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Mitochondrial dysfunction and endoplasmic reticulum (ER) stress are closely associated with β-cell dysfunction and peripheral
insulin resistance. Thus, each of these factors contributes to the development of type 2 diabetes mellitus (DM). The accumulated
evidence reveals structural and functional communications between mitochondria and the ER. It is now well established that
ER stress causes apoptotic cell death by disturbing mitochondrial Ca2+ homeostasis. In addition, recent studies have shown that
mitochondrial dysfunction causes ER stress. In this paper, we summarize the roles that mitochondrial dysfunction and ER stress
play in the pathogenesis of type 2 DM. Structural and functional communications between mitochondria and the ER are also
discussed. Finally, we focus on recent findings supporting the hypothesis that mitochondrial dysfunction and the subsequent
induction of ER stress play important roles in the pathogenesis of type 2 DM.

1. Introduction

Type 2 diabetes mellitus (DM) is characterized by impaired
insulin secretion from pancreatic β-cells. In addition,
insulin-responsive tissues, such as muscle, liver, and adipose
tissue, exhibit insulin resistance. A number of findings
suggest that both of these major features of type 2 DM
are associated with mitochondrial dysfunction and/or endo-
plasmic reticulum (ER) stress [1–4]. Recently, it was shown
that mitochondria and the ER interact both physically and
functionally [5, 6]. In this paper, we will focus on the roles
that mitochondrial dysfunction and ER stress play in the
pathogenesis of type 2 DM. Particular emphasis will be
placed on recent findings elucidating the interaction between
mitochondria and the ER.

2. Role of Mitochondrial Dysfunction
in Type 2 DM

2.1. Mitochondria. The mitochondrion is an intracellular
double-membraned organelle found in most eukaryotic cells
[7]. Mitochondria are well known to be power stations

within cells, as one of their major functions is production
of ATP [8]. In addition, mitochondria play essential roles in
intracellular reactive oxygen species (ROS) production [9],
regulation of apoptosis [10], and Ca2+ storage [11].

2.2. Mitochondrial and Pancreatic β-Cell Dysfunction.Insulin-
resistant patients can develop overt type 2 DM when
pancreatic β-cells are unable to produce enough insulin to
maintain normoglycemia. Pancreatic β-cells from patients
with type 2 DM cannot sense glucose properly, and this
contributes to impairment of insulin secretion. Interestingly,
glucose sensing by β-cells appears to be controlled by
mitochondrial metabolism. Reduced forms of nicotinamide
adenine dinucleotide (NADH) or flavin adenine dinucleotide
(FADH2) are generated during glucose metabolism via both
glycolysis and the tricarboxylic acid (TCA) cycle. Electron
transfer to the mitochondrial electron-transport chain (ETC)
by NADH and FADH2 leads to production of ATP via the
process of oxidative phosphorylation (OXPHOS). Increases
in the ATP/ADP ratio in β-cells inhibit ATP-sensitive potas-
sium channels (KATP), in turn inducing depolarization of
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Figure 1: Roles of mitochondrial dysfunction in the pathogenesis of β-cell dysfunction and insulin resistance.

plasma membranes. The opening of voltage-sensitive Ca2+

channels allows Ca2+ uptake by β-cells, thereby contributing
to secretion of insulin. Thus, mitochondrial dysfunction can
impair glucose-stimulated insulin secretion by reducing the
ATP/ADP ratio within β-cells (Figure 1) [12].

2.3. Mitochondrial Dysfunction and Skeletal Muscle Insulin
Resistance. Defective mitochondrial fatty acid metabolism
in skeletal muscle is thought to affect insulin signaling
pathways, thereby leading to insulin resistance [13–15].
Impairment of mitochondrial fatty acid β-oxidation, either
alone or in conjunction with increased delivery of free
fatty acids (FFAs) from plasma, leads to elevated levels of
intracellular fatty acid metabolites such as fatty acyl CoA,
diacylglycerol, and ceramide [16–18]. Metabolites formed
under such circumstances activate serine/threonine kinases
including protein kinase C (PKC), leading to phosphoryla-
tion of serine sites on insulin receptor substrate-1 (IRS-1)
[19, 20]. Increased serine phosphorylation of IRS-1 inhibits
the tyrosine kinase activity of the insulin receptor on IRS-
1 and the activity of insulin-stimulated phosphatidylinositol
3-kinase (PI 3-kinase), resulting in decreased activity of
insulin-stimulated protein kinase B (PKB, also known as
AKT). Reduced AKT activity leads to suppression of insulin-
stimulated glucose transporter 4 (GLUT4) translocation and
subsequent reduction of glycogen synthesis (Figure 1).

2.4. Mitochondrial Dysfunction and Hepatic Insulin Resistance.
The liver plays a crucial role in the development of insulin
resistance and type 2 DM [21]. Several lines of evidence
indicate that defects in liver mitochondrial oxidative function
can induce hepatic insulin resistance [14, 15, 22, 23]. For exa-
mple, reduced levels of mitochondrial fatty acid β-oxidation
in the liver, as in skeletal muscle, lead to accumulation
of intracellular fatty acid metabolites [24, 25]. Note that
similar results were observed either when de novo hepatic
lipogenesis rose or when delivery of FFAs from the plasma

increased. Under either circumstance, the metabolites adver-
sely affected intracellular insulin signaling, leading to redu-
ced insulin stimulation of glycogen synthesis and increased
hepatic gluconeogenesis (Figure 1) [19].

2.5. Mitochondrial Dysfunction and Adipose Tissue. Adipose
tissue has been described as an endocrine organ that plays
a central role in fuel metabolism [26]. Adipocytokines such
as leptin, adiponectin, resistin, and tumor necrosis factor-α
(TNF-α) are released by adipose tissue, and these cytokines
regulate fuel metabolism [27]. Adiponectin is known to have
insulin-sensitizing effects. However, in contrast to other
adipocytokines, the plasma levels of adiponectin are signifi-
cantly decreased in obese subjects and in type 2 DM patients
[28, 29]. Recently, we reported that the levels of adiponectin
in plasma and adipose tissue were significantly lowered
in obese mice; an associated reduction of mitochondrial
content and function in adipose tissue was also documented
[30]. Rosiglitazone, a peroxisome proliferator-activated rece-
ptor γ (PPARγ) agonist, reversed decreases in plasma adipo-
nectin levels and adiponectin expression in obese mice, and
elevated mitochondrial content and function in adipose tis-
sue. These findings suggest that mitochondrial dysfunction
in adipose tissue leads to decreased plasma adiponectin
levels in obese subjects (Figure 1).

Many studies on rodents have shown that the capacity
of mitochondria for oxidizing fatty acids in brown adipose
tissue (BAT) plays a critical role in the regulation of adaptive
thermogenesis, energy balance, and body weight [31, 32].
The presence of BAT was considered to be relevant only
in human newborn and small mammals. However, recent
studies using positron-emission tomography and computed
tomography (PET-CT) demonstrated that adult humans
possess active BAT [33, 34]. Thus, mitochondrial dysfunction
in BAT appears to be linked to impaired thermogenesis and
energy expenditure, contributing to the development of obe-
sity and insulin resistance in adult humans (Figure 1) [35].
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3. Role of ER Stress in Type 2 DM

3.1. ER. The ER is a complex organelle that is found in
all eukaryotic cells. Structurally, the ER is formed by an
interconnected network of cisternae and microtubules. From
a functional viewpoint, the ER plays a central role in protein
folding and in quality control of newly synthesized proteins
[36]. The ER also serves as an essential site for synthesis of
lipids [37] and for high-capacity buffering of intracellular
Ca2+ [38].

3.2. ER Stress. If proteins are to be folded properly within
the ER, a balance must be struck between the ER protein
load and ER folding capacity. A number of conditions
can disrupt ER homeostasis, leading to accumulation of
misfolded proteins within the lumen of the ER [4, 39].
Such conditions include a large biosynthetic load, defects
in folding machinery, and disturbances in the handling of
Ca2+. Accumulation of misfolded proteins in the ER causes
ER stress, and this activates an elaborative adaptive process
termed the unfolded protein response (UPR) [40].

The UPR is triggered by three ER transmembrane
proteins: protein kinase R-like ER kinase (PERK), inositol-
requiring enzyme 1 (IRE1), and activating transcription
factor 6 (ATF6). In unstressed conditions, ER luminal
domain of these proteins are bound by the chaperone Bip,
maintaining them in an inactive state until ER stress is
present [41]. During ER stress, misfolded proteins sequester,
Bip, leading to free PERK and IRE1 monomers to oligomer-
ize and trans-autophosphorylate. Activated PERK mediates
inhibition of protein translation via phosphorylation of
eukaryotic translation initiation factor 2α (eIF2α), resulting
in reduced global protein synthesis in an attempt to decrease
the protein-folding load in the ER lumen [42]. PERK-
mediated eIF2α phosphorylation also contributes to the acti-
vation of a subset of translational targets including activating
transcription factor 4 (ATF4). ATF4 activates transcription-
ally the proapoptotic transcription factor CCAAT/enhancer
binding protein (C/EBP) homologous protein (CHOP) [43].

Activation of IRE1, which has endoribonuclease activity,
leads to splicing of X-box binding protein-1 (XBP1) mRNA
and translation of the active form (XBP1s) [44]. XBP1s
translocates to the nucleus and regulates expression of ER
chaperones and proteins involved in ER-associated degrada-
tion (ERAD) [45]. In addition, the cytosolic domain of IRE1
can associate with TNF receptor-associated factor 2 (TRAF2)
to activate the apoptosis signal-regulating kinase 1 (ASK1)
and c-Jun N-terminal kinase (JNK) pathway, independently
with its endoribonuclease activity [46, 47].

In response to ER stress, ATF6, released from Bip, trans-
locates to the Golgi where it is cleaved by proteases into an
active amino-terminal form [48]. N-terminal ATF6 in turn
moves to the nucleus to stimulate expression of ER chaper-
ones and proteins involved in ERAD.

3.3. ER Stress and β-Cell Dysfunction.ER stress plays an impo-
rtant role in the pathogenesis of type 2 DM, as such stress
contributes to pancreatic β-cell dysfunction and insulin
resistance [4, 49]. When the demand for insulin overwhelms
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Figure 2: Roles of ER stress in the pathogenesis of β-cell apoptosis
and insulin resistance.

the folding capacity of the ER, the UPR becomes chronically
activated. Several stimuli have been shown to cause sustained
accumulation of misfolded proteins within the ER lumen
of β-cells [4]. These include high levels of FFA (caused
by either a high-fat diet or obesity) and glucose (chronic
hyperglycemia), as well as aggregation of islet amyloid
polypeptide. Accumulation of misfolded proteins triggers
chronic activation of the UPR, inducing β-cell dysfunction
and apoptosis [50, 51].

Several components of the UPR that contribute to β-
cell apoptosis have been shown (Figure 2). ER stress can
induce β-cell apoptosis through prolonged activation of
IRE1-TRAF2-ASK1 cascade and JNK pathway [52]. CHOP
also plays a crucial role in the induction of ER stress-
mediated β-cell apoptosis [53].

3.4. ER Stress and Insulin Resistance. In addition to β-
cell dysfunction, ER stress is involved in peripheral insulin
resistance (Figure 2). Obesity results in chronic stimulation
of ER stress, leading to continuous activation of the UPR.
Recent studies have suggested that this may, in fact, be the
main mechanism of peripheral insulin resistance and type 2
DM [3, 54]. In obese mice, the levels of ER stress markers
are increased in the liver and adipose tissue [3]. Obesity-
induced ER stress inhibits insulin signaling, and this leads to
insulin resistance. ER stress can also activate nuclear factor-
κB (NF-κB) signaling in the liver [55], thereby increasing
production of proinflammatory cytokines and causing devel-
opment of insulin resistance [56]. A recent study showed that
treatment of obese diabetic mice with the chemical chap-
erones 4-phenyl butyric acid (PBA) and taurine-conjugated
ursodeoxycholic acid (TUDCA) improved peripheral insulin
sensitivity by alleviating ER stress [57]. TUDCA therapy also
improved insulin sensitivity in the liver and muscle of obese
subjects [58].
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4. Structural Communication between
Mitochondria and the ER

A number of studies have shown structural communication
between the mitochondria and the ER. The evidence includes
cosedimentation of ER particles with mitochondria, as well
as electron microscopic observation of a close physical
apposition between mitochondria and the ER [59, 60].
More recently, high-resolution three-dimensional images
have been obtained showing an interaction between mito-
chondria and the ER; specific color labels were employed
to this end [61]. A recent study using electron tomography
also demonstrated that the outer mitochondrial membrane
(OMM) and the ER are joined by tethers, enabling ER
proteins to associate directly with proteins and lipids of the
OMM [62].

The structural membrane hat bridges between mitocho-
ndria and the ER is known as the mitochondria-associated
membrane (MAM) [63]. The MAM plays an essential role
in several cellular functions, including lipid transport, Ca2+

signaling, and apoptosis [64]. A number of mitochondrial or
ER-bound proteins are important for maintaining structural
communication between the two organelles at the MAM [64,
65]. In particular, communication between the organelles is
modulated by a family of chaperone proteins. The voltage-
dependent anion channel (VDAC) is physically linked to the
inositol 1,4,5-triphosphate receptor (IP3R) via the molecular
chaperone grp75 [66]. Overexpression of the cytosolic form
of grp75 selectively increases IP3-induced Ca2+ uptake into
the mitochondrial matrix, whereas overexpression of the
mitochondrial form of the protein does not have this
effect. Another protein that modulates interaction between
mitochondria and the ER is phosphofurin acidic cluster
sorting protein 2 (PACS-2), which is known to integrate
ER-mitochondrial communication and apoptosis signaling
[67]. Accordingly, PACS-2 depletion induces mitochondrial
fragmentation, dissociates the ER from mitochondria, and
blocks apoptosis signaling. More recently, Sigma-1 receptors
have been shown to be located at the MAM of the ER, where
they form complexes with Bip [68]. Sigma-1 receptors disso-
ciate from Bip and bind to type-3 IP3Rs under conditions of
ER Ca2+ depletion. Thus, type-3 IP3Rs are not degraded by
proteasomes. Ca2+ depletion appears to induce a prolonged
Ca2+ signaling event from the ER to the mitochondria, via
IP3Rs. Together, the data suggest that Sigma-1 receptors are
involved in maintaining normal Ca2+ signaling from the ER
to mitochondria.

Structural communication between mitochondria and
the ER is also modulated by fission and fusion of mito-
chondria. Fission and fusion are regulated by a family of
mitochondrion-shaping proteins including dynamin-related
protein 1 (DRP1), mitofusin 1, and mitofusin 2 [69]. Mito-
fusin-2 is a mitochondrial transmembrane GTPase that reg-
ulates mitochondrial fusion [70], and this protein is enriched
at MAMs [71]. Mitofusin-2 tethers the ER to mitochondria
via formation of both homotypic and heterotypic complexes.
For example, ER mitofusin-2 interacts with either mitofusin-
2 or mitofusin-1 on mitochondria. The tethering effect of

mitofusin-2 appears to play a role in the control of Ca2+ flow
between mitochondria and the ER [71].

5. Functional Communication between
Mitochondria and the ER

5.1. Role of ER Stress in Induction of Mitochondrial Dysfunc-
tion. Mitochondrial dysfunction and ER stress have each
been recognized to play crucial roles in the pathogenesis of
type 2 DM. However, the individual stressors appear to act
sequentially in various tissues. For example, accumulating
evidence has shown that ER stress induces mitochondrial
dysfunction, thereby leading to disruption of various phys-
iological responses within cells [5, 6].

Interactions between mitochondria and the ER facilitate
control of Ca2+ signaling and Ca2+-dependent cellular pro-
cesses such as apoptosis [72, 73]. Prolonged ER stress leads to
release of Ca2+ from the ER lumen at the MAM. In contrast,
such stress leads to increased Ca2+ uptake into the mitochon-
drial matrix. Elevated Ca2+ uptake induces an imbalance
between mitochondrial Ca2+ load and the buffering capacity
of the matrix, and such imbalance ultimately leads to a pro-
longed episode of massive mitochondrial Ca2+ accumulation.
Sustained Ca2+ accumulation triggers opening of the mito-
chondrial permeability transition pore (mtPTP). Ultimately,
this results in swelling of the organelle, rupture of the OMM,
and release of proapoptotic proteins into the cytosol [74].

ROS are thought to act as local messengers between the
ER and mitochondria [6]. Many ROS sources and targets
are localized to the ER and mitochondria [75, 76]. Disulfide
bond formation is a critical step in folding of newly
synthesized proteins, and this is mediated by members of
the ER oxidoreductin 1 (Ero1) family [77]. Importantly, ROS
are concomitantly produced by Ero1. Previous studies have
shown that Ero1 can be activated under conditions of ER
stress [78, 79]. Thus, conditions that trigger such stress may
lead to excessive production of ROS in the ER. Such elevated
ROS levels inactivate the sarco-endoplasmic reticulum Ca2+

ATPase (SERCA) and activate IP3R via oxidation [80, 81].
Modulation of Ca2+ channel activity by ROS increases the
level of Ca2+ on the cytosolic face of the ER and also pro-
motes Ca2+ uptake into the mitochondrial matrix. Therefore,
ROS production mediated by Ero1 provides an additional
mechanism by which ER stress can induce mitochondrial
dysfunction.

5.2. Role of Mitochondrial Dysfunction in

Induction of ER Stress

5.2.1. NO-Mediated Induction of the ER Stress Response
via Inhibition of Mitochondrial Respiration. Protein folding
processes and the handling of Ca2+ within the ER each
require large amounts of ATP. Accordingly, ATP depletion is
one of the best-known mechanisms by which ER stress may
be induced [82]. Such observations have raised significant
questions regarding the modes by which changes in mito-
chondrial function affect processes within the ER. It is widely
accepted that ER stress induces mitochondrial dysfunction.
However, it appears that this is not a one-way process;
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Xu et al. have shown that the ER stress response can be
induced following disruption of the mitochondrial respira-
tory chain by nitric oxide [83].

NO can bind to cytochrome c oxidase and inhibit
the enzyme, in competition with oxygen [84]. Thus, the
respiratory chain is disrupted in NO-generating cells [83].
Because this process is accompanied by mitochondrial
Ca2+ flux, disruption of electron transfer by cytochrome
c oxidase may result in changes in the extent of Ca2+

flux between the mitochondria and the ER. NO-mediated
changes in Ca2+ flux between these organelles increase
expression of ER stress-responsive genes such as glucose-
regulated protein 78 (Grp78), elevated levels of which
provide significant cytoprotection against thapsigargin, a
selective ER Ca2+ ATPase inhibitor. Interestingly, chemical
disruption of mitochondrial Ca2+ flux has been shown to
reverse NO-mediated cytoprotection. In addition, the NO-
mediated ER stress response was diminished in rhoo cells
devoid of mitochondrial DNA [83]. Together, these results
suggest that NO signals the ER stress response via inhibition
of mitochondrial respiration.

5.2.2. Mitochondrial Dysfunction Induces ER Stress and
Decreases Adiponectin Synthesis. Recently, we showed that
impairment of mitochondrial function increases the levels of
ER stress markers [30]. Adenovirus-mediated overexpression
of nuclear respiratory factor-1 (NRF-1), a transcription
factor that regulates the expression of nuclear-encoded mito-
chondrial genes, reduced the upregulation of ER stress mark-
ers associated with mitochondrial dysfunction. Previous
studies showed that JNK and activating transcription factor
3 (ATF3) were activated by ER stress [3, 85]. Further, impair-
ment of mitochondrial function sequentially activated JNK
and ATF3. However, inhibition of JNK and ATF3 reversed the
reduction in adiponectin transcription that was induced by
mitochondrial dysfunction [30]. Together, the data suggest
that mitochondrial dysfunction induces ER stress. This, in
turn, activates signaling cascades involving JNK and ATF3,
thereby decreasing adiponectin synthesis in adipose tissue.

5.2.3. Induction of ER Stress by Mitochondrial Dysfunction
and Hepatic Insulin Resistance. Mitochondrial dysfunction
induces ER stress, and this, in turn, causes hepatic insulin
resistance [86]. In human liver cell lines, inhibition of mito-
chondrial function by oligomycin disturbs insulin signaling.
In contrast, hepatic gluconeogenesis is abnormally increased.
The levels of ER stress markers were elevated in cells
containing functionally inactivated mitochondria. However,
this rise was reversed by decreasing the level of cytosolic-
free Ca2+. Importantly, mitochondrial dysfunction elevated
the level of cytosolic-free Ca2+, which in turn promoted
an increase in the concentrations of the ER Ca2+ channels
IP3Rs and the ryanodine receptor-2 (RyR-2). Elevated levels
of these channels induced Ca2+ depletion within the lumen
of the ER. Disturbances in Ca2+ homoeostasis in the ER
are also known to trigger the ER stress response, leading to
activation of p38 mitogen-activated protein kinase (MAPK),
as well as increasing phosphoenolpyruvate carboxykinase
(PEPCK) expression [87, 88]. Abnormal activation of JNK by
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Figure 3: Bidirectional communication between dysfunctional
mitochondria and the ER under stress contributes to the develop-
ment of type 2 DM.

mitochondrial dysfunction also increased PEPCK expression
by affecting insulin signaling and forkhead box protein
O1 (FOXO1) activity [86]. Together, the results suggest
that mitochondrial dysfunction induces ER stress in a
Ca2+-dependent manner, leading to disturbance of insulin
signaling and an abnormal rise in gluconeogenesis within
hepatocytes.

5.2.4. Induction of ER Stress by Mitochondrial Dysfunction and
Local ATP Depletion. A number of events may contribute
to the linking of mitochondrial dysfunction and ER stress.
For example, local ATP pools in the mitochondria and the
adjacent ER may be essential to supply the energy required
by SERCA to import Ca2+ into the lumen of the ER. In
agreement with this idea, inhibition of OXPHOS was shown
to cause a prolonged delay in uptake of Ca2+ into the lumen
of the ER; in addition, Ca2+ levels within the ER fell [89].
Inhibition of OXPHOS caused rapid local ATP depletion
in mitochondria and the ER, although global cytosolic ATP
levels decreased at a much later time. These results suggest
that local ATP depletion in the region in which SERCA is
active may reduce the uptake of Ca2+ into the lumen of the
ER. This would cause Ca2+ depletion within the ER, which
may trigger the ER stress response. Whether this mechanism
is operative in pancreatic β-cells and/or insulin-responsive
tissues remains to be determined.

6. Conclusions

We have provided a brief overview of the interaction between
mitochondrial dysfunction and ER stress. In particular,
we examined the role played by such interaction in the
pathogenesis of type 2 DM. Mitochondrial dysfunction and
ER stress are essential for β-cell dysfunction and peripheral
insulin resistance. To date, substantial progress has been
made in understanding structural and functional commu-
nications between mitochondria and the ER. We now know
that ER stress can induce mitochondrial dysfunction. Thus,
such stress plays a central role in apoptosis signaling via
Ca2+- and/or ROS-dependent mechanisms. Together with
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recent findings linking mitochondrial dysfunction and ER
stress, it appears that bidirectional communication exists
between these two organelles (Figure 3). Characterization
of interactions between mitochondria and the ER is a
dynamic and growing area of interest; future research will
carefully dissect such processes. Hopefully, the studies will
help us to gain a better understanding of the pathogenesis
underlying type 2 DM. Therapeutic approach aimed at
restoring mitochondria function will prevent or treat insulin
resistance and type 2 DM through suppression of ER stress.
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[22] M. Pérez-Carreras, P. Del Hoyo, M. A. Martı́n et al., “Defective
hepatic mitochondrial respiratory chain in patients with
nonalcoholic steatohepatitis,” Hepatology, vol. 38, no. 4, pp.
999–1007, 2003.

[23] D. B. Savage, S. C. Cheol, V. T. Samuel et al., “Reversal of
diet-induced hepatic steatosis and hepatic insulin resistance
by antisense oligonucleotide inhibitors of acetyl-CoA carboxy-
lases 1 and 2,” Journal of Clinical Investigation, vol. 116, no. 3,
pp. 817–824, 2006.

[24] V. T. Samuel, Z. X. Liu, X. Qu et al., “Mechanism of hepatic
insulin resistance in non-alcoholic fatty liver disease,” Journal
of Biological Chemistry, vol. 279, no. 31, pp. 32345–32353,
2004.

[25] D. Zhang, Z. X. Liu, S. C. Cheol et al., “Mitochondrial
dysfunction due to long-chain Acyl-CoA dehydrogenase defi-
ciency causes hepatic steatosis and hepatic insulin resistance,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 104, no. 43, pp. 17075–17080, 2007.

[26] P. E. Scherer, “Adipose tissue: from lipid storage compartment
to endocrine organ,” Diabetes, vol. 55, no. 6, pp. 1537–1545,
2006.

[27] E. D. Rosen and B. M. Spiegelman, “Adipocytes as regulators
of energy balance and glucose homeostasis,” Nature, vol. 444,
no. 7121, pp. 847–853, 2006.

[28] P. A. Kern, G. B. Di Gregorio, T. Lu, N. Rassouli, and G.
Ranganathan, “Adiponectin expression from human adipose
tissue: relation to obesity, insulin resistance, and tumor
necrosis factor-α expression,” Diabetes, vol. 52, no. 7, pp.
1779–1785, 2003.

[29] K. Hotta, T. Funahashi, Y. Arita et al., “Plasma concentrations
of a novel, adipose-specific protein, adiponectin, in type 2
diabetic patients,” Arteriosclerosis, Thrombosis, and Vascular
Biology, vol. 20, no. 6, pp. 1595–1599, 2000.



Experimental Diabetes Research 7

[30] E. H. Koh, J. Y. Park, H. S. Park et al., “Essential role of mito-
chondrial function in adiponectin synthesis in adipocytes,”
Diabetes, vol. 56, no. 12, pp. 2973–2981, 2007.

[31] C. Guerra, R. A. Koza, K. Walsh, D. M. Kurtz, P. A. Wood,
and L. P. Kozak, “Abnormal nonshivering thermogenesis in
mice with inherited defects of fatty acid oxidation,” Journal of
Clinical Investigation, vol. 102, no. 9, pp. 1724–1731, 1998.

[32] L. P. Kozak, R. A. Koza, and R. Anunciado-Koza, “Brown fat
thermogenesis and body weight regulation in mice: relevance
to humans,” International Journal of Obesity, vol. 34, no. 1, pp.
S23–S27, 2010.

[33] J. Nedergaard, T. Bengtsson, and B. Cannon, “Unexpected
evidence for active brown adipose tissue in adult humans,”
American Journal of Physiology, vol. 293, no. 2, pp. E444–E452,
2007.

[34] W. D. van Marken Lichtenbelt, J. W. Vanhommerig, N. M.
Smulders et al., “Cold-activated brown adipose tissue in
healthy men,” The New England Journal of Medicine, vol. 360,
no. 15, pp. 1500–1508, 2009.
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