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Single-cell analysis of hepatoblastoma
identifies tumor signatures that predict
chemotherapy susceptibility using
patient-specific tumor spheroids

Hanbing Song 1,2,3,4,14, Simon Bucher 5,6,14, Katherine Rosenberg6,7,
Margaret Tsui4,5,6, Deviana Burhan5,6, Daniel Hoffman 6,7, Soo-Jin Cho 8,9,
Arun Rangaswami9,10, Marcus Breese10, Stanley Leung 10,
María V. Pons Ventura10, E. Alejandro Sweet-Cordero9,10,
Franklin W. Huang 1,2,3,4,11,12,15 , Amar Nijagal 4,6,7,9,13,15 &
Bruce Wang 4,5,6,9,15

Pediatric hepatoblastoma is the most common primary liver cancer in infants
and children. Studies of hepatoblastoma that focus exclusively on tumor cells
demonstrate sparse somatic mutations and a common cell of origin, the
hepatoblast, across patients. In contrast to the homogeneity these studies
would suggest, hepatoblastoma tumors have a high degree of heterogeneity
that can portend poor prognosis. In this study, we use single-cell tran-
scriptomic techniques to analyze resected human pediatric hepatoblastoma
specimens, and identify five hepatoblastoma tumor signatures that may
account for the tumor heterogeneity observed in this disease. Notably,
patient-derived hepatoblastoma spheroid cultures predict differential
responses to treatment based on the transcriptomic signature of each tumor,
suggesting a path forward for precision oncology for these tumors. In this
work, we define hepatoblastoma tumor heterogeneity with single-cell resolu-
tion and demonstrate that patient-derived spheroids can be used to evaluate
responses to chemotherapy.
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Hepatoblastoma (HB) is the most common primary pediatric liver
cancer, accounting for approximately 1% of all pediatric malig-
nancies, and its incidence is rising1. Five-year survival for HB is
among the lowest for childhood cancers, driven by the 20% of cases
that are chemotherapy resistant or unresectable2,3. Current clinical
risk stratification remains dependent on imaging and histological
features at the time of diagnosis, with serum AFP as the only
molecular marker4. There is an urgent need to improve the mole-
cular characterization of HB to more accurately risk stratify
patients. For patients with advanced HB, no effective treatment
options exist outside of liver transplantation5. Progress in treating
aggressive HB has been limited by the lack of models that reflect the
heterogeneity of this tumor and that can be used to identify
therapies6. The significant cellular heterogeneity observed in HB,
both within and across patients7, likely accounts for the limited
utility of genomic studies from bulk tumor tissue for cancer
staging8–11. Methods now exist for analyzing gene expression at the
level of individual cells from dispersed neoplastic and normal
tissues12.

In this work, we use single cell RNA sequencing (scRNA-seq) to
distinguish HB tumor cells from non-tumor cells, and to identify
tumor cell signatures that may account for the heterogeneity
observed in HB tumors. We also use HB patient-specific spheroids
(PDS) to predict treatment response and identify therapeutic
targets.

Results
Single-cell profiling of human pediatric HB reveals distinct
clusters of tumor cells and tumor-associated populations
We established a workflow to isolate single cells from fresh pedia-
tric HB tumor tissue at the time of surgical resection from nine
patients (Fig. 1a). Our samples included both epithelial and mixed
epithelial mesenchymal tumors, each of which exhibited a range of
epithelial histology, though none had small cell undifferentiated
features indicating high risk (Supplementary Data 1). Eight of the
nine patients underwent chemotherapy prior to resection. Single
cells from tumor and paired adjacent normal tissues were isolated
for scRNA-seq analysis. One of the nine patients (Patient 5) had
tumor extension into adjacent tissue, and therefore non-tumor
tissue was unavailable. A total of 44,550 cells were captured, and
29,968 cells passed quality control (13,870 tumor, 16,098 non-
tumor tissue) and were analyzed (Supplementary Fig. 1a–d and
Supplementary Data 2). We used cut-off thresholds of >300 genes/
cell and >500 transcripts/cell, and confirmed that clustering was
unaffected when using a higher threshold (>500 genes/cell and
1000 transcripts/cell, Supplementary Fig. 2a–e). Using unbiased
clustering and UMAP visualization, we identified 36 distinct clusters
of cells (Supplementary Fig. 3a–c). We confirmed there wasminimal
patient to patient variability among cells from adjacent normal
liver, indicating minimal inter-sample batch effect (Supplementary
Fig. 4a, b).

UMAP_1

U
M

A
P

_2

a.

b.

e.

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17 18 19 20 2221 xchromosome

O
bs

er
va

tio
ns

 (
C

el
ls

)
R

ef
er

en
ce

s 
(C

el
ls

)

ID

Tumor-associated cellsTumor cluster 5 DCN-high

Tumor cluster 6 Neuroendocrine

Tumor cluster 3

Tumor cluster 4 Erythroid

Tumor cluster 1

Tumor cluster 2

c.

0% 25
%

50
%

75
%

10
0%

Composition (%)

Normal

Tumor

Tumor cluster 6 Neuroendocrine
Tumor cluster 5 DCN-high
Tumor cluster 4 Erythroid

Tumor cluster 3
Tumor cluster 2
Tumor cluster 1

Tumor-associated Erythroid
WNT5A-high Tumor-associated Fibroblast

WNT5A-int Tumor-associated Fibroblast
Tumor-associated Macrophage

Tumor-associated Basophils
Tumor-associated Promyelocytes

Hepatocyte
Tcell

XCR1-high DC
DC

Eosinophil
MKI67-high Immune

Endothelial
pDC
Bcell

Monocyte
Plasma
NK–cell

TFF3-high Endothelial
Smooth Muscle

Neutrophil
MARCO-high Macrophage

BECs

d.

0 25 50 75 10
0

Patient1

Patient2

Patient3

Patient4

Patient5

Patient6

Patient7

Patient8

Patient9

Composition (%)

Tumor cluster 6 Neuroendocrine
Tumor cluster 5 DCN-high
Tumor cluster 4 Erythroid

Tumor cluster 3
Tumor cluster 2
Tumor cluster 1

Tumor-associated Erythroid
WNT5A-high Tumor-associated Fibroblast

WNT5A-int Tumor-associated Fibroblast
Tumor-associated Macrophage

Tumor-associated Basophils
Tumor-associated Promyelocytes

Hepatocyte
Tcell

XCR1-high DC
DC

Eosinophil
MKI67-high Immune

Endothelial
pDC
Bcell

Monocyte
Plasma
NK-cell

TFF3-high Endothelial
Smooth Muscle

Neutrophil
MARCO-high Macrophage

BECsf.

Log2 Copy Number

1 3-1

Average Expression Percent Expressed

0 25 50 75 100
0 1 2

Tumor cluster 6 Neuroendocrine

Tumor cluster 5 DCN-high
Tumor cluster 4 Erythroid

Tumor cluster 3

Tumor cluster 2

Tumor cluster 1

Tumor-associated Erythroid

WNT5A-high Tumor-associated Fibroblast
WNT5A-int Tumor-associated Fibroblast

Tumor-associated Macrophage

Tumor-associated Basophils

Tumor-associated Promyelocytes
Hepatocyte

Tcell

XCR1-high DC

DC

Eosinophil

MKI67-high Immune
Endothelial

pDC

Bcell

Monocyte

Plasma

NK–cell

TFF3-high Endothelial

Smooth Muscle

Neutrophil

MARCO-high Macrophage

BECs

CH
GA
CH
GBSS

T

CO
L3
A1

CO
L1
A2

CO
L1
A1

AD
H1
B

RE
G3
A
AH
SG

GP
C3

RE
G1
A
SP
P1 IG

F2
ME
G3
AP
OBHB

B
KL
F1

AL
AS
2

IG
FB
P3

CO
L6
A3

W
NT
5A
DC
N C7

IG
FB
P7

GP
NM
B
LG
MN
AP
OE
CP
A3

TP
SA
B1 KI

T
MP
O

EL
AN
E
CT
SG

AL
DO
B

CY
P3
A4AL

B
IL7
R
CD
8A
CD
3D
XC
R1
ID
O1
CP
VL
CD
1C
CD
86

GP
R1
83CL

C
PR
G3EP

X
MK
I67

TO
P2
A

CE
NP
F
FC
N3
VW
F

CR
HB
P
GZ
MBIR

F4

EG
LN
3

MS
4A
1

CD
79
A

BA
NK
1
VC
ANIL1

B
ER
EG IG

J
IG
KC

IG
HG
1
GN
LY

CD
24
7
NK
G7
TF
F3

CC
L2
1

MM
RN
1

AC
TA
2

MY
H1
1

TA
GL
N

FC
GR
3B
FP
R1
OS
M

MA
RC
O
C1
QA
C1
QB

CL
DN
4

KR
T1
9

TM
4S
F4

Healthy
Liver

Tumor
Single cells from
tumor and
healthy tissue

scRNA
sequencing 
(seq-well)

Patient-derived
organoids Drug testing

Endothelial
TFF3-high Endothelial
Smooth Muscle
Hepatocyte
BECs
Tcell
NK–cell
Bcell
Plasma
DC

pDC
XCR1-high DC
MARCO-high Macrophage
Monocyte
Neutrophil
Eosinophil
MKI67-high Immune
Tumor-associated Macrophage

Tumor-associated Promyelocytes
Tumor-associated Basophils

Tumor-associated Erythroid
WNT5A-high Tumor-associated Fibroblast
WNT5A-int Tumor-associated Fibroblast

Tumor cluster 1
Tumor cluster 2
Tumor cluster 3
Tumor cluster 4 Erythroid
Tumor cluster 5 DCN-high
Tumor cluster 6 Neuroendocrine

Fig. 1 | Single-cell profiling of HB patients reveals distinctive tumor cell
populations and tumor-associatedpopulations. a Flowchart of tissueprocessing
of HB tumor and adjacent paired normal tissue samples for single-cell RNA
sequencing and patient-derived spheroid culture. b Uniform manifold approx-
imation and projection (UMAP) of 29,968 cells fromnineHBpatients, annotated by
cell types. c Dot plot of all identified populations, each characterized by three
known cell type markers. Average expression was indicated by the color gradient,
and the percentageofmarker expressedwas represented by the dot size.d Stacked

bar charts showing the contribution of the two sample types (normal and tumor) to
each cell population, ranked by the contribution fromnormal samples. e Estimated
copy-number alteration profile of all tumor and tumor-associated cell clusters
using all the non-tumor and non-tumor-associated cells as reference. Chromo-
somes are labeled on the horizontal axis. Estimated copy numbers are shown in
blue (deletion) and red (amplification) color bars. f Stacked bar charts show the
contribution of the nine patients to each cell population.
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To annotate these clusters, we performed differential gene
expression analysis and identified 2130 differentially expressed genes
(DEGs) (log2 fold change >1.0, adjusted p-value < 0.05) (Supplemen-
tary Fig. 3c and Supplementary Data 2). We manually selected three
well-recognized and highly significant DEGs for each cluster and
applied a descriptive nomenclature, defining 29 cell types (Fig. 1b, c).
Seventeen of these clusters were composed of epithelial, stromal, or
immune cell populations that are normally resident in the liver. Epi-
thelial populations include hepatocytes and biliary epithelial cells.
Stromal cell populations include two clusters of endothelial cells (VWF
+/MMRN1+) differentiated by the level of TFF3 expression, and one
cluster of MYH11+/ACTA2+ smooth muscle cells. Immune cells identi-
fied include T-cells, NK-cells, monocytes, neutrophils, B-cells, plasma
cells, eosinophils, macrophages, three clusters of dendritic cells (DC),
and MKI67 expressing proliferating immune cells (Fig. 1b, c). We used
an automated cell type annotation tool SingleR (version 1.2.4) to vali-
date our manual annotations (Supplementary Fig. 5)13.

In the remaining 12 clusters, >60% of cells originated from tumor
tissues suggesting these were either tumor clusters or tumor-
associated clusters (Fig. 1d and Supplementary Fig. 4a). We desig-
nated the six “tumor clusters” based on their expression of high levels
of knownHBgenes (Fig. 1c, Supplementary Fig. 6a, and Supplementary
Data 2). Tumor clusters 1, 2, and 3 were characterized by high
expression of the known HB tumor markers REG3A, MEG3 and IGF28.
Tumor cluster 4 expressed high levels of erythroid genes including
HBB, HBG1/2 and ALAS2. Tumor cluster 5 expressed high levels of
fibroblast genes including DCN (Supplementary Fig. 6a–d). Tumor cell
cluster 6 expressed neuroendocrine markers (e.g., CHGA and CHGB).

Despite >60% of cells within the remaining six clusters originating
from tumor tissues, these clusters did not express HB markers and
were designated as “tumor-associated clusters”. They included three
immune cell populations: a promyelocyte population, a tumor-
associated macrophage (TAM) population expressing low levels of
MARCO, and a basophil cluster. One tumor-associated cluster (HBB
+/ALAS2+) expressed high levels of erythroid progenitor genes (KLF1)
and was highly proliferative, which we annotated as tumor-associated
erythroid cells14. We also identified two fibroblast populations differ-
entiated by WNT5A expression level, which we annotated as WNT5A-
intermediate and WNT5A-high tumor-associated fibroblasts (Supple-
mentary Fig. 6b). While these two tumor-associated clusters had gene
expression profiles similar to that of theDCN-high tumor cell cluster 5,
they did not express HB genes including GPC3, DLK1, and DKK1 (Sup-
plementary Fig. 6a).

To validate the tumor cell annotations, we analyzed each tumor
sample and adjacent normal liver for mutations in CTNNB1 and found
that seven of the nine patients had somatic mutations in CTNNB1
(Supplementary Fig. 7a, corresponding Sanger sequencing traces are
shown in Supplementary Fig. 8). We also analyzed copy number
alterations (CNA) of each tumor specimen and found patient-specific
differences in the five patients for whom CNA analysis was available
(Supplementary Fig. 7b). Thesedata indicate that the tumor specimens
carried the somaticmutations andCNA thatwould be expected forHB.
In order to specifically validate that the cells comprising the 6 tumor
clusters were, in fact, composed of tumor cells, we performed
inferCNV analysis to compare the estimated copy number profiles for
all tumor and tumor-associated clusters in our dataset using the 17
non-tumor-associated clusters as reference15. Compared to reference
cells, only the six tumor clusters exhibited significantly different CNV
profiles, supporting their identity as tumor cells (Fig. 1e).

Interestingly, we found that four of the tumor cell clusters were
unique to one patient while two were identified in two patients, indi-
cating significant patient-specificity (Fig. 1f). By contrast, all 17 non-
tumor-associated populations were present in every patient, with
similar transcriptomes across patients (Fig. 1f and Supplementary
Fig. 4b), further supporting the conclusion that the differences we

identified between tumor clusters represent true transcriptomic dif-
ferences between patients instead of batch effects.

Five distinct tumor signatures may account for the hetero-
geneity observed in HB tumors
We performed sub-cluster analysis to further characterize HB tumor
cells (N = 6244 cells), yielding eight tumor cell sub-clusters (Supple-
mentary Fig. 9a–c and Supplementary Data 3). When investigating the
composition of each sub-cluster, we found that patients 2 and 5 con-
tributed to the erythroid tumor sub-cluster 6, consistent with the
finding of extramedullary erythropoiesis in these two tumors (Sup-
plementary Fig. 9b and Supplementary Fig. 10). Patients 3 and 5 con-
tributed to the DCN-high tumor sub-cluster 7, consistent with fibrotic
regions present in both tumors (Supplementary Fig. 9b and Supple-
mentary Fig. 10). Closer examination of the DEGs showed that sub-
clusters 1–5 shared expression of known HB markers including GPC3,
PEG10, REG3A, RELN, and PDK4 (Supplementary Fig. 9c)8,9,16. Notably,
these sub-clusters were almost exclusively composed of cells from the
four epithelial tumors (Supplementary Data 1 and Supplemen-
tary Fig. 10).

We investigated the similarity among tumor cells using a corre-
lation heatmap with unsupervised clustering (Fig. 2a), demonstrating
that the tumor cells fell into five distinct groups. The epithelial tumor
cell populations 1–4 were similar to each other and formed a distinct
group. A second group consisted primarily of cells from the only pure
fetal HB specimen in our dataset. The three remaining groups con-
sisted primarily of cells from the erythroid, DCN-high and neu-
roendocrine cell sub-clusters, respectively. Based on this, we
generated five distinct HB signatures (Fig. 2a, b, Supplementary
Fig. 9d, Supplementary Fig. 11a–e, and Supplementary Data 4). Each of
thesefive groups contained cells frommultiple tumor cell populations,
and originated from multiple patients, suggesting that these five
groups may represent common HB signatures shared across the
tumors in our study (Supplementary Fig. 9d). Similarly, we calculated a
signature score for each of the five HB signatures. With the exception
of the Neuroendocrine signature that was almost exclusively expres-
sed by patient 8, the remaining patients showed enrichment in at least
two HB signatures (Fig. 2c–g, p < 2.2e−16, one-way ANOVA test). We
further validated the five HB tumor signatures using fluorescence
in situ hybridization (FISH) and immunofluorescence (IF) stains. We
identified high levels of IGF2 in patients enriched for Hepatoblastoma I
and Hepatoblastoma II signatures (Fig. 2h, i, m), GATA1 in patients
enriched for the Erythroid-like signature (Fig. 2j, m), POSTN in patients
enriched for theDCN-high signature (Fig. 2k,m), andCHGA in patient 8
who was enriched in the Neuroendocrine signature (Fig. 2l, m).

To further confirm the five HB tumor signatures identified in our
analysis, we compared the five HB tumor signatures with published
human liver bulk transcriptomic datasets8,9. We found that the Hepa-
toblast I signature was enriched in both fetal and adult liver genes
while the Hepatoblast II signature was enriched only in adult liver
genes (Supplementary Fig. 12a, p < 2.2e−16, two-sided Wilcoxon rank
sum test). We then compared our results to published HB bulk RNA-
seq datasets. First, we performed a pseudo-bulk RNA-seq analysis of
our nine tumor samples and compared each tumor with HB bulk RNA
transcriptomic datasets that have been recently reported17,18. The
hepatic differentiation group reported by Hirsch et al.17 and the
hepatocyte group reported by Nagae et al.18 were consistent with the
four epithelial tumors in our analysis (patients 1, 4, 6, and 7). Despite
lower mean expression of genes from the hepatocyte group, outlier
cells did, however, have high expression of genes from this group
among patients with non-epithelial subtypes of HB, supporting our
findings that mean expression from bulk RNA sequencing does not
capture the entire heterogeneity of a given tumor (Supplementary
Fig. 12b). Similarly, we found that the tumors with mesenchymal
components had the highest expression of genes from the
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mesenchymal group reported by Hirsch et al.17 and Nagae et al.18

(Supplementary Fig. 12b). Other published categories like the pro-
genitor group were only minimally enriched in one patient in our
dataset. Next, we compared the five HB signatures identified in this
study to the same previously published HB groups. We found that the
Hepatoblast I and Hepatoblast II signatures had strong associations
with the hepatocyte and hepatic differentiation groups. We also
observed associations between the previously published mesenchy-
mal group, and the Erythroid-like and DCN-high signatures, and
between the proliferative/proliferation group and theNeuroendocrine
signature (Supplementary Fig. 12c). Taken together, our data are
consistent with previously published HB tumor groups obtained from
bulk RNA-seq datasets; however, the five HB signatures identified in

our analysis incorporates additional tumor heterogeneity that is not
captured in the existing groups defined by bulk RNA datasets.

We also performed gene ontology analysis of the five HB sig-
natures and found that the Hepatoblast I and II signatures were enri-
ched for metabolic processes typically found in hepatocytes, the
Erythroid signature was enriched for immune and detoxification pro-
cesses, theDCN-high signaturewas enriched for bone and extracellular
matrix processes, and the Neuroendocrine signature was enriched for
neuronal processes (Supplementary Fig. 12d). This analysis further
supports our identification and characterization of distinct HB
signatures.

We questioned whether the five HB tumor signatures could help
predict tumor aggressiveness. We first used previously published
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Fig. 2 | Tumor cell analysis reveals five transcriptomically distinct tumor sig-
natures detected within the nine HB patients. a Correlation heatmap of the
tumor cells by tumor cell clusters, tumor signatures (column annotations), and
patients (row annotation). Correlation was shown by the color gradient. Hierarchal
clusters were illustrated by dendrograms. b Heatmap of top 10 most differentially
expressed genes of each HB signature. Scaled expressed levels are shown by the
color bar. c Violin and box plot of the computed c. Hepatoblast I, d Hepatoblast II,
e Erythroid-like, f DCN-high, and g Neuroendocrine tumor signature scores for all
nine patients (N = 6244 cells). h FISH staining for REG3A (green), GPC3 (white), and
IGF2 (red) of patient 6 tumor tissue (Hepatoblast I), and i patient 4 tumor tissue
(Hepatoblast II). j FISH staining forREG3A (green),HBA2 (white), andGATA1(red), of

patient 2 tumor tissue showing Erythroid-like cells (red arrow) and tumor-
associated erythroid cells (white arrow). k Immunofluorescence staining for COL1
(green) and POSTN (red) of patient 3 tumor tissue (DCN-high).
l Immunofluorescencestaining forCHGA (green) andFISHstaining forDLK1 (red)of
patient 8 tumor tissue (Neuroendocrine).m Violin plots of individualmarker genes
presented on panels (h–l). Scale bar = 30 µm. The box plots present the 25th per-
centile, the median, the 75th percentile, and outlying or extreme values. The
whiskers of the box plots extend to a maximum of 1.5 times the size of the inter-
quartile range.N = 6244 cells for all box plots. Source data are provided as a Source
Data file.
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predictive transcriptomic data and performed pseudo-bulk RNA-seq
analysis of our nine tumor samples, and found that none of our nine
pseudo-bulk tumor transcriptomes were significantly enriched for
either the low-risk rC1 or the high-risk rC2 gene sets (Supplementary
Fig. 12e)8. Next, we repeated the analysis but used the five HB tumor
signatures and found that Hepatoblast I and II showed significant
enrichment for the low-risk rC1 gene set compared to other signatures
(p < 2.2e−16, two-sided Wilcoxon rank sum test), and the Neuroendo-
crine tumor subtype was enriched in the high-risk rC2 gene set
(p = 5.37e−3, two-sided Wilcoxon rank sum test, Supplementary
Fig. 12f). Interestingly, patient 8, who contributed all HB tumor cells
harboring the Neuroendocrine signature, developed early relapse of
HB within 12 months of surgical resection (Supplementary Data 1).
These data suggest that the five HB tumor signatures may inform risk
stratification for HB tumors.

Finally, we asked if the fiveHB tumor signatures could account for
the heterogeneity within each tumor. First, we characterized the
degree of heterogeneity by sub-clustering tumor cells for each patient
(Supplementary Fig. 13a) and found that HBs exhibit a range of het-
erogeneity within each tumor consistent with the observed pathology.
Patient 4 tumor cells were the most homogeneous, consistent with its
pure fetal histology, whereas patient 8 tumor cells demonstrated the
greatest degree of heterogeneity, consistent with its mixed epithelial-
mesenchymal histology. We used FISH to validate the predominant
sub-clusters within each tumor (Supplementary Fig. 13a). We also
generated a heatmap and showed that the five signatures corre-
sponded well to most of the patient-specific tumor clusters (Supple-
mentary Fig. 13b). This suggests that intratumor heterogeneity may be
accounted for by the five HB tumor signatures. We also detected
subclusters that did not show an enrichment in any of the five tumor
cell signatures, raising the possibility of other signatures in HB tumors
(Supplementary Fig. 13b).

Low MARCO expression distinguishes HB tumor-associated
macrophages from macrophages in normal tissue
We assessed the composition of the tumor microenvironment in HB
and questioned whether differences in the tumor microenviron-
ment were associated with the heterogeneity observed among
tumor cells. We examined the immune and stromal cells in our
dataset that were enriched within HB tumors (Fig. 3a, b). Three
immune cell populations were enriched within tumor, including
macrophages, pro-myelocytes, and basophils (Fig. 3c). Subset ana-
lysis of each of these three populations showed that tumor-
associated macrophages (TAM) were the only cell type that exhib-
ited significant transcriptomic differences compared to non-tumor
macrophages (Fig. 3d and Supplementary Fig. 14a–d). We compared
the DEGs between macrophages from HB tumor tissue and adjacent
non-tumor liver, and found that attenuated expression of the sca-
venger receptor, MARCO, distinguished macrophages found in
tumors (MARCOLow) from those isolated from adjacent normal liver
(MARCOHi) (Fig. 3e, f). Notably, all nine patients contributed to the
MARCOLow cluster in HB tumors (Supplementary Fig. 14e). We iden-
tified several DEGs that were upregulated in tumor-associated
MARCOLow macrophages including the pro-tumorigenic chemokine
CCL1819 and genes known to promote cell proliferation, invasion,
and migration (glycoprotein nonmetastatic melanoma protein B,
GPNMB20) (Fig. 3g). Gene ontology pathway analysis demonstrated
that MARCOLow TAMs had higher expression of genes involved with
antigen presentation, chemotaxis, and processes related to protein
production (Fig. 3h). We validated the low expression ofMARCO on
HB TAMs using FISH, demonstrating the absence of MARCO on
CD163+ macrophages in HB tumor tissues (Fig. 3i). Pseudotime
analysis of the two macrophage populations and the monocyte
population demonstrated that the MARCOLow TAMs were tran-
scriptomically more similar to monocytes than MARCOHi liver-

resident macrophages (Fig. 3j). These data support the origin of
MARCOLow TAMs as monocyte-derived macrophages.

We next asked whether MARCOLow TAMs interact differently with
the five HB tumor signatures. We identified candidate ligand-receptor
interactions between MARCOLow TAMs and four of the five HB tumor
signatures. These distinct MARCOlow TAM interactions include PDGF
signaling with cells expressing the DCN-high signature, the adhesion
molecule CD44 with cells expressing the Erythroid-like signature,
members of the TNF receptor superfamily with cells expressing the
Hepatoblast I tumor signature, and plexin proteins (PLXNB2) with cells
expressing the Neuroendocrine tumor signature (Supplementary
Fig. 14f). Collectively, thesefindings indicate thatMARCOLow TAMs are a
transcriptomically distinct population in HB tumors that express sev-
eral pro-tumorigenic genes. These data also suggest that MARCOLow

TAMsmayhaveunique interactionswithHB tumor cells andmayguide
the different tumor signatures observed inHB tumors (Supplementary
Fig. 14f), though further work is needed to validate the interactions
between MARCOLow TAMs and HB tumor cells.

Developmentally restricted erythroid progenitor cells asso-
ciated with hepatoblastoma
The identification of an HB-associated erythroid population suggests
that in postnatal livers, the tumor microenvironment of HB may
maintain a fetal liver-like niche that results in persistence of erythroid
progenitor cells. In our dataset, the HB-associated erythroid popu-
lationwas seen in three patients (patients 2, 5, and 6).We first asked if
HB-associated erythroid cells from these three patients had similar
transcriptomes as human fetal liver erythroid cells. We integrated
HB-associated erythroid cells with fetal liver erythroid cells from a
reference dataset14. HB-associated erythroid cells shared gene
expression profiles with human fetal liver erythroid cells and
expressed markers from all three developmental stages, indicating
that early, mid and late erythroblasts were present in the HB-
associated population (Fig. 4a, b).

Next, we projectedmarkers of fetal liver erythroid developmental
stages with fetal erythroidmarkersHBA2, HBB, HBG1, andHBG2 onHB-
associated erythroid cells frompatients 2, 5, and 6.We discovered that
only cells from patients 2 and 5 expressed early erythroid markers
whereas cells from patient 6 expressed mid and late erythroid genes
(Fig. 4c). We confirmed this by analyzing HB-associated erythroid cells
separately and showed that cells from patients 2 and 5 were pre-
dominantly early stage erythroids, whereas those from patient 6 were
primarily mid to late stage erythroid cells (Supplementary Fig. 15a).

We examined whether erythropoiesis in HB progresses normally.
Pseudotime analysis with the reference fetal erythroid cells (Supple-
mentary Fig. 15b) and tumor-associated erythroid cells showed that
cells from patients 2 and 5 were arrested at the early erythroblast
stage21. Cells from patient 6, on the other hand, were at mid and late
erythroblast stages (Supplementary Fig. 15c).

Erythropoiesis in the fetal liver occurs within specialized niches
composed in part by erythroblastic island macrophages and depends
on intercellular interactions between the niche and erythroid
progenitor cells that differ based on the specific stage of
erythropoiesis14,22. We hypothesized that TAMs and tumor cells from
patients 2, 5, and 6 form a niche and maintain tumor-associated ery-
throid cells at their respective developmental stage. Significant ligand-
receptor interactions (p <0.05) identified via CellPhoneDB (Ver-
sion2.1.4) between these potential niche cell populations, and the
corresponding HB-associated erythroid cells demonstrated that TAMs
and tumor-associated cells from patients 2 and 5 expressed early ery-
throid niche signals, while those from patient 6 expressed late ery-
throid niche signals (Fig. 4d)23. We confirmed one of the TAM and
tumor-associated erythroid cell interactions from our ligand-receptor
analysis by using FISH to localize VCAM1-expressing CD163+ TAMs that
are adjacent to ITGA4-expressing tumor-associated erythroid cells
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(Fig. 4e)24. We also examined interactions between tumor cells and
tumor-associated erythroid cells. We identified and validated adjacent
IGF2-expressing tumor cells with IGF1R-expressing tumor-associated
erythroid cells in patient 6 (Fig. 4g)25. We also identified SPP1 expres-
sing tumor cells with ITGA4-expressing tumor-associated erythroid
cells in patient 2 (Fig. 4h)26. These data demonstrate that both TAMs
and tumor cells interact with tumor-associated erythroid cells to

maintain fetal erythropoiesis at different developmental stages, sup-
porting the hypothesis that HB tumor heterogeneity is due in part to
the fetal stage at which the tumor arises8,11,27.

Next, we examined whether tumor cells retained transcriptomic
signatures corresponding to specific fetal liver developmental time
points. We integrated tumor cells with a reference fetal liver hepato-
blast dataset but found little overlap, indicating that tumor cells had
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gene expression patterns distinct to hepatoblasts (Supplementary
Fig. 16a–c)16,28.

We noticed that patients 2 and 5 had tumor cells with expression
of erythroid genes but patient 6 did not. We ensured that the pre-
sence of erythroid genes in these cells was not due to ambient RNA
contamination or doublets by using DecontX (Version 1.4.7)29 and
DoubletFinder (Version 2.0.3)30 in our analytical pipeline. Tumor
cells expressing the Erythroid-like signature in patients 2 and 5
expressed early-stage erythroblast markers, but had lower expres-
sion of mid and late stage erythroid markers HBG1, HBG2, HBA2, and
HBB than tumor-associated erythroid cells. Tumor cells from Patient
6 showed little to no expression of most erythroid markers, con-
sistent with our previous analysis that Patient 6 tumor cells were
enriched in the Hepatoblast I signature (Supplementary Fig. 16a, b).
Finally, we examined the significant ligand-receptor interactions
betweenTAMs and tumor cells and found erythropoiesis signalswere
only present between TAMs and tumor cells for patients 2 and 5
(Supplementary Fig. 16b), suggesting that erythropoietic signaling
may be involved in the oncogenesis for at least a subset of HBs.

Patient-derived-spheroids maintain patient-specific features
from freshly isolated parent cells
We generated five patient-derived spheroids (PDS) from fresh HB
tumor samples. The success rate was greater when PDS were grown
from freshly isolated cells than from cryopreserved cells (Supple-
mentaryData 5). Four of the five PDSweremaintained formore than 15
passages (>6 months, Supplementary Fig. 18a). PDS had similar pro-
liferation rates that remained stable over time (Supplementary
Fig. 18b). The PDS from patient 9 had two distinct cell populations
corresponding to non-tumor BECs and fibroblasts, neither of which
could be maintained long-term in our culture conditions (Supple-
mentary Fig. 18c). PDS from different patients had distinct morphol-
ogies, which persisted with long-term culture (Fig. 5a and
Supplementary Fig. 18a). Interestingly, patient 2 PDS formed large
lumens, reminiscent to cholangioblastic features observed in patient 2
tumor tissue. Similarly, the dense nature of PDS from patient 8 is
similar to the dense features in patient 8 tumor tissue (Supplementary
Fig. 18d). Notably, gene expression patterns identified in each patient’s
tumor were also observed using FISH and IF of corresponding spher-
oids (Supplementary Fig. 18d).

To further characterize the PDS, we performed scRNA-seq on
spheroids at both early, and late passages. PDS have broad gene
expression differences compared to freshly isolated tumor cells, but
retained their transcriptomic differences relative to other PDS even
with long-term culture, indicating that they maintained patient-
specific features (Supplementary Fig. 19a and Supplementary
Data 6). All PDS had high expression of HB genes and retained their
parent tumor mutations in CTNNB1 (Fig. 5b, c), indicating that they
grew fromtumor cells. Todirectly assesswhich specific cell population
each PDS grew from, we generated a signature score for each cell
population in the tumor tissue and found thatPDSweremost similar to
the tumor cell population in each case, even after long-term culture
(Fig. 5d and Supplementary Fig. 19b–f). We could not identify a clear
cell of origin for PDS from patient 2, likely because we did not capture

the full spectrum of tumor cells in this patient (Supplementary
Fig. 19d).

PDS from patient 7 had two distinct cell populations, a large
population of spheroid cells similar to tumor cells, and a small popu-
lation similar to fibroblasts. This is consistent with the finding of
fibroblast-appearing cells in early passages for patient 7, which dis-
appeared with long-term culture (Supplementary Fig. 19d).

We next asked if PDS retained gene expression of any of the five
HB tumor cell types we identified. Since we did not capture the parent
cells for PDS from Patient 2 and very few tumor cells were captured
from patient 7, we focused our analysis on patients 6 and 8. We ana-
lyzed the tumor cells from patients 6 and 8 and generated a signature
score for each subpopulation (Supplementary Fig. 19c and Supple-
mentary Fig. 20a, b). PDS from patient 6 is most similar to the popu-
lation of tumor cells that expressed the Hepatoblast I signature.
patient 8 PDS is most similar to the population of tumor cells with the
Neuroendocrine signature (Supplementary Fig. 19e and Supplemen-
tary Fig. 20c, d). This suggests that each PDS grows from a specific
subpopulation of tumor cells, which is consistent with the relatively
homogeneous transcriptome profile of PDS. We measured the gene
signature score for each PDS relative to the five HB tumor signatures
and showed that PDS from patients 6, 7, and 8 likely originated from
cells expressing one of the five HB tumor signatures we identified, but
patient 2 did not (Fig. 5e).

Pharmacologic testing of patient-derived HB spheroids reveals
HB tumor cell type specific treatment responses
We examined whether PDS can be used to test drug-sensitivity in a
patient-specific manner. We treated PDS with five chemotherapeutics
commonly used for HB and found that spheroids from patient 7 were
the most sensitive to the drugs tested, while PDS from patients 2 were
the most resistant (Fig. 6a–c and Supplementary Fig. 21a). Drug sen-
sitivity is partly dependent on the cell’s ability tometabolize and efflux
the agent. We measured expression levels of genes known to be
important for efflux and metabolism of platinum-based drugs, eto-
poside, vincristine, and 5-FU (https://www.pharmgkb.org/pathway/
PA150653776, https://www.pharmgkb.org/pathway/PA150981002,
https://www.pharmgkb.org/pathway/PA2025, https://www.pharmgkb.
org/pathway/PA150981002) and found that in both tumor cells and
spheroids, patient 2 had the highest expression of these genes while
patient 7 had the lowest (Fig. 6b, c and Supplementary Fig. 22a–f).

Next, we asked whether PDS can be used to identify treatment
targets for HB. We looked for known molecular pathways that are
important for HB pathogenesis and that are differentially expressed
within HB tumors and corresponding PDS. We found that the YAP
signaling pathway was highly expressed in patients 2 and 7 cells
(Fig. 6d).We treated PDSwith the YAP1 inhibitor verteporfin and found
that patient 7 PDS were most responsive to YAP1 inhibition whereas
patient 2 PDS were not (Fig. 6d and Supplementary Fig. 21b). To
explain this discordance, we looked at the expression of genes known
to be important for efflux and metabolism of verteporfin and found
that patient 2 had the highest expression of these genes (Fig. 6b and
Supplementary Fig. 22d)31. Taken together, these results demonstrate
that drug sensitivity profiles of PDS are globally linked to the

Fig. 3 | Low MARCO expression distinguishes HB TAMs from macrophages in
normal tissue.UMAP of all immune cells and tumor-associated stromal cells from
all 9 patients annotatedby a cell type orb sample type. cThe quantities of each cell
type in both tumor and adjacent normal tissue.dUMAPof allmacrophages from all
9 patients annotated by sample type. e Volcano plot showing top differentially
expressed genes betweenmacrophages found in tumors compared to those found
in adjacent normal liver tissue. f Expression of the scavenger receptor, MARCO,
distinguishes TAMs from normal liver macrophages. g Violin plots showing
expression of the genes identified in the above volcano plot in MAR-COLow TAMs

and normal liver MARCOHi macrophages. h Gene ontology terms that are asso-
ciated with the genes differentially expressed in MARCOLow macrophages. Sta-
tistical significance levels (over-expression statistical test) are indicated in the color
bar. i FISH staining for CD163 (green) and MARCO (red) of non-tumor and tumor
tissue for patient 1 (Hepatoblast I), patient 4 (Hepatoblast II), patient 5 (Erythroid),
patient 3 (DCN), and patient 8 (Neuroendocrine) showing near-total absence of
MARCO in tumor tissue. j Computed pseudotime trajectory and anno-tated UMAP
of monocytes, tumor-associated macrophages, and MACROHi macrophages.
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expression of drug efflux and metabolism genes in the tumor cell and
PDS (Fig. 6b, c).

Since patient 8 had an early relapse, we looked specifically at
signaling pathways differentially expressed in patient 8 tumor and
PDS. We found patient 8 PDS expressed genes in the LIN28B pathway
and exhibited sensitivity to the LIN28B pathway inhibitor, LIN28B-
1632 (Fig. 6e and Supplementary Fig. 21c). Finally, we also observed

that PDS from patients 6 and 8 (both having relapsed) had a lower
level of expression of proteasome coding genes (Fig. 6f), thereby
predicting heightened sensitivity to the proteasome inhibitor,
bortezomib32,33. Treatment of PDS from patients 6 and 8 demon-
strated increased sensitivity to bortezomib compared to the other
PDS (Fig. 6f and Supplementary Fig. 21d). These data indicate that the
transcriptomic profile of HB PDS can be used to predict drug
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susceptibility, paving a way to use tumor PDS for personalized
therapies for this rare tumor.

Discussion
Hepatoblastoma is a childhood cancer in which the response to che-
motherapy can be limited by high-levels of chemotherapeutic
resistance34. We postulate that an important determinant of the

variability in chemosensitivity is the cellular composition of individual
tumors, and have utilized the power of single cell transcriptomics to
examine shared features of HB that may account for its heterogeneity
and relate these features to chemotherapeutic efficacy. We identified
fiveHB tumor signatures that are present in varyingproportions across
all tumors, supporting the idea that the relative abundance of these
tumor cells may underlie the heterogeneity observed in HB. Though

Fig. 4 | HB maintains erythropoiesis at three distinct developmental stages.
a Integrated UMAP of fetal liver erythroid cells and tumor-associated erythroid
cells. b Heatmap of the three developmental stages of fetal-liver erythroid marker
expression for tumor-associated erythroid cells and reference fetal liver erythroid
population. Scaled expressed levels are shown by the color bar. c Supervised
heatmap showing expression of canonical erythroid markers and representative
markers of three erythroid developmental stages. d Selected ligand-receptor
interactions from TAMs to tumor-associated erythroid cells for patients 2, 5, 6, and
other patients. Mean expressions of ligand and receptor pairs are shown in the
color bar. Statistical significance levels (random permutation test) are indicated by
the marker size. e Stainings for TAMs to tumor-associated erythroid cells ligand-
receptor interactions by FISH with CD163 (red), HBA2 (blue), VCAM1 (white), and
ITGA4 (green) on patient 6 tumor tissue, and violin plot of VCAM1 and ITGA4 for
TAMs and tumor-associated erythroids from patient 6 tumor tissue. Arrows show
TAMs expressing VCAM1 next to tumor-associated erythroids expressing ITGA4.

f Selected ligand-receptor interactions between tumor cells and tumor-associated
erythroid cells forpatients 2, 5, 6, andotherpatients.Meanexpressionof ligandand
receptor pairs are shown in the color bar. Statistical significance levels (random
permutation test) are indicated by the marker size. g Stainings for tumor cells to
tumor-associated erythroid cells ligand−receptor interactions by FISH with MEG3
(red), HBA2 (blue), IGF2 (white), and IGFR1 (green) on patient 6 tumor tissue, and
violin plot of IGF2 and IGFR1 for tumor Hepatoblast I and tumor-associated ery-
throids from patient 6 tumor tissue. Arrows show tumor cells expressing IGF2 next
to tumor-associated erythroids expressing IGFR1. h Stainings for tumor cells to
tumor-associated erythroid cells ligand−receptor interactions by FISH with REG3A
(red), HBA2 (blue), SPP1 (white), and ITGA4 (green) of patient 2 tumor tissue, and
violin plot of SPP1 and ITGA4 for tumor Erythroid-like and tumor-associated ery-
throids from patient 2 tumor tissue. Arrows show tumor cells expressing SPP1 next
to tumor-associated erythroids expressing ITGA4. Scale bar = 35 µm.
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Fig. 5 | Patient-derived-spheroids maintain patient-specific features from
freshly isolated parent cells. a Brightfield images of tumor spheroids from
patients 2, 6, 7, and 8 at early passage. Scale bar = 100 μm. b Violin plots of KEGG
Cairo_Hepatoblastoma_UP signature score of tumor cells (patient 2) or spheroid
parent cells (patients 6, 7, and 8) or spheroids frompatients 2, 6, 7, and 8 at an early
passage (passage 2 for patients 2, 8, and passage 3 for patients 6 and 7) and at a late
passage (passage 10 for patients 2, 6, and 8, and passage 11 for patient 7). Signature

scores for all hepatocytes from all patients are represented as a reference. c Exon
3 somatic mutation of CTNNB1 (#NP_001091679.1) of normal and tumor tissues,
spheroids, early and late passages. d Correlation matrix between PDS and freshly
isolated tumor cells. Early passage for patient 9 corresponds to passage 2. e PDS
module scores (early and late passages) for the signatures of the five tumor cell
types. Source data for signature scores are provided as a Source Data file.
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Fig. 6 | Pharmacologic testing of patient-derivedHB spheroids reveals patient-
specific treatment responses. a IC50 calculated from cell viability measurements
by ATP quantification after a 4-day treatment with five chemotherapy drugs (cis-
platin, carboplatin, etoposide, vincristine and 5-fluorouracil [5-FU]). b PDS drug-
sensitivity heatmap showing cell viability profile for the five chemotherapy drugs
tested and verteporfin at a representative concentration. cModule score for genes
involved in platinum-based compounds, etoposide, vincristine, 5-FU, and verte-
porfinmetabolism and efflux. d Violin plots showing the expression of YAP1, BIRC2
and TEAD1 in parent cells and PDS, and IC50 calculated from cell viability mea-
surements of ATP quantification after a 4-day treatment with the YAP1 inhibitor
verteporfin. e Violin plots showing the expression of LIN28B, LIN28A, HMGA2,
MYC, and KRAS in parent cells and PDS, and IC50 calculated from cell viability
measurement by ATPquantification after a 4-day treatmentwith the LIN28pathway
inhibitor LIN28B-1632. f Violin plot showing the module score of proteasome

coding genes (proteasome KEGG gene list) in PDS, and IC50 calculated from cell
viability measurement by ATP quantification after a 4-day treatment with the pro-
teasome inhibitor bortezomib. The box plot present the 25th percentile, the
median and the 75th percentile, andoutlying or extremevalues. Thewhiskersof the
box plots extend to amaximumof 1.5 times the size of the interquartile range. IC50
were calculated using the function log(inhibitor) vs. normalized response from
GraphPad Prism 9.2.0. Data show log(IC50)+/− SEM generated from drug cyto-
toxicity assay data (Supplementary Fig. 22) N = 4 for cisplatin, Carboplatin, vin-
cristine, etoposide, 5FU and verteporfin, N = 5 for LIN28B-1632, Bortezomib, Two-
way ANOVA was performed, followed by Tukey’s multiple comparisons test. p-
values are indicated on graphs (p <0.0001 is indicated when p-value is below this
threshold). Source data for signature scores and IC50 are provided as a Source
Data file.
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only five signatures were identified in the current study, our data
suggest that additional signatures may need to be defined in order to
comprehensively account for the heterogeneity observed in HB
tumors. We also identified specific tumor-associated cells, including
TAMs, that form the tumor microenvironment. In a subset of HBs,
TAMs and tumor cells form a unique niche to maintain fetal liver ery-
thropoiesis. Interestingly, TAMs and tumors express developmentally
restricted signals that result in similarly restricted erythropoiesis.
Finally, we grew PDS from HB tumors and found that each spheroid
culture was an outgrowth of cells enriched in one of the five HB tumor
signatures, establishing a useful tool to study HB biology and drug
susceptibility. Taken together, this study identifies tumor signatures
that may be important for establishing the heterogeneity in this dis-
ease and establishes tools to improve our understanding ofHBbiology
and its treatment.

The clinical outcomes for HB depend on the presence of specific
epithelial cell types, such as for those patients with small cell undif-
ferentiated histology35,36. Consistent with this, bulk transcriptome
data separate tumor risk primarily by epithelial component gene
expression8. Our approach identified two epithelial tumor cell types
shared across HB, including cells with pure fetal histology. We also
identified three tumor features corresponding to cells in mixed epi-
thelial mesenchymal tumors. This includes a rare neuroendocrine
population that correlated with high clinical risk in our dataset. Using
this approach on a larger HB dataset could identify most if not all HB
tumor cell types. By correlating these with clinical outcomes, it will be
possible to define gene signatures that accurately risk stratify HB.

HBs are thought to arise from fetal hepatoblasts, and are known to
have few genetic mutations, most in the Wnt signaling pathway, sug-
gesting that tumor heterogeneity in HB is not driven by distinct
mutations37. In this study, we demonstrate that HBs maintain features
that correspond to specific fetal liver developmental stages. This
finding supports the hypothesis that HB heterogeneity is determined
by the stage at which the tumor arose during liver development8,11,27.

Patient-derived organoids and spheroids are powerful models to
study tumor biology38,39. We showed that PDS can be grown efficiently
from fresh HB tumor samples and retain patient and tumor cell type
gene expression patterns even after long-term culture. Importantly,
PDS predicts differential responses to treatment based on the tran-
scriptomic signature of each tumor, suggesting a path forward for
precision oncology for these tumors.

Our data is limited by the small sample size of nine tumors, and
the fact that eight of our samples are post-treatment, which likely
affected the cell types captured and perhaps enriches for chemore-
sistant tumor cell populations. In addition, it is likely that additionalHB
tumor signatures exist that we were not able to capture, such as the
tumor cells that gave rise to PDS from patient 2. Based on the few
number of patients from whom PDS were established and the low
number of tumor cells for PDS from patients 2 and 7, additional work
will be needed to validate whether drug testing in PDS corresponds to
responses in primary tumors. Recent developments in single nuclei
RNA sequencing may allow for the examination of larger biobanks of
HB samples, which we expect will lead to the identification of other
common HB tumor signatures40.

In conclusion, our results help elucidate the underpinnings of HB
tumor heterogeneity with single-cell resolution and demonstrate that
PDS can be used to evaluate responses to chemotherapy.

Methods
Study approval
The UCSF Institutional Review Board (IRB) committee approved the
collection of these patient data included in this study. All relevant
ethical regulations for work with human participants have been fol-
lowed, and written informed consent from all patients’ parents or
guardians has been obtained.

Human specimen collection
Fresh tumor tissue and adjacent normal tissue fromnine patients were
obtained during anatomic liver resections for hepatoblastoma. Tissues
were then kept during transportation in ice-cold Williams’ E medium
(ThermoFisher Scientific, Waltham, MA) (supplemented with 2mM
Glutamax, 10mM HEPES, and 1000U/ml Penicillin/Streptomycin
(ThermoFisher Scientific)), and then processed for scRNA-seq and
spheroid culture.

Single-cell RNA sequencing
Tumor and adjacent normal liver were dissociated bymincing tissue
in 1–2mm squares, followed by incubation in Liver Perfusion Med-
ium (ThermoFisher Scientific) for 15 min at 37 °C in a rotating oven.
After being washed in PBS (ThermoFisher Scientific), tissues were
incubated with Liver Digest Medium (ThermoFisher Scientific)
supplemented with HEPES and collagenase type IV (Worthington
Biochemical, Lakewood, NJ) (600–800 U/ml) for 30min at 37 °C
with rotation. Further dissociation was achieved by pipetting 10
times through a 25mL serological pipette. Single cells were then
separated from clumps using a 70 µm strainer (Fisher Scientific,
Hampton, NH). After lysis of red blood cells with ACK RBC Lysis
Buffer (Fisher Scientific), single cells were counted using a LUNA™
Automated Cell Counter (Logos biosystems, South Korea) and
processed for scRNA-seq analysis.

Sequencing was based on the Seq-Well S^3 protocol41,42. One to
four arrays were used per sample. Each array was loaded as previously
describedwith approximately 110,000 barcodedmRNA capture beads
(ChemGenes, Cat: MACOSKO-2011-10(V+)) and with 10,000–20,000
cells. Arrays were then sealed with functionalized polycarbonate
membranes (Sterlitech, Cat: PCT00162X22100) and were incubated at
37 °C for 40min in lysis buffer (5M Guanidine Thiocyanate, 1mM
EDTA, 0.5% Sarkosyl, 1% BME). After detachment and removal of the
top slides, arrays were rotated at 50 rpm for 20min. Each array was
washed with hybridization buffer (2M NaCl, 4% PEG8000) and then
incubated in hybridization buffer for 40min. Beads from different
arrays were collected separately. Each arraywaswashed ten timeswith
wash buffer (2M NaCl, 3mM MgCl2, 20mM Tris-HCl pH 8.0, 4%
PEG8000) and scraped ten timeswith a glass slide to collect beads into
a conical tube.

For each array, beads were washed with Maxima RT buffer
(ThermoFisher, Cat: EP0753) and resuspended in a master mix com-
prised of Maxima RT buffer, PEG8000, Template Switch Oligo, dNTPs
(NEB, Cat: N0447L), RNase inhibitor (Life Technologies, Cat: AM2696)
and Maxima H Minus Reverse Transcriptase (ThermoFisher, Cat:
EP0753) in water. Samples were rotated first at room temperature for
15min and then at 52 °C overnight. Beads were washed once with TE-
SDS and twicewith TE-TW.Theywere treatedwith exonuclease I (NEB),
rotating for 50min at 37 °C. Beads were then washed once with TE-
SDS, twice with TE-TW, and once with 10mM Tris-HCl pH 8.0. They
were resuspended in 0.1M NaOH and rotated for 5min at room tem-
perature. They were subsequently washed with TE-TW and TE, and
taken through second strand synthesis with Maxima RT buffer,
PEG8000, dNTPs, dN-SMRToligo and Klenow Exo- (NEB, Cat: M0212L)
in water. After rotating at 37 °C for 1 h, beads were washed twice with
TE-TW, once with TE and once with water.

KAPA HiFi Hotstart Readymix PCR Kit (Kapa Biosystems, Cat:
KK2602) and SMART PCR Primer were used in whole transcriptome
amplification (WTA). For each array, beads were distributed among 24
PCR reactions. Following WTA, three pools of eight reactions were
made andwere then purified using SPRI beads (BeckmanCoulter),first
at 0.6× and then at a 0.8× volumetric ratio. For each sample, one pool
was run on an HSD5000 tape (Agilent, Cat: 5067-5592). The con-
centration of DNA for each of the three pools was measured via the
Qubit dsDNAHSAssay kit (ThermoFisher, Cat: Q33230). Libraries were
prepared for each pool, using 800–1000pg of DNA and the Nextera
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XT DNA Library Preparation Kit. They were dual-indexed with N700
and N500 oligonucleotides.

Library products were purified using SPRI beads, first at 0.6× and
then at a 1× volumetric ratio. Libraries were then run on an HSD1000
tape (Agilent, Cat: 50675584) to determine the concentration between
100 and 1000bp. For each library, 3 nM dilutions were prepared.
These dilutions were pooled for sequencing on a NovaSeq S4 flow cell.

The sequenced data were preprocessed and aligned using the
dropseq workflow on Terra (app.terra.bio). A digital gene expression
matrixwas generated for each sample, parsed and analyzed following a
downstream pipeline.

Sequencing and alignment
Sequencing results were returned as paired FASTQ reads and the
paired FASTQ files were aligned against hg19 reference genome
(GRCh37.p13) using the dropseq workflow (https://cumulus.
readthedocs.io/en/latest/drop_seq.html). The aligning pipeline out-
put included aligned and corrected bam files, two digital gene
expression (DGE) matrix text files (a raw read count matrix and a UMI-
collapsed read count matrix where multiple reads that matched the
same UMI would be collapsed into one single UMI count) and text-file
reports of basic sample qualities such as the number of beads used in
the sequencing run, total number of reads, alignment logs. For each
sample, the median and average number of genes per barcode were
1014 and 1224. Themedian and average number of UMI were 2536 and
3974. The mean percentage of mitochondrial content per cell
was 17.06%.

Single-cell clustering analysis
Cells captured in single-cell RNA sequencing analysis were clustered
and analyzed using Seurat (Version 3.2) package in R (Version 4.0.3)43.
Cells with fewer than 300 genes, 500 transcripts, or a mitochondrial
level of 20% or greater, were filtered out as the first QC process. Then,
by examining the distribution histogram of the number of genes per
cell in each sample,we set theupper threshold for thenumberof genes
per cell in each individual sample in order to filter potential doublets. A
total of 29,968 cells were acquired using these thresholds.

UMI-collapsed read-count matrices for each cell were loaded in
Seurat for analysis. We followed a standard workflow by using the
“LogNormalize”method that normalized the gene expression for each
cell by the total expression, multiplying by a scale factor 10,000. For
downstreamanalysis to identify different cell types,we then calculated
and returned the top 2000 most variably expressed genes among the
cells before applying a linear scaling by shifting the expression of each
gene in the dataset so that the mean expression across cells was 0 and
the variance was 1. This way, the gene expression level could be
comparable among different cells and genes. Principal components
analysis (PCA) was run using the previously determined most variably
expressed genes for linear dimensional reduction and the first 100
principal components (PCs) were stored, which accounted for 40.49%
of the total variance. To determine how many PCs to use for the
clustering, a JackStraw resampling method was implemented by per-
mutation on a subset of data (1% by default) and rerunning PCA for a
total of 100 replications to select the statistically significant PC to
include for the K-nearest neighbors clustering. For graph-based clus-
tering, the first 75 PC and a resolution of 1.2 were selected, yielding 37
cell clusters. We eliminated the clustering side effect due to over
clustering by constructing a cluster tree of the average expression
profile in each cluster and merging clusters together based on their
positions in the cluster tree. As a result, we ensured that each cluster
would have at least 10 unique DEGs. DEGs in each cluster were iden-
tified using the FindAllMarker function within Seurat package and a
corresponding p-value was given by the Wilcoxon’s test followed by a
Bonferroni correction. Two-way ANOVA followed by Tukey’s multiple
comparisons test was performed using GraphPad Prism version 9.2.0

for Windows, GraphPad Software, San Diego, California USA, www.
graphpad.com.

Cell type signature analysis
In order to annotate each cell type from the previous clustering, we
referred to established studies and used signature gene sets for each
cell type (Supplementary Data 2). Treating the signature gene set for
each cell type as a pseudogene, we evaluated the signature score for
each cell in our dataset using the AddModuleScore function. Each
cluster inourdatasetwasassignedwith anannotationof its cell typeby
top signature scores within the cluster. To validate the identities of the
tumor cell populations, we estimated copy number variants (CNV) via
InferCNV (Version 1.4.0), using non-tumor and non-tumor-associated
populations as reference15. During the inferCNV run, genes expressed
in fewer than five cells were filtered from the data set, and the cut-off
was fixed at 0.1. Hidden Markov model (HMM) based CNV prediction
was achieved and estimated CNV events were shown in a heatmap.

Somatic copy number alterations were identified and corrected
for tumor purity and ploidy. Read counts across 10 kb windows in the
tumor andpaired normal sampleswere taken to compute the tumor to
paired normal copy number ratio, which can be converted copy
numbers.seg files were generated for five HB patients included this
study and imported in IGV for visualization.

All tumor cells were subset and re-clustered using the analytical
workflow described above. Eight clusters of tumor cells were obtained
with distinctive transcriptomic profiles. By downsampling each cluster
to 200 or fewer cells, we computed the correlation matrix between
each tumor cell pairs and used the pheatmap R package (Version
1.0.12) (Kolde, 2019, https://CRAN.R-project.org/package=pheatmap)
to make the correlation heatmap with unsupervised clustering. Gene
signatures were tested on all eight tumor cell clusters using previously
established hepatoblast, fibroblast, erythroid and neuroendocrine
signature gene sets. A one-way ANOVA test was conducted for each
signature score comparison across all eight tumor cell clusters, and a
corresponding p-value was computed.

In this analysis, we created customized gene set signatures for
each cell population of interest. Using the DEGs obtained from Fin-
dAllMarker function, we included genes with log2 fold change > 2 and
statistical significance (FDR q <0.05) as the signature gene set.

RNAscope FISH and immunofluorescence
Immunofluorescence (IF) alone was carried out, on 5μm-thick FFPE
sections, beginning with a deparaffinization, then a 30min incubation
in a steamer in the antigen retrieval CITRA (Biogenex Laboratories,
HK086-9K), followed by a blocking step of 1 h in 0.1% Triton + 5%
donkey serum. Then primary antibodies, rabbit anti-POSTN (Invitro-
gen PA534641) at 1:200 and mouse anti-COL1 (Abcam, ab6308) at
1:200, were incubated at 4 °C over the night, and then secondary
antibodies, Dylight-755 donkey anti-rabbit IgG (Invitrogen SA5-10043)
and Alexa Fluor-467 donkey anti-mouse IgG (Jackson Immuno, 715-
605-151), both at 1:1000, were incubated at room temperature for 1 h.
All antibodies were diluted in blocking buffer.

RNAscope FISH were carried out on FFPE or Fixed frozen tissue
sections of 5 and 7 μm thickness respectively, and were stained with
the RNAscope Multiplex Fluorescent Reagent Kit v2 Assay and RNA-
scope 4-plex Ancillary Kit for Multiplex Fluorescent Reagent Kit v2
(Advanced Cell Diagnostics, Bio-Techne) with Opal 520, 570, 650, 690,
750 and/or 780 (Akoya), following manufacturer instructions. For
CHGA immunofluorescence staining following RNAscope experiment,
IF protocolwas followed starting fromblocking step, thenwith a rabbit
anti-CHGA (dilution 1/200, ref: Abcam, ab283265) then a donkey anti-
Rabbit Dylight-755. Slides were counterstained and mounted with
ProLong™ Gold Antifade with DAPI.

Stained sections were imaged with a Leica DM6B with 0.28μm
z-step size, using a 40× objective and LASX 3.7 software (Leica). Images
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were 3D-deconvoluted then an Extended Depth of Focus image was
generated using LASX 3.7.

Tumor-associated erythroid developmental analysis
Tumor-associated erythroid populations were extracted and inte-
grated with the fetal liver erythroid or erythroblast populations from
two publicly available datasets (descartes.brotmanbaty.org, human
fetal liver erythroblast)28 (fetal liver early, mid and late erythroid,
ArrayExpress, accession code E-MTAB-7407)14. We utilized the inte-
gration method based on commonly-expressed anchor genes by fol-
lowing the Seurat integration vignette to remove batch effects of
samples sequenced with different technologies and possible artifacts
so that the cells were comparable.

To evaluate the tumor-associated erythroid and tumor cell
populations with respect to the fetal developmental stages, we first
calculated a partition-based graph abstraction (PAGA) graph using
SCANPY’s (Version 1.4.2) (Wolf et al., Genome Biology, 2018)
sc.tl.paga() function and then used sc.tl.draw_graph() to generate the
PAGA-initialized single-cell embedding of the cell types. The expres-
sion of markers was projected from the three fetal erythroid devel-
opmental markers (early, mid and late) to each tumor and erythroid
cluster to generate a heatmap.

Pseudotime analysis
The erythroid population was exported as a Seurat object and then
converted into a SingleCellExperiment simobject. Pseudotimeanalysis
was conducted using the slingshot R package (Version 1.6.1)21. First,
PCA decompositionwas performed using the prcomp() function in the
stats R package (Version 3.6.2). A diffusion map was then generated
using the top layer annotation from the original Seurat object and the
pseudotime trajectory was superimposed on the diffusion map. The
starting point of the pseudotime trajectory was determined based on
preliminary understanding of the cell populations used in the analysis.

Cell-cell interaction analysis
We evaluated cell–cell interactions between two populations of
interest using the CellPhoneDB package (Version 2.1.4)44. For each
analysis, two input files were generated including a normalized gene
expression matrix and a two-column metadata for cell names and
annotations. The normalized gene expression matrix was obtained by
using the NormalizeData function in Seurat with “RC” method speci-
fied. Statistical analysis of all available ligand–receptor pairs was per-
formed on local computers.

To investigate the biologically relevant cell populations, we fil-
tered the CellPhoneDB p-value.txt output file for ligand–receptor pairs
with the p-value less than 0.05, indicating statistically significant
interactions, and generated customized columns and rows txt files.
Dot plots were then plotted using these files to illustrate only the
significant ligand–receptor interactions.

Patient-derived HB tumor spheroids
PDS were cultivated either from cryopreserved single cells (patient 2)
or from fresh remaining clumps after tissue dissociation (patients 6, 7,
8, and 9) as recently described45. Cryopreserved cells were thawed in
wash medium (Advanced DMEM/F12 Medium ((ThermoFisher Scien-
tific, Cat: 12634010) containing 2mM Glutamax (Cat: 35050061),
10mM HEPES (Cat: 15630080), 1000U/mL penicillin/streptomycin
(Cat: 15140122) and 5% FBS (Fisher Scientific, Cat: 35-016-CV)). Then,
cells were centrifuged at 400× g for 5min, and resuspended in tumor
medium (Advanced DMEM/F12 supplemented with 2mM Glutamax,
10mM HEPES, 1000U/mL penicillin/streptomycin, 2% B27 (Thermo-
Fisher Scientific, Cat: 17504044), 1% N2 (ThermoFisher Scientific, Cat:
17502048), 10mMNicotinamide (MilliporeSigma, Burlington,MA, Cat:
N3376-100G), 1.25 mM N-acetylcysteine (MilliporeSigma, Cat: A9165-
5G), 10 µM Y27632 (BioGems, Westlake Village, CA, Cat: 1293823-

10MG), 100 ng/mL hFGF10 (PeproTech, Rocky Hill, NJ, Cat: 100-26),
25 ng/mL hHGF (PeproTech, Cat: 100-39H-25ug), 50ng/mL hEGF
(PeproTech, Cat: AF-100-15-1mg), 5 µM A83-01 (Fisher Scientific, Cat:
29-391-0) and 3 nM dexamethasone (BioGems, Cat: 5000222-5G)).
Cells were first seeded in a low binding plate for 4 h at 37 °C, 5%CO2, to
promote cell clumping, then clumpswere centrifuged, resuspended in
pure Matrigel® (Corning, Corning, NY, Cat: 356231) and 25 µL domes
were seeded in48-well plates. After allowing theMatrigel® to solidify at
37 °C, tumormediumwas added. For fresh culture, tissue clumpswere
centrifuged and resuspended in pure Matrigel®, and seeded as pre-
viously described. Medium was renewed every 3 to 4 days. Spheroids
were visible after 2 to 4 days and passaged after 2 weeks.

Subsequent passaging was performed every 7 to 10 days by
splitting cells at a ratio of 1:10 to 1:30. Briefly, domes were washed with
PBS, Matrigel®was digested, and cells were dissociated with TrypLE 1X
(ThermoFisher Scientific, Cat: 12563011) for PDS from patient 6, 7, 8
and 9 or with TrypLE 10x (ThermoFisher Scientific, Cat: A1217702) for
PDS from patient 2, at 37 °C for 20 to 45min (varying with cell line)
until spheroids became small clumps. Then, cells were centrifuged for
5min at 400 × g at 4 °C and rinsed with wash medium. The cell pellet
was then resuspended in pure Matrigel®, and seeded as previously
described. Tumor spheroids can be passaged for more than 15 times
and about 6 months.

Expression profiling of spheroids was performed by scRNA-seq
analysis at an early passage (2–3) and at a late passage (10–11). Briefly
cells were prepared as for passaging, using an extended incubation in
TrypLE 1X to obtain a single cell suspension. Then, cells were filtered
through a 70 µm strainer, counted using a LUNA™ Automated Cell
Counter, and loaded into a Seq-Well array as previously described. A
total of 15,922 cells passed the QC step from all five cell lines, with an
average nGene of 3570 and an average nUMI of 10,264. Signature
scores for drug resistance were calculated using the Seurat function
AddModuleScore with the following gene lists: Platinum Resistance
(ABCG2, ABCC2, ATP7A, ATP7B, MT1A,MT2A, MPO, GSTP1, GSTT1,
GSTM1, SOD1, and NQO1), Etoposide Resistance (ABCB1, ABCC3,
ABCC1,CYP3A5, CYP3A4, UGT1A1, PTGS1, PTGS2, MPO, GSTP1, GSTT1),
Vincristine Resistance (ABCB1, ABCC10, ABCC1, ABCC2, RALBP1, ABCC3,
CYP3A5, andCYP3A4), VerteporfinResistance (ABCG2, CES1, CES2, CES3,
CES4A, and CES5A), 5-Fluorouracil Resistance (ABCC3, ABCC4, ABCC5,
ABCG2, CDA, CES1, CES2, CYP2A6, DPYD, DPYS, PPAT, RRM1, RRM2,
SLC22A7, SLC29A1, TK1, TYMP, TYMS, UCK1, UCK2, UMPS, UPB1, UPP1,
and UPP2), DNA Repair (HMGB1, MLH1, MSH2, MSH6, PMS2, XRCC1,
ERCC2, ERCC3, ERCC4, ERCC6, XPA, POLH, POLM, POLB, and REV3L).

Doubling time anddrug cytotoxicitywere evaluatedbasedonATP
quantification (CellTiter-Glo® 3D Cell Viability Assay kit, Promega,
Madison,WI, Cat: G9682). Briefly, cells were seeded at 25,000 cells per
dome. For cell growth study, ATP content was measured in domes at
days 0, 2, 4, 6, and 8 after seeding. For cytotoxicity drug testing, cells
were seeded as previously described and treated with drugs at 4 dif-
ferent concentrations for 4 days, between day 1 and day 5. For each
separate experiment, ATP levels were quantified using an ATP-
standard curve. Cisplatin (Fisher Scientific, Cat: 232120-50MG) and
carboplatin (Sigma-Aldrich, Cat: C2538-100MG) were reconstituted in
PBS and all other drugs (vincristine (Sigma-Aldrich, Cat: V0400000),
etoposide (EMD Millipore, Cat: 341205-25MG), verteporfin (Sigma-
Aldrich, Cat: SML0534-5MG) and 5-fluorouracil (Sigma-Aldrich, Cat:
F6627-1G), bortezomib (Sigma-Aldrich, Cat: F6627-1G) and LIN28B-
1632 (Fisher Scientific, Cat: 606810)) in DMSO (Cell Signaling Tech-
nology, Danvers, MA, Cat: 12611P). Controls were incubated with their
respective vehicles (PBS or DMSO).

Data show average +/− SEMof at least 4 independent experiments
(see figure legends for details), and correspond to the percentage of
ATP levels normalized to the control. IC50 were calculated using the
function log(inhibitor) vs. normalized response from GraphPad Prism
9.2.0. Data show log(IC50) +/− SEM. Multiple comparisons among
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groups were performed with Two-way ANOVA was performed, fol-
lowed by Tukey’s multiple comparisons test using GraphPad Prism
9.2.0 software. p-values are indicated on graphs (<0.0001 is indicated
when p-value is below this threshold).

CTNNB1 mutation detection
DNA was extracted from frozen tissues or cryopreserved freshly
isolated cells for tumor and tumor-adjacent samples, and from
spheroids at early and late passages, using DNA/RNAAll Prepmini Kit
(Qiagen, Hilden, Germany, Cat: 80004). CTNNB1 genomic sequence
(from exon 2 trough exon 4) was amplified using specific primers
(forward primer: AGCGTGGACAATGGCTACTCAA; reverse primer:
ACCTGGTCCTCGTCATTTAGCAGT) by polymerase chain reaction
using Q5® Hot Start High-Fidelity 2X Master Mix (NEB, Ipswich, Ma,
Cat: M0494S), then sequenced by Sanger sequencing (MCLAB, South
San Francisco, CA) using the same primers.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Fetal liver erythroblasts and hepatocytes publicly available data used
in this study are available at descartes.brotmanbaty.org28. The fetal
liver erythroid publicly available data used in this study are available at
ArrayExpress under the accession code E-MTAB-740714. Raw single-cell
RNA sequencing FASTQ files and gene expression matrices files gen-
erated in this study have been deposited in the Gene Expression
Omnibus (GEO) under the accession number GSE186975. The
remaining data are available within the Article, Supplementary Infor-
mation or Source Data file. Source data are provided with this paper.

Code availability
All software algorithms used for analysis are available for download
from public repositories. We have not developed new software in
this study. We generated new codes in this study, and the codes
used to generate figures in the manuscript will be available in this
Github repository [https://github.com/angelussong/Hepatoblastoma_
Analysis/].
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