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Abstract

Humans are a highly social species. Complex interactions for mutual support range from helping neighbors to building
social welfare institutions. During times of distress or crisis, sharing life experiences within one’s social circle is critical for
well-being. By translating pattern-learning algorithms to the UK Biobank imaging-genetics cohort (n = ∼40 000 participants),
we have delineated manifestations of regular social support in multimodal whole-brain measurements. In structural brain
variation, we identified characteristic volumetric signatures in the salience and limbic networks for high- versus low-social
support individuals. In patterns derived from functional coupling, we also located interindividual differences in social
support in action–perception circuits related to binding sensory cues and initiating behavioral responses. In line with our
demographic profiling analysis, the uncovered neural substrates have potential implications for loneliness, substance
misuse, and resilience to stress.
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Introduction
Compared with other species, human relationships are unique
in their complexity. The quality and quantity of our daily
encounters are critical for physical and mental health. Tight
integration in groups and communities benefits our resilience
during times of distress. Social embeddedness helps the
immune system (Pressman et al. 2005), improves sleep quality
(Kurina et al. 2011), and accelerates body tissue repair after injury
(Reblin and Uchino 2008; Kim et al. 2016). In contrast, individuals
who perceive themselves as socially disconnected are more
prone to cognitive performance decline (Boss et al. 2015),
Alzheimer’s-related dementias (Kuiper et al. 2015), and earlier
death on average (Holt-Lunstad and Smith 2010; Steptoe et al.
2013). Indeed, in a meta-analysis of 148 epidemiological studies
pooling across ∼300 000 individuals, social embeddedness
predicted mortality due to cardiovascular disease; and better so
than factors like obesity, diet, alcohol consumption, or exercise
(Holt-Lunstad and Smith 2010).

In the evolutionary lineage of primates and other species,
accumulating research suggests a close link between the rich-
ness of one’s social environment and neocortex volume (Dun-
bar 1993, 1998). The sophistication of neurobiology may have
coevolved with solving challenges posed by life in large social
groups. In adult monkeys, experimentally increasing or decreas-
ing the group size for daily peer interaction caused plasticity
changes in features of brain anatomy (Sallet et al. 2011). Sim-
ilarly, in experiments in humans, neuroplastic adaptations in
social brain circuits were caused by regularly drawing on one’s
social capacities through targeted training (Valk et al. 2017).
Hence, both across-species and within-species evidence speaks
to the flexible changes of functional brain architecture as a
function of regular social exchange.

In our current time and age, humans live in social environ-
ments that are dramatically different from those of our pri-
mate ancestors. In our globalized and fast-paced world, different
layers of regular social interaction can provide valuable input
and crucial support. One such source is more spontaneous or
loose interaction with acquaintances from our outer social cir-
cles (Granovetter 1973, 1983). However, the relationships in our
inner social circle are most relevant for our psychological and
physical well-being. People typically invest a substantial amount
of their social efforts in only a handful of people—representing
a person’s “support network” (Dunbar 2018). When asked whom
someone would turn to in times of need of emotional, social,
and economic aid, this group of close friends and family gets
repeatedly mentioned (Sutcliffe et al. 2012). In married couples,
the death of one spouse escalates the risk of death for the
remaining partner. In ∼400 000 married couples, mortality rates
increased by 18% for widowed men, and by 16% for women
who lost their spouse (Elwert and Christakis 2008). Further, the
chance of becoming happy, depressed, or obese is directly mir-
rored by similar changes in our immediate peers. These mimetic
effects were shown in a 20-year prospective study (Fowler and
Christakis 2008). Even the amount of prosocial behavior can be
predicted from the level of emotional resonance between people
(Toi and Batson 1982). This constellation of findings highlights
the importance of strong support ties with close friends and
family (Dunbar 2018; Bzdok and Dunbar 2020).

Most recently, the COVID-19 pandemic has imposed an
unprecedented disruption on the social support (SS) networks
of many people. While unemployment rates have been rising,
many countries have imposed restrictive measures for social
distancing, or physical distancing. These public-health deci-

sions have caused severe incisions on fluid social interaction
in our everyday lives. The consequences are likely exacerbated
for individuals who live in single-person households. Solitary
living makes up >50% of the population in a growing number
of metropolitan cities worldwide. This trend keeps increasing
at a rapid pace (World Health Organization). Moreover, a survey
reported that ∼7% of Europeans were socially isolated already
15 years ago (Lelkes 2010): almost 1 in 10 Europeans admitted
either never meeting friends or never meeting family outside
of their own household. Not even once in the course of an
entire year.

Importantly, in moments of sudden need, support ties cannot
be just created “from scratch.” Building supportive relationships
takes dedication, regular in-face encounters, and time invest-
ment over extended periods (Hall 2019). Such special relation-
ships provide essential SS. Therefore, these interactions play a
key role in buffering against distress and worries in times of
crisis or uncertainty (Cohen and Syme 1985; Zaki and Williams
2013). For example, people with adequate SS show lower daily
levels of the stress hormone cortisol than people with less
backing by friends and family (Evolahti et al. 2006).

Special friends and family play a central support role. There is
hence a knowledge gap regarding the brain substrates of regular
SS. While the neural implications of living in large social groups
have been repeatedly characterized, little is known regarding the
effect of quality and closeness of these relationships. Accord-
ing to behavioral research, different facets of human relations
are associated with different types of social information pro-
cessing (Kardos et al. 2017; Morelli et al. 2017). In the human
brain, social information is processed by several distinct neu-
ral systems. Some of the responsive neural systems are not
exclusively linked to social cognition (Spunt and Adolphs 2017;
Alcalá-López et al. 2018). Based on a quantitative meta-analysis
of 188 brain imaging studies featuring 4207 participants (Schurz
et al. 2021), we recently showed that many different kinds of
social processes mainly recruit two large-scale brain networks:
One neural system largely corresponds to the so-called default
mode network (DMN). This set of brain regions is believed to
subserve more cognitive and reasoning-based forms of social
cognition, such as taking others’ perspectives (Frith and Frith
2006; Adolphs 2009). The other neural system, including the
so-called salience network, is implicated in more affective pro-
cesses based on action–perception circuits. This cohesive set of
brain regions is involved in emotionally connecting to others,
including empathic capacities for affective sharing (Preston and
de Waal 2002; de Vignemont and Singer 2006).

Much evidence on these two brain systems for social process-
ing is based on neural activity responses to static visual screen
cues in strictly controlled experimental settings. Since recently,
researchers are increasingly translating more naturalistic and
“real-life” forms of social cognition into brain imaging exper-
iments. By putting a premium on ecological validity, imaging
neuroscience studies increasingly unmasked more complex and
rich patterns of brain activity (Redcay and Schilbach 2019).

For these reasons, the present study aimed to clarify which
neural systems are linked to day-to-day engagements within SS
circles. We capitalized on the UK Biobank imaging-genetics pop-
ulation cohort because it offers rich phenotypical details (n = ∼40
000), including multimodal brain imaging data and participants’
indicators of real-life social interactions. Specifically, we used
the frequency of exchange of confidential information as a
proxy for the amount of emotionally significant social contact
in everyday life.
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Materials and Methods
Data Resources

The UK Biobank is a prospective epidemiology resource that
offers extensive behavioral and demographic assessments,
medical and cognitive measures, as well as biological samples
in a cohort of ∼500 000 participants recruited from across Great
Britain (https://www.ukbiobank.ac.uk/). This openly accessible
population dataset aims to provide multimodal brain-imaging
for ∼100 000 individuals, planned for completion in 2022. The
present study was based on the recent data release from
February 2020 that augmented brain scanning information to
∼40 000 participants.

In an attempt to improve comparability and reproducibility,
our study built on the uniform data preprocessing pipelines
designed and carried out by FMRIB, Oxford University, UK
(Alfaro-Almagro et al. 2018). Our study involved data from the
∼40 000 participant release with brain-imaging measures of gray
matter morphology (T1-weighted MRI [sMRI]) and neural activity
fluctuations (resting-state functional MRI [fMRI]) from 47.5%
men and 52.5% women, aged 40–69 years when recruited (mean
age 54.9, standard deviation [SD] 7.5 years). Our study focused
on trait SS as a measure of the frequency of social interactions
(Hawkley et al. 2003; Luhmann and Hawkley 2016; Bzdok and
Dunbar 2020). This self-reported item was based on the following
question: “How often are you able to confide in someone close
to you?”. Our study distinguished between people reporting
engagement in “daily or almost daily” SS (treated as positive
case, 1) or confiding in others less often (treated as negative
case, 0).

Corresponding measures are found in widely used assess-
ments of social embeddedness (Cohen and Hoberman 1983;
Hawkley et al. 2005; Cyranowski et al. 2013). For example, the
Social Relationships Scales of the NIH Toolbox (Cyranowski et al.
2013) feature the dimension of emotional SS, which closely
resembles our measure of SS. This dimension holds items, such
as “I have someone I trust to talk with about my problems”,
or “I can get helpful advice from others when dealing with a
problem”. Conceptually similar dimensions (Cyranowski et al.
2013) are also featured in other standard measurement-tools
of social embeddedness, such as the Revised UCLA Loneliness
Scale (Hawkley et al. 2005) and the Interpersonal Support Evalu-
ation List (Cohen and Hoberman 1983).

A variety of studies found single-item measures of social
traits to be reliable and valid (e.g., Mashek et al. 2007; Dollinger
and Malmquist 2009; Atroszko et al. 2015). For example, the sin-
gle item “There are people I can talk to”correlates highly (r = 0.88)
with the R-UCLA Loneliness Scale dimension that resembles
SS (Hawkley et al. 2005). Previous research successfully used
individual items for measuring SS (Atroszko et al. 2015), com-
munity connectedness (Mashek et al. 2007), and perceived social
isolation (Ong et al. 2016).

Studying SS as low versus high is following strategies used
in previous behavioral studies (Le et al. 2016; Sasaki et al. 2019),
and comparable with previous analyses of UK Biobank data in
genetic (Day et al. 2018) and epidemiological (Elovainio et al.
2017) studies. The latter epidemiological UK Biobank study (Elo-
vainio et al. 2017) provides additional details on demographic
characteristics of UK Biobank participants with high versus low
SS. The present analyses were conducted under UK Biobank
application number 25163. All participants provided informed
consent. Further information on the consent procedure can be

found elsewhere (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?i
d=200).

Multimodal Brain-Imaging and Preprocessing
Procedures

Magnetic resonance imaging (MRI) scanners (3 T Siemens Skyra)
were matched at several dedicated imaging sites with the
same acquisition protocols and standard Siemens 32-channel
radiofrequency receiver head coils. To protect the anonymity of
the study participants, brain-imaging data were defaced and any
sensitive metainformation was removed. Automated processing
and quality control pipelines were deployed (Miller et al. 2016;
Alfaro-Almagro et al. 2018). To improve homogeneity of the
imaging data, noise was removed by means of 190 sensitivity
features. This approach allowed for the reliable identification
and exclusion of problematic brain scans, such as due to
excessive head motion.

Structural MRI
The sMRI data were acquired as high-resolution T1-weighted
images of brain anatomy using a 3D MPRAGE sequence at 1 mm
isotropic resolution. Preprocessing included gradient distortion
correction (GDC), field of view reduction using the Brain
Extraction Tool (Smith 2002) and FLIRT (Jenkinson and Smith
2001; Jenkinson et al. 2002), as well as nonlinear registration
to MNI152 standard space at 1 mm resolution using FNIRT
(Andersson et al. 2007). To avoid unnecessary interpolation,
all image transformations were estimated, combined, and
applied by a single interpolation step. Tissue-type segmentation
into cerebrospinal fluid (CSF), gray matter (GM), and white
matter (WM) was applied using FAST (FMRIB’s Automated
Segmentation Tool, (Zhang et al. 2001)) to generate full bias-
field-corrected images. SIENAX (Smith et al. 2002), in turn, was
used to derive volumetric measures normalized for head sizes.

Functional MRI
The fMRI data of intrinsic neural activity were acquired without
engagement in a predefined experimental task context at
2.4 mm spatial resolution, time to repeat = 0.735 s, and with
multiband acceleration of 8. A single-band reference image
with higher between-tissue contrast and without T1-saturation
effects was acquired within the same geometry as the time
series of neural activity maps. The reference scan was used for
the alignment to other brain-imaging modalities and correction
for head motion. Preprocessing was performed using MELODIC
(Beckmann and Smith 2004), including EPI and GDC unwarping,
motion correction, grand-mean intensity normalization, and
high-pass temporal filtering (Gaussian-weighted least-squares
straight line fitting, sigma = 50 s). The ensuing images were
submitted to motion correction using MCFLIRT (Jenkinson et al.
2002). Structured artifacts were removed by combining ICA
and FMRIB’s ICA-based X-noiseifier (Griffanti et al. 2014). To
help reduce unnecessary interpolation effects, all intermediate
warp operations were merged into a composite transformation
allowing for simultaneous application to fMRI maps. For the
display of results (see Figs 1–3), maps were projected to the
cortical surface. This was done via volume-to-surface mapping
in wb_command (www.humanconnectome.org), based on the
Human Connectome Project (HCP) group average template
“S1200_MSMAll.”

https://www.ukbiobank.ac.uk/
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=200
www.humanconnectome.org
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Figure 1. Gray matter variation across specific large-scale brain systems explains strong effects related to social support (SS). At the network level, our Bayesian
hierarchical modeling framework directly estimated the varying effects of entire brain networks in explaining high versus low SS in the UK Biobank participants. The

fully probabilistic modeling approach allowed volume variation effects to be estimated jointly in separate brain regions (see Fig. 2) and spatially distributed networks
of constituent brain regions (shown in this figure). In rough analogy to ANOVA, the network definitions could be viewed as factors and the region definitions could
be viewed as continuous factor levels. This analysis tactic enabled quantifying the extent to which spatially dispersed regional variation in gray matter volume can
be coherently explained by differences among major brain networks (Bzdok et al. 2020; Kiesow et al. 2020). Histograms show marginal posterior distributions of the

overall explanatory variance (sigma parameter) for each brain network (volume measures in standard units). Horizontal black bars indicate the highest-posterior
density (HPD) interval of the model’s network variance parameters, ranging from 10 to 90% probability. Population-level volume variation in the salience and limbic
networks emerged as preferentially linked to interindividual differences in SS. Note that the subcortical network is not shown in the cortical surface view.

Analysis of Associations between Social Support
and Gray Matter Patterns

Neurobiologically interpretable measures of gray matter volume
were extracted in all participants by summarizing whole-brain
sMRI maps in Montreal Neurological Institute (MNI) reference
space. This feature generation step was guided by the topo-
graphical brain region definitions of the widely used Schaefer-
Yeo atlas comprising 100 parcels (Schaefer et al. 2018) as well as
the 15 subcortical parcels of the Harvard-Oxford atlas (Desikan
et al. 2006). The derived quantities of local gray matter mor-
phology comprised 115 volume measures for each participant.
The participant-level brain region volumes provided the input
variables for our Bayesian hierarchical modeling approach (cf.
below). As a data-cleaning step, interindividual variation in brain
region volumes that could be explained by variables of no inter-
est were regressed out: body mass index, head size, average head
motion during task-related brain scans, average head motion
during task-unrelated brain scans, head position and receiver
coil in the scanner (x, y, and z), position of scanner table, as well
as the data acquisition site.

To examine population variation of our atlas regions in the
context of regular SS, a purpose-designed Bayesian hierarchical
model was a natural choice of method, building on our previous
research (Bzdok et al. 2017, 2020; Kiesow et al. 2020; Spreng et al.

2020). In contrast, classical linear regression combined with sta-
tistical significance testing would simply have provided P-values
against the null hypothesis of no difference between high-SS
and low-SS participants in each brain region. Instead of limiting
our results and conclusions to strict categorical statements, each
region being either relevant for differences in SS or not, our
analytical strategy aimed at full probability distributions that
expose how brain region volumes converge or diverge in their
relation to SS as evidenced in the UK Biobank population. In a
mathematically rigorous way, our approach estimated coherent,
continuous estimates of uncertainty for each model parameter
at play for its relevance in SS. Our study thus addressed the
question “How certain are we that a regional brain volume is
divergent between high and low social support individuals?”.
Our analysis did not ask “Is there a strict categorical differ-
ence in region volume between high and low social support
individuals?”

The elected Bayesian hierarchical framework also enabled
simultaneous modeling of multiple organizational principles:
(i) segregation into separate brain regions and (ii) integration of
groups of brain regions in form of spatially distributed brain
networks. Two regions of the same atlas network are more likely
to exhibit similar volume effects than two regions belonging to
two separate brain networks. Each of the region definitions was
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Figure 2. Top brain regions that explain gray matter differences related to
SS. At the region level, our Bayesian hierarchical modeling framework iden-

tified for which brain regions variability in gray matter volume explains
the level of SS reported by the participants. Strongest associations to day-
to-day SS (cf. Fig. 1) were determined based on effect sizes (mean param-
eters) of the marginal posterior parameter distributions (volume measures

in standard units). Key region associations were located in parts of the
salience network, including the anterior insula and anterior/mid cingulate
cortex. Additional neural substrates of SS were located in regions of the

limbic network, including the OFC. Red (blue) color indicates positive (neg-
ative volume) effects related to regular SS, for the top 10 regions found
in this analysis. Abbreviations: ACC = anterior cingulate cortex; dlPFC = dorso-
lateral prefrontal cortex; MCC = midcingulate cortex; OFC = orbitofrontal cor-

tex; SMA = supplementary motor area; SMG = supramarginal gyrus; Temp.
Pole = temporal pole; TPJ ant = anterior portion of the TPJ. The subcortical system
is not shown in this view.

preassigned to one of the seven large-scale network definitions
in the Schaefer-Yeo atlas (Schaefer et al. 2018) or the collection
of subcortical regions from the Harvard-Oxford atlas (Desikan
et al. 2006), providing a native multilevel structure. Setting up a
hierarchical generative process enabled our analytical approach
to borrow statistical strength between model parameters at the
higher network level and model parameters at the lower level of
constituent brain regions. By virtue of exploiting partial pooling,
the brain region parameters were modeled themselves by the
hyperparameters of the hierarchical regression as a function
of the network hierarchy to explain SS. Assigning informative
priors centered around zero provided an additional form of
regularization by shrinking coefficients to zero in the absence
of evidence to the contrary. We could thus provide fully proba-
bilistic answers to questions about the morphological relevance
of individual brain locations and distributed cortical networks
by a joint varying-effects estimation that profited from several
biologically meaningful sources of population variation.

The model specification placed emphasis on careful infer-
ence of unique posterior distributions of parameters at the brain
network level to discriminate individuals with weak SS (encoded
as outcome 0) and strong SS (outcome 1):
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Figure 3. Leading functional coupling signature of SS suggests up-regulated action-perception systems and down-regulated interplay with internal-cognition systems.

Functional connectivity shifts are shown for the dominant population mode related to everyday SS (connectivity relevancies in standard units). Statistical significance
of this population mode of coherent functional coupling differences in high versus low SS participants was determined by nonparametric permutation testing (P < 0.05).
Red connectivity links indicate compounded functional coupling for individuals with high amounts of regular SS, which suggests an up-regulation of “here-and-now”
related networks, including the salience, dorsal attention, somatomotor, visual networks. Blue connectivity links indicate reduced coupling between regions in high SS.

αwomen ∼ N (0, 1)

αmen_age ∼ N (0, 1)

αwomen_age ∼ N (0, 1)

where sigma parameters estimated the overall variance across
the p brain regions that belong to a given atlas network, inde-
pendent of whether the volume effects of the respective con-
stituent brain regions had positive or negative direction. As such,
the network variance parameters sigma directly quantified the
magnitude of intranetwork coefficients, and thus the overall rel-
evance of a given network in explaining regular SS based on the
dependent region morphology measures. All regions belonging
to the same brain network shared the same variance parameter
in the diagonal of the covariance matrix, while off-diagonal
covariance relationships were zero.

Probabilistic posterior distributions for all model parame-
ters were estimated for the hierarchical models. Our Bayesian
approach could thus simultaneously appreciate gray matter
variation in segregated brain regions as well as in integrative
brain networks in a population cohort. The approximation of
the posterior distributions was carried out by the NUTS sampler
(Gelman et al. 2014), a type of Markov chain Monte Carlo (MCMC),

using the PyMC3 software (Salvatier et al. 2016). After tuning
the sampler for 4000 steps, we drew 1000 samples from the
joint posterior distribution over the full set of parameters in
the model for analysis. Proper convergence was assessed by
ensuring Rhat measures (Gelman et al. 2014) stayed below 1.02.

Analysis of Associations between Social Support and
Functional Connectivity Patterns

Quantitative measures of functional connectivity were com-
puted for cortex-wide brain regions as defined by the Schaefer-
Yeo atlas (Schaefer et al. 2018). Functional connectivity profiles
for each participant were derived by computing Pearson’s cor-
relation between their neural activity fluctuations. To this end,
in each participant, the time series of whole-brain fMRI signals,
obtained in the absence of an externally structured experimen-
tal task, were summarized by averaging for each brain region in
the atlas. The approach yielded the functional coupling signa-
ture of the whole cortex as a 100 x 100 region coupling matrix for
each participant. The ensuing region–region coupling estimates
underwent standardization across participants by centering to
zero mean and unit scaling to a variance of one (cf. next step).
Interindividual variation in the functional coupling strengths
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between brain regions that could be explained by variables of no
interest were regressed out in a data-cleaning step: body mass
index, head size, average head motion during task-related brain
scans, average head motion during task-unrelated brain scans,
head position as well as receiver coil in the scanner (x, y, and
z), position of scanner table, and data acquisition site, as well as
age, sex and age–sex interactions.

We then sought the dominant coupling regime—“mode” of
population covariation—that provides insight into how func-
tional variability in 100 brain regions can explain regular SS.
Partial least squares (PLS) was an ideal analytical method to
decompose the obtained 100 x 100 matrix of functional coupling
fingerprints with respect to SS. The variable set X was con-
structed from the lower triangle of the participants’ functional
coupling matrices. The target vector y encoded more socially
engaged participants as +1 and less socially engaged partici-
pants as −1. PLS involves finding the matrix factorization into
k low-rank brain representations that maximize the correspon-
dence with our social trait of interest. PLS thus identified the
matrix projection that yielded maximal covariance between sets
of region couplings in the context of participant reports of SS.

In other words, the extracted functional coupling mode
identified the driving linear combinations of cortical brain
connections that featured the best correspondence to regular
SS. Concretely, positive (negative) modulation weights revealed
increased (decreased) correlation strengths, relative to average
functional coupling. This is because the computed functional
connectivity estimates were initially normalized to zero mean
and unit variance across participants. For example, a functional
connectivity input into PLS of 0 denoted the average functional
coupling strength in our UK Biobank sample, rather than an
absence of functional connectivity between the region pair.
The derived pattern of PLS weights, or canonical vectors, thus
indicated deviations from average functional coupling variation
in our cohort. Moreover, the variable sets were entered into PLS
after a confound-removal procedure (cf. above).

Next, we assessed the statistical robustness of the resulting
dominant PLS mode of functional coupling deviations related to
SS in a nonparametric permutation procedure, following previ-
ous research (Miller et al. 2016). Relying on minimal modeling
assumptions, a valid empirical null distribution was derived for
the Pearson’s correlation between low-rank projections of the
dominant mode resulting from PLS analysis. In 1000 permu-
tation iterations, the functional connectivity matrix was held
constant, while the SS labels were submitted to random shuf-
fling. The constructed surrogate datasets preserved the statis-
tical structure idiosyncratic to the fMRI signals, yet permitted
to selectively destroy the signal properties that are related to
SS (Efron 2012). The generated distribution of the test statistic
reflected the null hypothesis of random association between
the brain’s functional coupling and amount of regular SS across
participants. We recorded the Pearson’s correlations r between
the perturbed low-rank projections in each iteration. P-value
computation was based on the 1000 Pearson’s r estimates from
the null PLS model.

Demographic Profiling Analysis of the Brain Correlates
of Social Support

We finally performed a profiling analysis of the brain regions
that were most strongly associated with regular SS. Separately
in brain structure and function, we carried out a rigorous test for
multivariate associations between our top regions and a diverse

set of indicators that exemplify the domains of (a) basic demo-
graphics, (b) personality features, (c) substance-use behaviors,
and (d) social network properties (Table 1; for details, see https://
www.ukbiobank.ac.uk/data-showcase/). The set of behavioral
variables and the set of brain measures were z-scored across
participants to conform to zero mean and unit variance. The
brain variables were submitted to the top 10 (sMRI) or 10% (fMRI)
of brain measures that were identified as most important in the
context of SS (cf. above). In the case of brain structure, the target
brain regions were selected based on the (absolute) modes of the
Bayesian posteriors of marginal parameter distributions at the
region level (cf. above). In the case of brain function, the target
brain connections were selected based the (absolute) effect sizes
from the dominant PLS mode (cf. above).

Using the two variable sets of brain and behavior measure-
ments, we then carried out a bootstrap difference analysis of the
collection of target traits in high-SS versus low-SS participants
(Efron and Tibshirani 1994). In 1000 bootstrap iterations, we
randomly pulled equally sized participant samples to perform
a canonical correlation analysis (CCA), in parallel, in high-SS
and low-SS individuals (Miller et al. 2016; Wang et al. 2020). In
each resampling iteration, this approach estimated the doubly
multivariate correspondence between the brain and behavior
indicators in each group. The ensuing canonical vectors of the
dominant CCA mode indicated the most explanatory demo-
graphic associations in a given pull of participants. To directly
estimate resample-to-resample effects in group differences, the
canonical vectors of behavioral rankings were subtracted ele-
mentwise between the low-SS and high-SS participant subsets,
recorded, and ultimately aggregated across the 1000 bootstrap
datasets.

This analytical tactic allowed propagating the noise of
participant sampling variation into the computed uncertainty
estimates of group differences in the UK Biobank cohort.
Statistically defensible behavioral dimensions were determined
by whether the (two-sided) bootstrap confidence interval
included zero or not in the 5/95% bootstrap population interval.
In a fully multivariate setting, this nonparametric modeling
scheme directly quantified the statistical uncertainty of how
a UK Biobank trait is differentially linked to brain-behavior
correspondence as a function of regular SS.

Results
Sociodemographic characteristics for high versus low SS indi-
viduals are provided in Table 1. Several previous surveys have
shown that SS forms an independent and distinct factor of social
embeddedness (Cohen and Hoberman 1983; Hawkley et al. 2005;
Cyranowski et al. 2013). In our data-set, trait SS was measured
by the question “How often are you able to confide in someone
close to you?”. Similar items are used in widely embraced SS
scales (Cohen and Hoberman 1983; Hawkley et al. 2005; Cyra-
nowski et al. 2013). Such single items were found to highly
correlate with full-scale measures of SS (e.g., r = 0.88, Hawkley
et al. 2005, see Methods for more details). Here, we focused on
the comparison between participants with high (“daily or almost
daily”) versus low (“less often”) levels of SS.

As a preparatory check, we ascertained the biological
meaningfulness of SS as captured in the UK Biobank initiative.
Our sample size made it possible to use LD score regression
to obtain direct estimates of shared genetic factors between
SS and another phenotype of interest (v1.0.0, Bulik-Sullivan
et al. 2015). The genome-wide association summary statistics

https://www.ukbiobank.ac.uk/data-showcase/
https://www.ukbiobank.ac.uk/data-showcase/
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Table 1 Sociodemographic characteristics for individuals with high versus low SS

UK Biobank ID 2110

UK Biobank ID Description Regular social
support

Lack of social
support

Overall participants 55% 45%
31 Sex (men:women) 47:53% 48:52%
21 022 Age (years) 54.73 ( ±7.45 SD) 55.03 (±7.49 SD)
845 Age completed school education (years) 17.07 (±2.74 SD) 17.06 (±2.84 SD)
34 Year of birth 1953.28 (±7.43 SD) 1953.03 (±7.47 SD)
728 Number of vehicles in household 2.80 (±0.80 SD) 2.63 (±0.84 SD)
738 Average total household income before tax (5 = high, 1 = low) 3.11 (±1.10 SD) 2.82 (±1.15 SD)
6142 Employment status (payed full time job = 1, not = 0) 70:30% 69:31%
20 016 Fluid intelligence score (0 = low, 13 = high) 6.66 (±2.00 SD) 6.73 (±2.07 SD)
4548 Health satisfaction (1 = extremely happy, 6 = extremely unhappy) 2.53 (±0.78 SD) 2.69 (±0.82 SD)
699 Length of time at current address (years) 16.63 (±10.42 SD) 16.87 (±11.00 SD)
1070 Time spent watching television (hours per day) 2.50 (±1.36 SD) 2.57 (±1.44 SD)
1080 Time spent using computer (hours per day) 1.46 (±1.46 SD) 1.54 (±1.56 SD)
1110 Length of mobile phone use (0 = never, 4 = more than 8 years) 2.82 (±1.30 SD) 2.77 (±1.34 SD)
1130 Hands-free device/speakerphone use with mobile phone in last

3 month (0 = never, 1 = always)
0.38 (±0.89 SD) 0.37 (±0.87 SD)

1628 Alcohol intake versus 10 years previously (1 = more now, 3 = less
now)

0.38 (±0.89 SD) 0.37 (±0.87 SD)

20 403 Amount of alcohol drunk on a typical drinking day 2.20 (±0.74 SD) 2.23 (±0.74 SD)
1558 Alcohol intake frequency (1 = almost daily, 6 = never) 2.63 (±1.37 SD) 2.75 (±1.42 SD)
826 Job involves shift work (1 = never, 4 = always) 1.26 (±0.76 SD) 1.30 (±0.80 SD)
1160 Sleep duration (hours per day) 7.21 (±0.94 SD) 7.11 (±1.00 SD)
1170 Getting up in morning (1 = not at all easy, 4 = very easy) 3.13 (±0.74 SD) 3.06 (±0.78 SD)
4570 Friendship satisfaction (1 = extremely happy, 6 = extremely unhappy) 2.15 (±0.69 SD) 2.44 (±0.74 SD)
4559 Family relationship satisfaction (1 = extremely happy, 6 = extremely

unhappy)
2.00 (±0.79 SD) 2.49 (±0.88 SD)

1031 Frequency of friend/family visits (1 = almost daily, 7 = no
friends/family outside household)

2.76 (±1.07 SD) 2.92 (±1.10 SD)

709 Number in household 2.67 (±1.16 SD) 2.41 (±1.27 SD)
1873 Number of full brothers 1.06 (±1.14 SD) 1.07 (±1.15 SD)
1883 Number of full sisters 0.98 (±1.09 SD) 1.00 (±1.11 SD)
20 127 Neuroticism score (12 = high, 0 = low) 3.39 (±2.97 SD) 4.38 (±3.35 SD)
6160 Leisure/social activities (1 = some regular group activity, 0 = none) 73% 72%
4537 Work/job satisfaction (1 = extremely happy, 7 = not employed) 3.54 (±2.01 SD) 3.69 (±1.96 SD)
1180 Morning/evening person (1 = definitely morning person,

4 = definitely evening person)
2.21 (±0.92 SD) 2.27 (±0.94 SD)

1920 Mood swings 36% 47%
1930 Miserableness 36% 46%
1940 Irritability 25% 32%
1950 Sensitivity/hurt feelings 49% 56%
1960 Fed-up feelings 30% 43%
1970 Nervous feelings 18% 23%
1980 Worrier/anxious feelings 50% 55%
1990 Tense/“highly strung” 13% 18%
2020 Loneliness (often feels lonely) 8% 23%
2000 Worry too long after embarrassment 45% 53%
2010 Suffer from “nerves” 16% 21%
4526 Happiness (1 = extremely happy, 6 = extremely unhappy) 2.36 (±0.66 SD) 2.72 (±0.67 SD)
400 Time to complete pairs matching (deciseconds) 99.01 (±75.32 SD) 102.94 (±101.84

SD)
20 018 Prospective memory test (1 = recall on first attempt, 2 = recall on

second attempt)
1.09 (±0.35 SD) 1.10 (±0.36 SD)

1239 Current tobacco smoking (on most or all days) 3% 5%
1249 Past tobacco smoking (1 = most or all days, 4 = never smoked) 2.85 (±1.22 SD) 2.85 (±1.22 SD)
2887 Number of cigarettes previously smoked daily 17.98 (±9.22 SD) 18.34 (±9.67 SD)
2926 Number of unsuccessful stop-smoking attempts 3.16 (±7.66 SD) 3.33 (±9.74 SD)
3476 Difficulty not smoking for 1 day (1 = very easy, 4 = very difficult) 2.84 (±0.95 SD) 2.98 (±0.94 SD)
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for the SS field were obtained from an open UK Biobank
resource (https://github.com/Nealelab/UK_Biobank_GWAS#i
mputed-v3-phenotypes). The genetic correlations between
SS and the full collection of 774 available demographic,
lifestyle, and disease phenotypes were then computed using
HapMap3 single nucleotide polymorphisms (SNPs) from the
LDHUB platform (http://ldsc.broadinstitute.org/ldhub/). After
Bonferroni’s correction for multiple comparisons, 52 genetically
correlated pairs of phenotypes achieved statistical significance
at P < 0.05. For example, our SS phenotype shared genetic
overlap with happiness (Rg = 0.49 ± 0.05), family relationship
satisfaction (Rg = 0.48 ± 0.06), friendship satisfaction (Rg = 0.40
± 0.05), health satisfaction (Rg = 0.27 ± 0.05), and financial
situation satisfaction (Rg = 0.34 ± 0.06). Significant negative
genetic correlations were found for recent pain experience
(Rg = −0.26 ± 0.04), usual alcohol during meals (Rg = −0.31
± 0.04), and walking for pleasure (Rg = −0.36 ± 0.05) (see
Supplementary Table S1 for full results and P-values). These
preliminary findings suggest that SS reports from UK Biobank
participants capture a heritable biological variation, which is
associated with a specific set of driving genetic variants.

Using Bayesian hierarchical modeling, we first explored how
interindividual differences in SS are manifested in gray mat-
ter volume variation. Our analytical approach was tailored to
simultaneously appreciate brain–behavior variation in both dis-
tributed large-scale networks and individual regions contained
in those brain networks. Anatomical guidance was provided by
the Schaefer-Yeo atlas (Schaefer et al. 2018) for cortical regions,
and by the Harvard-Oxford atlas (Desikan et al. 2006) for subcor-
tical regions. For clarity, our labeling of brain regions in figures
and the discussion will adhere to the conventions given by these
used anatomical atlases.

At the network level (Fig. 1), our model inferred the
strongest associations with regular SS in the salience net-
work (posterior sigma = 0.080, 10–90% highest posterior den-
sity [HPD] = 0.025/0.124) and the limbic network (posterior
sigma = 0.069, HPD = 0.002/0.103). A brain network anchored in
insula and anterior cingulate cortex was variously referred to
as “salience network” (Seeley et al. 2007), “cinguloopercular
network” (Dosenbach et al. 2008), “ventral attention network”
(Corbetta and Shulman 2002), and “midcingulo-insular network”
(Uddin et al. 2019). We recognize that these other nomen-
clatures have also been used in previous studies referring
to this brain system. Henceforth, we refer to this network
as the “salience” network for consistency. Smaller volume
effects were found for the somatomotor network (posterior
sigma = 0.033, HPD = 0.001/0.050), dorsal attention network (pos-
terior sigma = 0.028, HPD = 0.004/0.043), visual network (posterior
sigma = 0.025, HPD = 0.001/0.041), DMN (posterior sigma = 0.021,
HPD = 0.002/0.034), the frontoparietal control network (posterior
sigma = 0.017, HPD = 0.001/0.027), as well as the set of subcortical
regions (posterior sigma = 0.023, HPD = 0.005/0.037). Collectively,
findings from the higher level of our Bayesian hierarchical model
indicate that all examined brain systems showed a degree of
brain-behavior associations with SS. However, the regularity
of SS in UK Biobank participants was especially attributed to
volume variation in the atlas regions belonging to the salience
and limbic network.

At the level of regional gray matter variation (Fig. 2), the
estimated hierarchical model identified several robust volume
effects as a function of regular SS. Positive volume effects in
the 10 strongest region-SS associations included the posterior
portion of the midcingulate cortex (posterior mean = 0.103,

HPD = 0.017/0.178; for more detailed information on regional vol-
ume effects, see Supplementary Table S2). Other leading regions
with positive volume effects included the anterior temporo-
parietal junction (TPJ), close to the supramarginal gyrus, in
the right brain (posterior mean = 0.046, HPD = −0.020/0.114)
and left brain (posterior mean = 0.037, HPD = −0.025/0.098),
the left dorso-lateral prefrontal cortex (dlPFC) correspond-
ing to dorsal middle frontal gyrus (posterior mean = 0.041,
HPD = −0.026/0.087), and left anterior/mid cingulate cortex
(posterior mean = 0.027, HPD = −0.041/0.088). In contrast, we
identified the most relevant negative volume effects in high-
versus low-SS individuals in regions of the left anterior insula,
extending into parts of the temporal pole and the inferior
frontal gyrus (posterior mean = −0.086, HPD = −0.162/0.006; pos-
terior mean = −0.033, HPD = −0.093/0.039). We found additional
negative volume effects in the orbitofrontal cortex (OFC) on
the left (posterior mean = −0.031, HPD = −0.089/0.029) and right
(posterior mean = −0.039, HPD = −0.098/0.030), as well as in
the left supplementary motor cortex (posterior mean = −0.073,
HPD = −0.013/0.006).

To complement our analysis of SS in brain structure, we
next carried out a pattern-learning analysis of the participants’
functional connectivity fingerprints. The collection of 4950
unique connectivity links was submitted to PLS. This ana-
lytical approach determined the dominant population mode
of covariation in the context of SS (statistically significant
at P < 0.05, based on nonparametric permutation testing).
This mode (Fig. 3) showed that high-SS individuals exhibited
increased internetwork connectivity of the salience and limbic
networks with dorsal attention and somatomotor networks.
In high versus low SS, between-network connectivity among
these systems was enhanced, as well as within-network
connectivity for systems individually. Conversely, the DMN
and, to a smaller extent, the frontoparietal control network
exhibited reduced between-network coupling with the visual
network for individuals with high SS. As such, being socially
well embedded is associated with enhanced functional coupling
of brain systems that are widely acknowledged to involve
processing aspects in perception–action cycles, rather than
higher order processing systems detached from the current
sensory environment.

To seek functional understanding of the identified brain
correlates of regular SS, we finally conducted a demographic
profiling analysis. We computed a CCA that linked a variety of
behavioral variables and variation in gray matter volume in our
top 10% regions. From the rich UK Biobank population dataset,
we selected a wide range of behavioral variables. Our collection
covered aspects of physical health, daily habits and lifestyle,
substance-use, mental health and wellbeing, and complemen-
tary measures of social embeddedness (Table 1).

To recapitulate, this set of leading regions showed the largest
effect sizes (as indexed by the mean of the marginal posterior
parameter distribution) in our Bayesian hierarchical analysis
of SS based on brain structure. Patterns of brain-behavior cor-
respondence were separately computed for high- and low-SS
individuals. Our approach thus screened for systematic and
robust over- or under-expressions of lifestyle factors in the wider
population.

Figure 4 shows the distribution of group differences (i.e.,
bootstrap difference distributions between canonical vectors,
cf. Methods) in high- versus low-SS participants, derived from
bootstrapped datasets representing different possible composi-
tions of the population sample. Statistically relevant differences

https://github.com/Nealelab/UK_Biobank_GWAS#imputed-v3-phenotypes
https://github.com/Nealelab/UK_Biobank_GWAS#imputed-v3-phenotypes
http://ldsc.broadinstitute.org/ldhub/
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Figure 4. Demographic profiling analysis identifies lifestyle factors related to brain substrates of SS. Multivariate pattern-learning (cf. Methods) was used to explore how
the top brain regions (see Fig. 2) are linked to a variety of behavioral indicators in high-SS versus low-SS individuals. Behavioral markers covered domains of mental and
physical well-being, lifestyle choices, and social embeddedness. In 1000 bootstrap resampling iterations, our entire pattern-learning pipeline in gray matter volume was

repeated separately in the two participant groups: UK Biobank participants who regularly share life experience with close others and those with little such exchange
of personal events. The computed differences in brain-behavior associations between both groups (i.e., diverging canonical vector entries) were gathered across the
1000 perturbed redraws of our original dataset to obtain faithful bootstrap intervals at the population level. Note that in the context of the used quantitative modeling
framework, age and sex can show relevant effects in conjunction with other behavioral indicators, even if age/sex-related brain variation has been removed in a

preceding deconfounding step. The derived estimates of uncertainty directly quantified how group-related deviations vary in the wider population. Asterisks indicate
statistical relevance based on excluding zero between the 5/95% quantiles of the bootstrap distribution (cf. Methods, Supplementary Table S3). The boxplot whiskers
show the interquartile range (i.e., 25/75% interquartile distance). The highlighted divergences between individuals with weak versus strong SS reveal characteristics
of these population strata. Among them were multiple indicators of social embeddedness, health and substance use, as well as factors related to emotional tenseness

and distress. An analogous analysis based on functional connectivity did not yield any statistically relevant brain-SS associations. This configuration of brain-behavior
differences in high versus low SS speaks to multifaceted manifestations of stress-buffer capacities.

(indicated by asterisks in Fig. 4) between individuals with high
versus low regular SS were mainly found for three domains of
function. First, highest group differences were found for sev-
eral measures of social embeddedness that complement the
main measure of our study (see also Supplementary Table S3).

Specifically, individuals with high versus low SS differed in
their brain structural reflections of feelings of loneliness, family
relationship satisfaction, and the number of full sisters. Second,
group differences were found for associations between brain
volume and health- and substance-use factors. Specifically, we
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observed differences for self-reported health satisfaction, the
perceived ease of getting up in the morning, and the severity
of previous smoking in those successful at giving up (number
of cigarettes previously smoked). As the third collection of dif-
ferences in brain-behavior associations, individuals with high-
versus low-SS differed in their brain structural manifestations of
fed-up feelings, levels of irritability, mood swings, neuroticism,
as well as happiness and job-satisfaction. As such, group differ-
ences were related to several indicators of stress coping behavior
and stress buffer.

Discussion
In challenging times, SS relationships become more important
than ever. Social embeddedness is especially crucial for vul-
nerable populations, such as the elderly (Rodriguez-Laso et al.
2007; Tilvis et al. 2012; Steptoe et al. 2013). Sharing one’s expe-
rience and private thoughts with trusted others is critical for
coping with stress. Social sciences, public health and other fields
agree that physical and mental health hinges on supportive
social contact (Holt-Lunstad and Smith 2010; Sutcliffe et al. 2012;
Morelli et al. 2017; Dunbar 2018; Holt-Lunstad 2018). Population-
scale imaging-genetics cohorts are now opening the door to
authentically study the brain basis of everyday lifestyle factors,
such as traits of social interaction. Involving ∼40 000 UK Biobank
participants, we delineated how rich versus poor SS from peers
is reflected in brain structure and function in the wider society.

Previous brain-imaging studies in monkeys and humans
showed that brain structure is coupled with the size of one’s
social group (Lewis et al. 2011; Sallet et al. 2011). By contrast, little
is known about the neural implications of quality and closeness
of daily social exchanges. We have recently shown that social
processes can be differentiated by the degree to which they rely
on one of two major brain systems: the default mode and the
salience network (Schurz et al. 2021). In the present study, we
have focused on the neural reflections of regular SS from close
others, and identified a distinctive set of brain regions centering
on the salience network. This system was found implicated
in more affective, as opposed to cognitive, social processes
(Schurz et al. 2021), and more generally in externally oriented
processing anchored in the “here-and-now” (Corbetta and
Shulman 2002; Dosenbach et al. 2006; Uddin 2015). Collectively,
our results therefore pinpoint neural systems that have been
rarely described in the context of social embeddedness and
friendships (Dunbar 2018; Bzdok and Dunbar 2020).

In brain morphology, we have purpose-designed a Bayesian
hierarchical model to test how spatially distributed variation in
region volumes of known major brain systems may explain the
amount of SS. This analytical strategy uncovered a characteristic
pattern of volume increases and decreases in various regions
which belong to the salience and limbic networks as a function
of SS. Our functional connectivity results show strengthened
coupling of the salience and limbic network with other major
brain systems for socially well-embedded individuals, including
dorsal attention network and somatomotor network.

Especially, the bilateral anterior insula and the anterior/mid
cingulate cortex of the salience network have been robustly
linked to sharing emotional states that other people experience,
as shown by a substantial number of neuroimaging studies (for
reviews, see Bzdok et al. 2012; Timmers et al. 2018; Jauniaux
et al. 2019; Schurz et al. 2021). For example, a coordinate-based
neuroimaging meta-analysis (Timmers et al. 2018) showed that
neural activity for socioaffective empathy robustly converges

in these areas across different studies and labs. This observa-
tion was made across 128 separate neuroimaging experiments
conducted in ∼3800 participants. Regions of the salience net-
work not only play a role in processing others’ emotions but
also in monitoring one’s own internal states (Craig 2009; Singer
and Lamm 2009). This 2-fold involvement motivated the view
that “shared representations” underlie empathy: our ability to
emotionally connect with other people (Preston and de Waal
2002; de Vignemont and Singer 2006; Keysers and Gazzola 2007;
Zaki et al. 2016). According to these investigators, the insula and
anterior/mid cingulate cortex are probably engaged in similar or
identical processes during the direct experience of an affective
state and when witnessing someone else in that state (Rütgen
et al. 2015; Zhou et al. 2020). Affective states supported by
these region’ activity responses are of predominantly negative
valence, ranging from pain to basic emotions such as fear,
sadness, and disgust (Wicker et al. 2003; Morrison et al. 2004;
Singer et al. 2004; Reniers et al. 2014; Toller et al. 2015). Taken
together, numerous earlier findings have linked core regions of
the salience network to successful sharing of feelings experi-
enced by others (see Menon and Uddin 2010; Uddin 2015).

A possible role of the uncovered brain correlates in under-
standing others’ emotional states is consistent with a further
line of neuroscience research. Tissue lesions in the insula were
reported to entail pronounced impairments of understanding
others’ emotions (Gu et al. 2012; Leigh et al. 2013; Hillis 2014).
For example, acute stroke patients with tissue damage to the
anterior insula showed a decline in the capacity to recognize
emotional states of other people (Leigh et al. 2013). In these
neurological patients, the severity of the deficit in emotion iden-
tification was tracked by the lesion volume in the insula. Years
after disruption in insular gray matter, the patients still showed
deficits in empathic judgments about others (Gu et al. 2012).
Similarly, tissue damage in the midcingulate cortex is known to
impair reward-contingent processing of contextual information,
decision-making, and mounting appropriate reactions (Williams
et al. 2004). Hence, causal evidence from several previous studies
confirms the relevance of the salience network in social and
affective sharing, such as required for SS that people lend to
others.

In addition to the anterior insula and midcingulate regions
of the salience network, our analyses also identified reliable
structural and functional associations of regular SS from close
others in the bilateral OFC of the limbic system. These hotspots
in the ventromedial prefrontal cortex were repeatedly reported
as gray matter correspondences of the sizes of the social circles
of humans and monkeys (Sallet et al. 2011; Von Der Heide et al.
2014; Kwak et al. 2018). As part of the limbic system, the medial
OFC hosts direct axonal connections with the amygdala (Folloni
et al. 2019). The OFC has been linked to processing of reward
(Kringelbach 2005) and stimulus–reward associations (Walton
et al. 2010), including rewards from social interactions. Brain-
imaging studies found that neural activity in the OFC is sensitive
to being evaluated by peers in positive or negative ways (Izuma
et al. 2008). Orbitofrontal neural activity was also found to track
other people’s popularity in real-world social circles (Zerubavel
et al. 2015). Individuals with higher gray matter density in the
OFC, related to low SS in our study, were shown to have higher
social reward dependence (Lebreton et al. 2009). Indeed, pre-
vious brain-imaging experiments have reported neural activity
responses in these regions when humans think about familiar
members of social circles, such as friends opposed to strangers
(Krienen et al. 2010).
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More broadly, our findings invigorate the distinction between
externally oriented and internally oriented brain systems, which
may also subserve distinct types of socioaffective cognition. We
identified convergent relevance of the anterior insula and the
anterior/mid cingulate cortex for the frequent experience of
interpersonal sharing. Thus, our findings differ from the regions
that are usually reported as candidates for supporting a large
number of friends (Lewis et al. 2011; Dunbar 2018; Noonan et al.
2018; Bzdok and Dunbar 2020). In previous studies, it has been
hypothesized that the capacity to maintain a circle of regular
interaction partners is mainly achieved through more abstract
and rational social reflection (Powell et al. 2010; Lewis et al. 2011,
2017), including perspective-taking, the capacity to infer beliefs,
behavioral dispositions, and ongoing thoughts of other people
(Premack and Woodruff 1978; Frith and Frith 2006; Adolphs 2009;
Schurz et al. 2014). In contrast, our study specifically focused on
close relationships for sharing personal information that involve
mutual trust.

As a view emerging from these present and previous findings,
immediate encounters and affective sharing may be a central
element of close embeddedness and regular SS. In line with this
reasoning, our structural analysis of SS also identified strong
effects for bilateral anterior TPJ and left dlPFC. The anterior
TPJ was previously implicated in attentional control (Corbetta
and Shulman 2002; Decety and Lamm 2007; Krall et al. 2015),
as well as in maintaining a “task-set” (Dosenbach et al. 2006)
that is believed to support stimulus processing in the present
moment. The anterior TPJ has also been described to serve
as a “switching device” that is implicated in toggling between
functional networks dedicated to externally-oriented processing
of the immediate environment and internally oriented process-
ing of self-related mental events (Mars et al. 2012; Bzdok et al.
2013; Kernbach et al. 2018). In social neuroscience experiments,
this specific portion of the TPJ has also been reliably linked to
distinguishing self- versus other-related representations during
affective sharing and appraisal (Silani et al. 2013; Steinbeis et al.
2015; Lamm et al. 2016). Therefore, the anterior TPJ, highlighted
bilaterally by our structural analysis of SS, has been associ-
ated with control processes, which may be vital for appropriate
empathic responding, such as including maintenance of self-
others distinction (Silani et al. 2013). Consistently, the dlPFC
was also repeatedly implicated in self-other control, such as in
regulating emotional self-centeredness (Steinbeis et al. 2015),
responses to facial expressions, overcoming racial bias (Cun-
ningham et al. 2004), and overriding prepotent moral judgment
(Greene et al. 2004). These collective results encourage the spec-
ulation that day-to-day confiding with others can potentially
lead to neural changes in systems that implement empathic
sharing and response.

Indeed, a seminal longitudinal study on the social brain (Valk
et al. 2017) administered daily exercises of emotional sharing
to several hundred participants. This regular empathic engage-
ment mediated adaptive increases in gray matter structure,
which included the insula, the mid and posterior cingulate cor-
tex, the anterior TPJ, as well as the dlPFC. All of these malleable
regions were also highlighted by our population-imaging inves-
tigation of regular SS. Neural plasticity gains induced by fre-
quent training indeed coincided with improvements in behav-
ioral assessments of social and emotional skills (Valk et al.
2017). Furthermore, participants also indicated to feel more
compassion towards other people who experience pain.

The UK Biobank resource offers deep behavioral and lifestyle
characterizations in addition to multimodal neuroimaging

measurements. To seize this opportunity, we have implemented
pattern-learning techniques to systematically explore multi-
variate links between gray matter volume for our top brain
regions on the one hand, and indicators of social, mental,
and physical well-being on the other hand. This demographic
enrichment of the brain correlates of SS highlighted associations
with emotional tension. Brain manifestations of high versus
low SS were robustly linked to indicators related to stress-
buffer capacity, resilience, and positive emotion. The identified
measures included tendencies for mood swings, fed-up feelings,
self-reported irritability and neuroticism, as well as family
relationship and job satisfaction. Consistently, our genome-
wide analyses revealed shared genetic underpinnings of lacking
SS with those of dissatisfaction with one’s social interaction in
closer and wider networks, and one’s financial situation. Finally,
our brain-behavior analysis and genetic correlation analysis
agreed in underscoring a strong link between regular SS and
overall happiness.

These results confirm and extend previous research which
suggested that social connectedness reduces general levels of
psychological distress (Holt-Lunstad 2018; Snyder-Mackler et al.
2020) and anxiety (Finch et al. 1999; St-Jean-Trudel et al. 2009).
Research on neuroendocrine systems found that adequate SS
can buffer bodily responses to stress, such as those regulated by
cortisol hormone pathways through the hypothalamic pituitary
adrenal axis (Heinrichs et al. 2003; Ditzen and Heinrichs 2014). In
that way, in times of uncertainty and crisis, social connectedness
can alleviate negative emotions and worries (Cohen and Syme
1985; Zaki and Williams 2013).

Besides mood-related findings, the demographic profiling
and genome-wide analyses also highlighted health- and
substance-use related factors in individuals with low versus
high SS. Specifically, we found group differences for health
satisfaction, difficulties getting up in the morning, as well as
smoking behavior and alcohol consumption (the latter only
for the genome-wide analysis). These observations dovetail
with existing epidemiological work: individuals who consider
themselves socially embedded and well-integrated are healthier
and live longer than individuals who feel lonely (Cacioppo and
Hawkley 2009; Holt-Lunstad and Smith 2010; Luo et al. 2012). The
link of social relationships with serious health implications and
overall mortality has probably been shown most extensively in
older adults. In particular, a meta-analysis of epidemiological
studies found these associations to be particularly pronounced
in the age range between middle adulthood and age 65
(Holt-Lunstad et al. 2015). The UK Biobank population cohort
we studied here shows an age range between 40 and 70 years,
which is consistent with this previous work.

Collectively, our brain-imaging and genetics findings point to
wide-ranging implications of social connectedness across a vari-
ety of lifestyle and health associations. Thus, our population-
level evidence reinforces the value of neuroscience insights for
developing therapeutic strategies and informing public-health
decisions.
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