of interactions

between environmental variables, human health status and

microbiota composition will most likely contribute to better insight

into health and disease.
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One of the factors that limit progress in understanding the

human microbiome dynamics is the lack of suitable statistical and

visualization tools to assess determinants of these ecologically

communities. Currently, most of the studies focus on the analysis

of only one or two potential variables of community profiles.

However, for a more complete understanding of interactions and

their effect sizes, multiple environmental and epidemiological

variables need to be taken into account to correct for simultaneous

independent and synergistic effects. For example, in respiratory

microbiota a strong driver of community composition seems

season. It is therefore very difficult to detect independent effects of

additional parameters that follow a seasonal pattern,such as

respiratory viruses, on microbiota composition. To this purpose,

multivariate analysis is required [15].

Several general multivariate techniques have previously been

used to identify interactions between environmental variables and

microbial communities: Ye et al. [16] and Sinkko et al. [17] used

canonical correlation analysis (CCA) to detect the relationships

between bacterial community composition and chemical param-

eters. CCA determines linear combinations of the variables and

community members which have a maximum correlation,

however it is difficult to interpret the individual correlation

between each environmental variable and community member as

well as their effect sizes. Moreover, weak correlations are difficult

to identify. There is ongoing discussion about proper visualization

because of the inherently complicated results of CCA [18], hence

limiting the application of this technique [19]. Furthermore, the

descriptive nature of these approaches does not allow for specific

hypotheses testing.

In this study, we propose to study epidemiological background

variables (metadata) in relation to microbial communities using

two approaches that only differ in their initial step:

(i) we use CCA to make a selection of environmental variables

and microbial community members in the microbiota,

followed by a classical multivariate regression analysis to

determine the size and direction of the individual correla-

tions, and visualize the effect size and direction of those

correlations in a heatmap;

(ii) we use univariate or bivariate regression analysis to make a

selection of environmental variables and microbial commu-

nity members, followed by a classical multivariate regression

analysis to determine the size and direction of the individual

correlations, and again visualize the effect size and direction

of those correlations in a heatmap.

We illustrate the use of these methods by applying them to a

complex dataset containing epidemiological variables and accom-

panying microbiota profiles of 96 nasopharyngeal samples of

children processed by 16S-rDNA-based sequencing [15].

Methods

Data Set
Microbiota data. We used a dataset of metagenomic data as

well as metadata of 96 children 18 months of age and participating

in a randomized controlled trail as described previously [15].

Nasopharyngeal samples were obtained and processed by 16S-

rDNA-based 454-sequencing as in [15]. In short, differences

between each unique sequence and sequences in the SILVA

database [20] were calculated using the GAST algorithm to obtain

taxonomic information [21]. Subsequently, operational taxonomic

units (OTUs) were created by aligning the approximately 1.2

million unique sequences, using DOTUR [22] to create clusters at

a 3% level. Because a bar-coded approach was used, bacterial

diversity and composition could be determined for each individual

sample. In total 13 taxonomic phyla and approximately 250

OTUs were found. Data on phyla level as well as the 100 most

predominant OTUs were subsequently further studied by

multivariate analyses. To be able to compare the relative

abundance of OTUs among samples, the data were normalized

for sequence reads per sample (about 10.000 reads per sample).

Because the normalized data contained relative frequencies,

resulting in a value between 0 and 1, and many OTUs are low

abundantly present, we expected the data to have a right-skewed

distribution. Therefore, in all statistical analyzes, logarithmically

transformed (log10) data were used.

Metadata. In addition to the nasopharyngeal samples, a

questionnaire was obtained containing information regarding risk

factors for colonization and infection with respiratory viruses and

bacteria. From this questionnaire, 15 potential determinants of

community profiles were chosen that had previously been shown

to be determinants of colonization with certain bacterial species

(see reference [8,9] for a description of the accompanying

metadata), including five environmental variables (daycare,

feeding type, season, sibling and smoke exposure), three medical

variables (recent antibiotic use, use of bronchodilating medicine

and PCV-7 vaccination), one genetic variable (sex) and six

variables representing presence/absence of common respiratory

viruses (adenovirus, bocavirus, KI and WU virus, para-influenza

virus and respiratory syncytial virus). All variables are quantitative

data represented by 0 (absent) or 1 (present).

Exploratory Methods
Canonical correlation analysis. For the first approach, the

data was explored with canonical correlation analysis (CCA). CCA

seeks linear combinations of the selected variables correlating with

linear combinations of the 100 OTUs. The main idea of this

method is to find strong correlations between these two datasets.

We used the Canonical correlation analysis to test for possible

correlations between individual external variables and the overall

microbial community, plus correlations between all external

variables and each individual OTU. We performed CCA using

the CCorA function in the vegan package (software R version 2.7)

to detect the interactions between the selected metadata and the

given microbiota dataset at OTU level (100 OTUs) and used the

envfit function to get the p-value of correlation of each variable

with overall bacterial communities and the p-value of each

correlation between each OTU and all variables. The first order

and second order weights of the variables and phyla of such

combinations were plotted. The canonical correlation analysis was

used to eliminate variables and microbial community members

without any correlations with one another. These variables and

OTUs were excluded from the next step of our multivariate

approach. For this dataset the cut-off for significance was set at

p,0.15, which for a single parameter is equivalent to the

commonly used Akaike’s Information Criterion (AIC) for model

selection.

Univariate analysis. In the univariate analysis, the effect of

each variable on the relative presence of each individual OTU was

tested using analysis of variance (function lm and ANOVA in

software R 2.7). For each OTU, only the variables with a p-value

less than 0.15 in univariate analysis were selected for consecutive

multivariate analysis. For some data sets, if there is a known

predominant determinant (in our data set this is season, but for

example also age might be a major determinant), bivariate analysis

can be performed to detect more subtle correlations independent

from the predominant one that may otherwise have stayed
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Figure 1. Correlations between variables and microbiome composition at OTU level identified by the different types of analysis. In
figure 1, results from Canonical Correlation Analysis (CCA) are depicted, where each variable is plotted with the weight of this variable from the first
order and second order variates as coordinates. Pairs of variables with relatively large weights in the same direction represent positive correlations
and variables whose weights have opposite directions exhibit inverse correlations.After applying the canonical correlation analysis with a cut off p-
value ,0.15, 12 external variables (in blue color) and 31 OTUs (in old rose color) remained as potential determinants of microbiota composition.
doi:10.1371/journal.pone.0050267.g001

Figure 2. Represent the results from multivariate logistic regression analysis following CCA. Significant correlations are depicted
between the by CCA selected 12 variables and 31 OTU’s. The x-axis depicts the respective OTUs and the y–axis the 12 variables tested. The heatmap
shows significant correlations (p-value less than 0.05) from multivariate analysis. The colour represents the effect size and direction of the correlation.
Blue squares show positive changes in relative abundance, whereas red squares show negative correlations. The intensity of color correlates with the
magnitude of the (log) fold change value (see colour key).
doi:10.1371/journal.pone.0050267.g002
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unnoticed. In bivariate analysis, the effect of each variable is tested

against the OTU dataset while corrected for the predominant

determinant or confounder of the microbiota (such as age or

season). Only variables correlating with microbiota members (for

our dataset defined as all variables correlating with a given OTU

with a p-value of less than 0.15) were selected for consecutive

multivariate analysis.

Multivariate analysis. In multivariate analysis, the selected

variables were subjected to a multiple linear model [23] (function

lm and ANOVA in software R version 2.7). For our relatively

small dataset that we use for illustrating purposes only, the

statistical significance was set at a p-value less than 0.05 to include

the most pronounced trends in the multivariate analysis. For

analysis of larger datasets we propose to use a correction for

multiple testing, for example through False Discovery Rate (FDR)

[24,25] reducing the risk of false positive results.

Visualization. We calculated the direction and effect-size of

all observed correlations between variables and OTUs based on

the regression coefficients of the fitted linear model. Note that for

calculation of the effect-size back-transformation of OTU data is

needed since the dataset contained log-transformed data for

statistical purposes because of right-skewed distribution (see

method section: microbiota data) The fold change is always a

positive value, where fold changes above 1 represent increases in

relative abundance of a given OTU with a given determinant,

whereas fold changes between 0 and 1 represent decreases in

OUT abundance with a given determinant.

Since a multivariate model is made for each OTU that

correlates with one or more of the environmental parameters, a

multitude of models need to be interpreted. To aid interpretation

of these results, significant p-values or corresponding fold changes

of all models together will be presented in a single heatmap

(function heatmap.2 from package gplots in software R 2.7),.

Results

Canonical correlation analysis. We used the canonical

correlation analysis to detect the correlations between the 15

selected environmental variables and the 100 most common

microbial community members (OTUs). The results are presented

in a heatmap format in figure 1. After applying the canonical

correlation analysis with a cut off p-value ,0.15, 12 external

variables and 31 OTUs remained as potential determinants of

microbiota composition.

Method (i) Multivariate regression after canonical

correlation analysis. Multivariate regression was performed

on the by canonical correlation identified determinants and

OTUs. All significant correlations between the selected individual

variables (12 variables) and bacteria at OTU level (31 OTUs

selected with canonical correlation analysis) are shown using a

heatmap in Figure 2. In total, 43 significant correlations between

individual variables and OTUs were observed in multivariate

analysis; 23 positive and 20 negative correlations. The fold change

of the significant correlations at OTU level is depicted in the

figure. The red squares represent negative correlations with a fold

change ranging from 0.001 to 0.228 whereas blue represents

positive correlations with a fold change ranging from 1.363 to

1195, respectively.

Univariate and bivariate analysis. For our dataset, we

performed univariate analysis to select for combinations of

Figure 3. Represents the results from univariate regression analysis. Significant correlations between 15 variables and the top 100
OTUs are depicted. The x-axis depicts the respective OTUs and the y–axis the 15 variables tested. The heatmap shows significant correlations (p-
value less than 0.05) from univariate analysis. Blue squares show positive changes in relative abundance, whereas red squares show negative
correlations. The intensity of colour correlates with the magnitude of the (log) fold change value (see colour key).
doi:10.1371/journal.pone.0050267.g003
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variables and OTUs to enter in the multivariate model. Following,

we performed bivariate analysis testing for potential correlations

between each determinant and each OTU again, independent of

the effect of environmental variable 1 (i.e. season). Figure 3

represents the significant correlations as identified by univariate

analysis. Figure 4 represents the significant correlations as

identified by bivariate analysis (p,0.05). We observed 63 positive

correlations and 36 negative correlations by univariate analysis

and 62 and 36 correlations by bivariate analysis The effect size and

direction of the correlation is presented by the fold change value

and color.

Method (ii) Multivariate regression after univariate or

bivariate analysis. Figure 5. represent the significant correla-

tions (p-value less than 0.05) identified by multivariate analysis

following bivariate analysis. In total, 106 correlations were

identified. We found 82 significant interactions between variables

and OTUs in both univariate and multivariate analysis, whereas

16 correlations were found by univariate, and 24 correlations were

found by multivariate analysis only.

Discussion

In this paper, we propose two multi-step multivariate approach-

es for studying the potential correlations between multiple external

variables and complex microbial community profiles. We used

both approaches on a dataset containing microbial community

profiles of nasopharyngeal samples of 96 children that were 18-

months of age and accompanying metadata. We showed that the

multivariate approaches could detect the effect of presence of

respiratory viruses on microbiota composition against the back-

ground of a large seasonal driving force. These approaches allow

for easy interpretation of correlations, and can be applied by a

broad range of biomedical researchers who might not all have

access to specialized bioinformatics support.

CCA can be used for integrated analysis of multiple complex

datasets like microbiota data of large number of samples and

accompanying extensive metadata, and is therefore a powerful

tool. However, the results of canonical correlation analysis (CCA)

are generally difficult to interpret. No specific hypothesis testing on

combinations of individual determinants and OTUs could be

applied, and the statistical strength of the correlations is difficult to

evaluate. However, when combined with classical multivariate

regression analysis in approach (i), visual interpretation of

individual independent variable-OTU correlations and their

direction and effect size was achieved.

The other proposed approach (ii), i.e. univariate, bivariate

analysis followed by multivariate regression analysis, detected

similar correlations as approach (i). For example both approaches

were able to confirm the positive correlation between the presence

of specific respiratory viruses (virus 1 and virus 6) and density of

Streptococcus as was previously observed by us and others using

conventional cultures ([26]). The fact that slightly different

approaches yield similar results underlines the robustness of the

findings from both approaches. However, approach (ii) detected

some additional correlations, suggesting a broader picture or less

strict analysis.

Comparing results from approach (i) and (ii) with the results of

univariate analysis clearly illustrates the drawback of univariate

Figure 4. Represents the results from bivariate regression analysis. Significant correlations between 14 variables and the top 100 OTUs are
depicted after correcting for the correlation between season and OUT composition. The x-axis depicts the respective OTUs and the y–axis the 15
variables tested. The heatmap shows significant correlations (p-value less than 0.05) from univariate analysis. Blue squares show positive changes in
relative abundance, whereas red squares show negative correlations. The intensity of colour correlates with the magnitude of the (log) fold change
value (see colour key).
doi:10.1371/journal.pone.0050267.g004
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analysis: it does not correct for simultaneous or dependent and

synergistic effects. For instance, univariate analysis only did not

detect a correlation between virus 6 and Bacteroidetes, whereas

this strong correlation was identified with both approach (i) and

(ii). Univariate analysis detected a correlation between virus 1 and

the OTUs Streptobacillus moniliformis and Chrysobacterium, whereas

these correlations were not identified in multivariate analyses of

both approach (i) and (ii). The same correlations were however

observed between those bacteria and season in univariate analysis,

which persisted after multivariate analysis, suggesting this viral-

bacterial correlation depended on a seasonal distribution rather

than a direct relationship.

As we stated in the results section, if there is a known

predominant determinant, then bivariate analysis following

univariate will be helpful to make a more precise selection to

enter into multivariate regression analysis, since it allows for

identification of less strong correlations to enter in MVA that

otherwise would have been ignored. This is illustrated by Figures 3

and 4, where results from uni- and bivariate analysis are depicted:

it is clearly shown, especially for the respiratory viruses, that after

correction for season, additional correlations appear. This is

probably caused by the fact that respiratory viruses follow a

seasonal pattern, and therefore might be wrongly missed when

univariate correlations are selected only, depending on the sign

and size of the correlation between season and OTU abundance.

When no known predominant determinant is expected or

identified for a given dataset, the univariate analysis as a selection

tool for multivariate analysis will suffice.

We have used the results from the multivariate analysis to

calculate the size and direction of the identified correlations using

fold change. Most significant correlations identified in the

multivariate analysis had large effect sizes (fold change greater

than 2 or less than 0.5). The fold change provides the direction

and size of the effect of a determinant and is, therefore, extremely

valuable for clinical or practical interpretation of the results. Using

heatmaps, one can easily interpret the achieved results.

We note that the proposed multivariate analysis can be applied

to any data set to identify (multiple) independent determinants or

parameters of bacterial communities. The bacterial communities

can be obtained from other sites within the human body (e.g., skin,

gut, or oral cavity) or environmental settings (e.g., soil, deep sea

and atmosphere). The designed multivariate analysis approach can

also be used on qualitative data (e.g., the presence or the absence

of OTUs, using logistic regression analysis rather than regression

analysis in MVA). In a qualitative analysis some information will

be lost (i.e., the absolute number of abundance), and in a

quantitative analysis the low abundant reads will create erroneous

ratios due to higher standard deviations. A natural extension of the

proposed method would be to use a quantitative analysis (ratio) for

the common OTUs and qualitative analysis for the low prevalent

OTUs. Although the proposed approach performed well on our

dataset, there is a risk of introducing errors when non-linear

correlations are present, as the proposed multivariate approach

considers all variables in a linear correlation. Another natural

extension of the proposed method in the future would be the

inclusion of detection of non-linear correlations.

Figure 5. Represents results from multivariate regression analysis following bivariate regression analysis. The x-axis depicts the by
bivariate regression selected 68 OTUs and the y–axis the selected variables. The heatmap shows significant correlations (p-value less than 0.05) from
multivariate analysis. Blue squares show positive changes in relative abundance, whereas red squares show negative correlations. The intensity of
colour correlates with the magnitude of the (log) fold change value (see colour key).
doi:10.1371/journal.pone.0050267.g005
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In summary, this paper describes two multivariate approaches,

which can be used to detect multiple independent correlations

between environmental variables and microbial communities and

correct for potential confounders. Approach (i), using CCA to

select the variables for multivariate regression, resulted in a more

specific range of interactions when compared to selection by uni-

or bivariate analysis, suggesting a more strict selection of

parameters. For both approaches, the fold change is calculated

to show direction and effect size of the identified correlations.

Heatmaps are used to visualize the significance and effect size of

the multivariate findings incorporating all interactions between

external parameters and the overall microbial community. This

will allow for more complex analyses reducing bias by including

concomitant effects of multiple determinants.
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